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Abstract

Homozygous mutation of TBC1 domain-containing kinase (TBCK) is the cause of a very recently defined severe
childhood disorder, which is characterized by severe hypotonia, global developmental delay, intellectual disability,
epilepsy, characteristic facies and premature death. The link between TBCK loss of function and symptoms in
patients with TBCK deficiency disorder (TBCK-DD) remains elusive. Here we demonstrate for the first time the
histopathological characteristics of TBCK deficiency consisting of 1) a widespread and massive accumulation of
lipofuscin storage material in neurons of the central nervous system without notable neuronal degeneration,
2) storage deposits in few astrocytes, 3) carbohydrate-rich deposits in brain, spleen and liver and 4) vacuolated
lymphocytes. Biochemical examinations ruled out more than 20 known lysosomal storage diseases. These
investigations strikingly uncover TBCK-DD as a novel type of lysosomal storage disease which is characterized by
different storage products rather than one specific type of accumulated material. Due to the clear predominance
of intraneuronal lipofuscin storage material and the characteristic clinical presentation we propose to classify this
disease as a new subtype of neuronal ceroid lipofuscinosis (CLN15). Our results and previous reports suggest an
autophagosomal-lysosomal dysfunction caused by enhanced mTORC1-mediated autophagosome formation and
reduced Rab-mediated autophagosome-lysosome fusion, thus disclosing potential novel targets for therapeutic
approaches in TBCK-DD.
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nervous system (CNS), Vacuolated lymphocytes, Autophagy, Mammalian target of rapamycin (mTOR), Rab

Introduction
Homozygous mutation of TBC1 domain-containing
kinase (TBCK) leads to a very recently defined severe
disorder in childhood, which is characterized by infantile
muscular hypotonia, psychomotor retardation and
characteristic facies (IHPRF3; OMIM: 616900). To date,
more than 30 patients with various homozygous TBCK
mutations have been reported [1, 4, 9, 17, 20, 31, 35, 51].

The disease is often accompanied by global developmental
delay, distinctive facial features like deeply set eyes and
tented upper lip vermilion, medication refractory epilepsy
and chronic respiratory failure [51]. Typical brain imaging
signs are brain atrophy and progressive leukoencepha-
lopathy with a thinned corpus callosum. The disease has a
generally short survival and only exceptional clinical
courses up to two decades have been described [17, 35].
In all reported cases, the different TBCK mutations

resulted in aberrant TBCK protein. The knowledge
about the function of TBCK is still limited. The protein
contains a Tre-2/Bub2/Cdc16 (TBC) domain, a
rhodanase-like domain and a kinase domain, which has
been proposed to be inactive due to a lack of essential
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catalytic subdomains [7, 29, 42]. The TBCK protein is
expressed in most organs (https://www.proteinatlas.org/).
It has been shown to suppress cell proliferation [29, 50]
and to play a role in cell growth and actin organization by
enhancing the signalling pathways of mammalian tar-
get of rapamycin (mTOR), presumably at a transcrip-
tional or post-transcriptional level [29]. Interestingly,
an autophagosomal-lysosomal dysfunction has been
described recently in patients with TBCK deficiency
[35] that is attributed to the disturbed activation of
the mTOR complex 1 (mTORC1), which regulates
autophagy [6]. In addition, it has been suggested that
TBCK encodes a Rab GTPase-activating protein [9].
Despite these data, the actual mechanisms linking

TBCK gene mutation to the clinical phenotype remain
elusive, thus impeding the establishment of potential
therapeutic strategies. This study provides the first aut-
opsy reports of two siblings, who suffered from homozy-
gous TBCK mutation. Macroscopic, histological and
ultrastructural investigations give insights into the
cellular changes in the disorder and provide compelling
evidence for classification of TBCK deficiency disorder
(TBCK-DD) as a novel type of lysosomal storage disease
(LSD).

Materials and methods
General study design
Two siblings born in 1972 and 1974 suffered from the
same severe and at that time unknown disease. Clinical
examinations of both patients rendered no definite
diagnosis. Autopsies were done immediately after death
of patient 1 in 1978 and of patient 2 in 1985. Investiga-
tions included macroscopic, histological and biochemical
analysis, but no definite diagnosis could be made. With
the recent advent of modern genetic techniques it
became possible to pinpoint the cause of the disorder.
Subsequently, intense re-evaluation of tissue samples
including completive immunohistochemical and ultra-
structural studies was performed. Written informed con-
sent to participate in the study and for publication of the
clinical photographs (Fig. 2) was obtained from the par-
ents of the siblings.

Molecular gene analysis
Genomic DNA was isolated from spleen tissue of patient
2 using the QIAamp Mini Kit (Qiagen NV, Hilden,
Germany) following the manufacturer’s instructions.
Mutations in the TBCK gene were uncovered by whole
exome sequencing. Target regions were enriched using
the SureSelectXT Human All Exon Kit V5 (Agilent,
Böblingen, Germany) according to the manufacturer’s
protocol. Sequencing was performed on a HiSeq2500 in-
strument (Illumina, San Diego, CA; USA). On average
100 million paired-end reads with a length of 125 bp

were produced per exome. The conversion of the se-
quence data in the FASTA format was done by Illumina
bcl2fastq. Adapter sequences were removed with
SeqPurge (https://github.com/imgag/ngs-bits) and the
trimmed reads were mapped to the human reference
genome hg19 (GRCh37) using Burrows Wheeler Aligner
(http://bio-bwa.sourceforge.net). PCR-duplicates were re-
moved with samblaster (https://github.com/GregoryFaust/
samblaster). Deletions and insertions were realigned with
ABRA (https://github.com/mozack/abra). Variants were
detected using freebayes (https://github.com/ekg/free-
bayes) and transcript/protein information was annotated
with SnpEff / SnpSift (http://snpeff.sourceforge.net).
Filtering of variants for pathogenicity was performed

with an in-house tool (MS, unpublished). Calls with an
allele frequency ≥ 1% in the 1000 Genomes, ExAC or
Kaviar databases were excluded. In addition, frequently
observed variants in our in-house database (≥ 20x) were
removed. All exonic non-synonymous variants including
splice sites which potentially change the protein were
taken into account (other intronic and UTR mutations
were eliminated). Finally the remaining SNVs and
INDELs of the index patient were checked for the three
modes of inheritance: Autosomal dominant (de novo?),
autosomal recessive, X-linked recessive or dominant and
the coverage (minimum 20x).
Sanger sequencing of the TBCK gene was performed

on genomic DNA from spleen and paraffin-embedded
brain tissue of patient 2. Genomic DNA was also
isolated from peripheral blood leukocytes of both par-
ents by standard methods in order to confirm the patho-
genic variants and exclude de novo mutations. The
following primer sequences were used: TBCK-Ex3F:
AGCCCTTTCGTGGAAGAACC, TBCK-Ex3R: GCCC
TGATCCCAGTTGCT, chr4: 107183639–107183188.
TBCK reference sequence was NM_001163435.2,
ENST00000394708.6 and all genomic positions are
denoted according to GRCh37/hg19.

Biochemical analysis
Enzymatic, cytochemical and thin-layer chromatographic
lipid analyses screening more than 20 LSDs were
performed on white blood cells, cultured fibroblasts and
frozen tissue samples of brain, spinal cord and liver
obtained from autopsy of both patients. Additionally,
urine of patient 2 was tested for oligosaccharide concen-
tration and spleen tissue of patient 2 was examined
regarding its content of carbohydrate positive (CHp) ma-
terial. For this, buffer extract from 200mg spleen tissue
was delipidated by phase partitioning with chloroform/
methanol 2:1 by volumes. The aqueous upper phase was
dialyzed against water, concentrated and applied to a
BioGel P-4 column [25]. The buffer-eluted fractions
were monitored for CHp material by spotting aliquots to
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a thin-layer plate and reacting the spots with anisalde-
hyde/sulfuric acid reagent (characteristic colour for
carbohydrates, glucose as a reference). CHp material was
detected only in some fractions eluted with the void
volume. These fractions were also positive with a
mucopolysaccharide reagent [13]. Positive fractions were
pooled and centrifuged. The resulting sediment and
supernatant were again tested for CHp material as
follows: The test spots were applied to a start line 1 cm
above the lower edge of a thin-layer plate. Water-sol-
uble, low-molecular-weight contaminations were re-
moved from the start line by running the plate upwards
with a polar solvent system for 2 h. Finally, the run plate
was sprayed with anisaldehyde reagent to visualize CHp
material. The entire procedure was also applied to
spleen tissue from two control individuals.

Histological and immunohistochemical analysis
Autopsies were done immediately after death of patient
1 in 1978 and of patient 2 in 1985. Visceral and central
nervous tissue was formalin fixed and paraffin embedded
according to standard protocols. Multiple stained
sections of all relevant brain regions and of the spinal
cord were available from patient 1 and re-evaluated for
this study. From patient 2, both the stained sections and
archived paraffin blocks of the central nervous system
and peripheral organs were re-evaluated and used for
new histological and immunohistochemical stains,
respectively. Hematoxylin and eosin, Klüver Barrera
(luxol fast blue and cresyl violet), Sudan black and red,
periodic acid-Schiff (PAS), Alcian blue, Shimizu and
Heidenhain-Woelcke stains as well as Gallyas silver im-
pregnation were performed according to standard proce-
dures. Investigation of sections was performed with
normal or differential interference contrast microscopy
and autofluorescence was evaluated with light excitation
using ultraviolet (excitation wavelength 340–380 nm),
blue (460–500 nm) and green (515–560 nm) light.
For immunohistochemistry, heat-induced epitope

retrieval was performed either with citrate or EDTA
according to the manufacturer’s protocol of the respective
primary antibody. Sections were incubated for one hour
with the following primary antibodies: rabbit anti-GFAP
(1:1000; Dako Z0334), mouse anti-ß-Amyloid (1:100;
Dako M0872), rabbit anti-p62 (1:100; Enzo BML-
PW9860), mouse anti-CD3 (1:50; Novocastra Laboratories
NCL-CD3-PS1), mouse anti CD20 (1:400; Dako M0755),
mouse anti-CD68 (1:100; Dako M0876) and mouse
anti-CD138 (1:200; Dako M7228). Sections were
washed and incubated with post-block solution and
HRP-polymer reagent according to the manufacturer’s
protocol of ZytoChem-Plus HRP Polymer-Kit
(Zytomed Systems).

Ultrastructural analysis
For ultrastructural analysis, cylinders of 3 mm in diam-
eter were punched out of paraffin embedded tissue of
the neocortex, medulla oblongata and spinal cord anter-
ior horn, respectively. We chose areas in which neuronal
storage inclusions were histologically observed. The
tissue was rehydrated and fixed in glutaraldehyde. Tissue
preparation was performed as described previously [26].
In brief, the tissue cylinders were fixed in buffered
glutaraldehyde, postfixed in osmiumtetroxide and em-
bedded in Epon resin. Thin sections were contrasted
with uranylacetate and lead citrate and analyzed using a
Zeiss EM 902.

Results
Clinical report
The two sisters were born to healthy Caucasian German
parents with distant consanguinity (Fig. 1). The third
pregnancy was interrupted without a prenatal diagnosis.
The clinical symptoms, age of onset and age of death of
both patients are summarized in Table 1.
In detail, patient 1 started to suffer from hypotonia

and loss of tendon reflexes at the age of about 4 months.
The progressive hypotonia prevented any statomotor de-
velopment except for lifting the head in prone position,
an ability that was lost later on. At the age of 7, the body
size was reduced (1.2 m, according to the 30. percentile
of age-related WHO reference values), the body weight
was regular (31.5 kg). X-ray examination revealed no
signs of dysostosis. She had a short neck and mild facial
dysmorphia with an open mouth, tented upper lip
vermilion, macroglossia, furrowed tongue and right
esotropia (Fig. 2). She was intellectually disabled, never
able to speak and blind, but able to hear. At the age of 5
years, epilepsy with generalized onset motor seizures be-
came manifest. Accordingly, electroencephalographic
(EEG) waves of severely changed general activity and
some hypersynchronous activity were observed. The
patient died at the age of 7 years and 3months from a
bronchopneumonia with respiratory failure.
Patient 2, the younger sister, developed similar clinical

features of a profound global developmental delay with a
slightly later onset and longer survival. Her statomotor
maximum was the all-fours position, when the symp-
toms with hypotonia started at the age of 10 months.
The subsequent disease progress was faster compared to
her sister and generalized onset motor seizures appeared
soon. She was intellectually disabled, never able to speak
and suffered from severely reduced visual acuity.
Hearing was intact and she developed hyperacusis. The
external appearance was comparable to her sister (Fig. 2,
middle and right panel). Size and weight was normal at
birth but severely reduced by the age of 11 years (size
1.24 m, according to < 1. percentile and weight 33 kg,
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according to the 22. percentile of age-related WHO
reference values, respectively). Electroneurographic and
myographic measurements at the age of 9 years revealed
reduced distal nerve conduction velocities and a
complete absence of spontaneous and arbitrary muscular
activity. Computer tomography showed a general
cortical, frontally accentuated atrophy with slightly
distended, deformed ventricles and a massive atrophy of
the lower cerebellar vermis. The patient died at the age
of 11 years from bronchopneumonia with respiratory
failure.

Genetic investigations
Whole exome sequencing of the DNA of patient 2 yielded
77 million mapped reads with a mean coverage of more
than 94%. The analysis revealed a homozygous nonsense
mutation in exon 3 of TBCK: NM_001163435.2:c.304C >
T, p.Gln102* (Fig. 3a). This leads to a premature stop
codon and affects the protein kinase domain. The muta-
tion was confirmed by Sanger sequencing and accordingly
heterogeneously present in both parents of the patients
(Fig. 3b). Other gene mutations, especially of known meta-
bolic diseases, were not detected.

Biochemical investigations
Biochemical analyses were performed on white blood cells,
cultured fibroblasts and frozen tissue samples of patient 2
and ruled out the following metabolic diseases: meta-
chromatic leukodystrophy, multiple sulfatase deficiency,

Fig. 1 Family tree of the patients. The siblings (VI.5 and VI.6, black circles) were born to Caucasian, distantly consanguineous parents, who did not
suffer from the disease. ◊, pregnancy with induced abortion. ?, twins with unknown zygosity

Table 1 Clinic of siblings

Patient 1 Patient 2

Age of onset 4 months 10 months

Age of death 7 years 11 years

Cause of death

Respiratory failure + +

Main symptons

Severe Hypotonia + +

Global developmental delay + +

Intellectual disability + +

Generalized onset seizures + +

Reduced visual acuity – +

Blindness + –

Appearance

Undersize + +

Underweight – +

Short neck + +

Facial dysmorphia + +

Open mouth + +

Tented upper lip + +

Macroglossia + +

Furrowed tongue + +

Unilateral esotropia + +
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Krabbe disease, GM1 gangliosidosis I and II, GM2
gangliosidosis, galactosialidosis, sialidosis, Salla dis-
ease, Fabry disease, Schindler disease, Farber disease,
Niemann-Pick disease, Gaucher disease, mucopolysac-
charidoses (7 types), Wolman disease, cholesterylester
storage disease and neuronal ceroid-lipofuscinosis
(NCL). Thin-layer chromatographic lipid analyses of
brain, spinal cord and liver tissues showed normal
patterns of gangliosides including GM1, GM2 and
GM3, and of glucosylceramide, galactosylceramide,
sulfatides, and sphingomyelins. Urinary oligo- and
mucopolysaccharides were unremarkable.
Investigation of carbohydrate-positive material in spleen

tissue of patient 2, on the thin-layer plate, detected
carbohydrate-positive material at the start line suggestive
of an accumulation of a carbohydrate-containing sub-
stance of high molecular weight. In contrast, the spleen
tissue of two control individuals showed only small traces
and thus distinctly less amounts of carbohydrate-positive
material compared to the patient.

Visceropathological investigations
General autopsy of both patients revealed respiratory
failure as cause of death, which was evident with

multiple atelectases, recurrent small embolisms, pul-
monary edema and single foci of pneumonia in patient 1
and with a fulminant bronchopneumonia in patient 2.
Strikingly, in the obtained mesenterial lymph nodes few
leucocytes contained large uniform bold vacuoles, which
were pale in hematoxylin eosin staining, strongly
PAS-positive and did not stain for chloracetate esterase
(Fig. 4). They emitted a strong yellowish, green and red
autofluorescence in light excitation with respective wave
lengths. Immunohistochemical analysis characterized the
vacuolated cells mainly as B-lymphocytes and as occa-
sional plasma cells with an incomplete differentiation
(Fig. 4e-f ), whereas T-cells and macrophages were not
affected. The vacuolated lymphocytes suggested an en-
hanced autophagosomal load, as indicated by p62 immu-
nohistochemistry (Fig. 4d).
In both patients, the spleen showed subacute conges-

tion. Here, single extracellular clusters of autofluorescent
polymorphic structures suggestive of degraded material
were seen (data not shown). The liver showed fatty
degeneration, presenting as diffuse small lipid droplets
in patient 1 and as centrolubular hypoxic fatty changes
in patient 2. Neither in the spleen nor in the liver
storage cells could be detected, but patient 2 exhibited

Fig. 2 External appearance of the two patients. Severe hypotonia, a short neck and mild facial dysmorphia with open mouth, tented upper lip
vermilion, macroglossia, furrowed tongues and right esotropia are seen
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PAS-positive material subendothelial to small arterioles
in both organs. No lipopigments were seen in all investi-
gated peripheral organs, including heart, lung, liver,
spleen, kidneys, endocrine organs, gastrointestinal and
urogenital tracts as well as skeletal musculature.
As individual pathologic changes, patient 1 showed a

jejunal invagination with beginning impaired circulation
and a reactive hyperplasia of single mediastinal, mesen-
terial and inguinal lymph nodes. Patient 2 had kidneys
reduced in weight to 50% of the age related norm and a
thoracolumbal scoliosis.

Neuropathological investigations
On autopsy, both brains showed a moderate global atro-
phy including a hydrocephalus internus and narrowed
cortical gyri with dilated sulci in patient 1 and narrowing
of white matter tracts in patient 2 (Fig. 5). Brain weights
were appropriate to the age related norm (1490 g and
1350 g formalin fixed, respectively). The corpus callosum
was thinned. Basal ganglia, thalami, hippocampi, brain

stem and cerebellum appeared macroscopically unre-
markable. The dorsal nerve roots of the spinal cord were
partly thickened in patient 2. There was acute conges-
tion with dilated capillaries. Singular microbleeds were
found in the white matter of cerebrum, cerebellum and
pons. In patient 1, individual hippocampal neurons of
Sommer sector CA1 and of the nucleus dentatus were
shrunken and hyperchromatic, indicating previous hyp-
oxia. Patient 2 showed mild edematous changes in the
cerebrum, a severe reduction of Purkinje cells with
strong activation of Bergmann glia and a discrete fibrosis
of leptomeninges. The white matter showed normal
myelination.
Both patients showed a significant muscular atrophy,

especially of the lower legs. Muscle specimens revealed a
neurogenic atrophy with angular fibers and partial fiber
groupings (data not shown).
Histological examination of the central nervous system

(CNS) revealed one major pathological finding in both
patients: cytoplasmic accumulation of granular storage

a b

Fig. 3 The TBCK defect in the genome of patient 2 and her parents. a, Integrative Genomics Viewer presentation of the homozygous stop mutation in
the TBCK gene of patient 2. Below the green square, green dots show the base exchange (c.304C > T) in the multiple reads. b, Sanger sequencing of
the TBCK gene of patient 2 and her parents. Sequencing was performed on the reverse strand, showing the base exchange G > A in our patient
(grey boxes). Both parents carry the same mutation heterozygously, as seen in the R (grey boxes) that resembles an A and a G in each allele

Beck-Wödl et al. Acta Neuropathologica Communications           (2018) 6:145 Page 6 of 15



material within neurons and to a lesser extent within
glial cells. Interestingly, the number of neurons was nor-
mal to slightly reduced. The intracellular inclusions were

distributed bihemispherically in many neurons of nearly
all investigated brain regions. A detailed list is provided
in Table 2. Most severely affected were the cerebral

a

b

c d

e f

Fig. 4 Vacuolated lymphocytes in lymph nodes of patient 1. A few lymphocytes with clear bold cytoplasmic vacuoles can be detected in the
hematoxylin eosin staining in normal microscopy (a and b, first panel) and differential interference contrast (DIC) microscopy allowing for a three-
dimensional illustration (a and b, second panel). The vacuoles exhibit a clear autofluorescence in different channels (a and b, right panel) and are
strongly PAS-positive (c, DIC). An enhanced autophagosome formation is indicated by strong p62 immunoreactivity (d, black arrow), whereas
normal lymphocytes are predominantly negative (white arrow). Note the positively stained larger macrophage (arrowheads) phagocytosing an
erythrocyte (asterisk). Most of the vacuolated cells are CD20+ B-lymphocytes (e, DIC), and single cells show a partial CD138 expression, likely
pointing at immature plasma cells (f, DIC). Scale bar: 10 μm
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Table 2 Distribution of neuronal storage material and PAS-positive granules in the central nervous system. Screening for neuronal
inclusions was performed on sections stained with cresyl violet luxol fast blue (LFB) and sudan black (SB) or under ultraviolet light
excitation for emission of autofluorescence (AF)

Region Neuronal storage material PAS + granules

LFB/SB AF

Cerebrum

Basal ganglia Neocortex I – IV – ++ ++

Neocortex V - VI +++ +++ ++

Nucleus caudatus (+) + –

Putamen – ++ (+)

Claustrum +++ +++ –

Thalamus ++ +++ –

Hippocampus CA 1 ++ +++ +

CA 2–4 + ++ +

Corpus geniculatum laterale +++ +++ n. a.

Cerebellum Cortex

Purkinje cells – – –

Granule cells – – –

Subcortical white matter – – +++

Nucleus dentatus (+) ++ +++

Brain stem

Mesencephalon Substantia nigra – (+) ++

Nucleus oculomotorius – (+) n. a.

Pons Pontine nuclei (+) + +++

Raphe nuclei (+) + +++

Medulla oblongata Olivary nuclei +++ +++ (+)

Nucleus nervus vagus +++ +++ –

Nucleus nervus hypoglossus – ++ –

Note the distinctly higher sensitivity of detection with autofluorescence. n. a., no available PAS-stained section or paraffin-embedded tissue

a b

Fig. 5 Whole mount coronar brain sections of patient 1 (a, Heidenhain-Woelcke stain) and patient 2 (b, luxol fast blue stain). The lateral ventricle
is widened especially in patient 1 (a, asterisk). The brain of patient 2 shows narrowing of the white matter (b, blue staining of myelin). The corpus
callosum is thinned in both patients (a and b, arrows). Scale bar: 2 cm
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cortex laminae V and VI, claustrum, corpus geniculatum
laterale, olivary nuclei, nuclei nervi vagi and the anterior
horn of the spinal cord. The mesencephalon and the
lateral and posterior horns of spinal cord were mainly
preserved, the Purkinje cells peculiarly spared. The oc-
currence of neurons with abnormal storage material was
more pronounced in patient 1 as compared to patient 2,
who showed significantly less affected neurons in the
cortical laminae I-IV, striatum and hippocampus.
The neuronal inclusions were densely packed in the

perikaryon and lay frequently adjacent to neuronal
processes (Fig. 6). They had a round shape with an aver-
age diameter of 1 μm, varying from 0.3 to 2 μm. They
stained strongly with luxol fast blue and sudan black and
were argyrophilic. In unstained sections, they exhibited a
bright silvery autofluorescence in ultraviolet light excita-
tion and a weaker green and red autofluorescence in light
excitation using respective lasers (Figs. 6 and 8 patient 1;

Additional file 1: Supplement A patient 2). The detection
of autofluorescent inclusions was most sensitive compared
to other stains (Table 2). The PAS-reaction of the granules
was heterogeneous and mainly weak (Fig. 6e), the
alcian blue staining was entirely negative. A small
proportion of the storage material was weakly immu-
noreactive for ß-amyloid, whereas a negative immuno-
reactivity was observed for ubiquitin, TDP-43 and the
marker for autophagosomes p62 (Fig. 6h). In ultra-
structural analysis, the inclusions presented as globu-
lar structures with a partially undulating border and a
surrounding empty halo (Fig. 7). They consisted of
amorphous osmiophilic, compact or granular material in-
cluding high-density particles, lipid droplets (Fig. 7d-e)
and sometimes membrane packages (Fig. 7d lower arrow),
thus being highly suggestive of lipofuscin granules in lyso-
somal residual bodies. They furthermore showed a strong
similarity to granular osmiophilic deposits (GRODs).

a b c

d e f

g h i

Fig. 6 Neuronal inclusions in the spinal cord anterior horn of patient 2. Many neurons present with granular deposits in the perikaryon, which
stain strongly with sudan black (a and b) and sudan red (c). Note the frequent localization adjacent to neuronal processes. The inclusions stain
with luxol fast blue (d, arrows) and show a weak PAS-reaction (e). The storage material is moderately argyrophilic (f, Gallyas stain) and shows
strong autofluorescence (g, unstained section). The storage material does not stain for p62 (h, arrows). Note the reactive GFAP+ gliosis
(i, arrowheads). GFAP, glial fibrillary acidic protein. Scale bar: 250 μm in a, 50 μm in b-i
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Some neurons in addition contained vacuoles with
membraneous structures resembling membranous cyto-
plasmic bodies (MCB) and zebra bodies (Additional file 1:
Supplement B).
Intracellular storage material was not only present

in neurons of both patients, but also in some glial
cells. These inclusions varied in their features from
those of neuronal storage material, as they showed a
strong PAS reaction, no staining with luxol fast blue
or sudan black/red and a silvery autofluorescence in
ultraviolet light excitation of unstained sections
(Fig. 8d-e). Double staining with PAS + GFAP and
PAS + CD68 revealed a localization of the material in
the cytoplasm mostly of astrocytes and to a lesser ex-
tent of microglia (Fig. 8f ).
Finally, diffusely dispersed small granules of PAS-

and Shimizu-positive material were observed in the
neuropil of some areas in patient 1 and less frequent
in patient 2. Affected regions were only partially con-
cordant with the described areas showing neuronal
inclusions, as the cerebellum and pons harbored the
highest content of grains (Tab. 2, Fig. 9). The material
lay diffusely in the grey and white matter of the
mentioned regions with a notable dense perivascular
accumulation (Fig. 9b). The remaining CNS showed
isolated subendothelial aggregations. The deposits var-
ied in size between 0.2 μm and 2 μm in diameter, the

larger ones emitted autofluorescence. The granules
were mainly globular, but large grains were often
polygonal, allowing for discrimination against round
corpora amylacea with a larger diameter. Considering
the age of the patients, an excessive number of cor-
pora amylacea was found in the brain and spinal cord
of both patients, predominantly located in subpial,
subependymal and perivascular areas.
An extensive reactive gliosis was present especially in

the regions containing storage materials (Figs. 6i, 8c).
Immunohistochemistry for CD68 revealed a moderate
activation of microglia, other inflammatory changes were
not seen.

Discussion
This study provides a description of the morpho-
logical and biochemical pathology in the CNS and
peripheral organs of patients with inherited
TBCK-DD. The presence of 1) predominant
lipofuscin-like storage material in CNS neurons, 2)
storage deposits in astrocytes and to a lesser extent
in microglia, 3) grainy PAS-positive deposits mostly
in the pontine and cerebellar neuropil, spleen and
liver, and 4) vacuolated lymphocytes support the clas-
sification of TBCK-DD as an LSD and give important
evidence for the understanding of its pathogenesis.

a b c

d e

Fig. 7 Ultrastructural morphology of neuronal storage material. Semi-thin section stained with toluidin blue of a neuron in the spinal cord
anterior horn of patient 2 shows strongly stained storage material (a). Ultrastructural examination of the same neuron in a serial section (b-e)
reveals a cluster of intracytoplasmic globular inclusions (delineated in b) consisting of amorphous osmiophilic material with high-density particles,
lipid droplets (e; white arrowheads) and structures reminding of degraded membranous material (d and e; arrows). These inclusions correspond
to lipofuscin granules in lysosomal residual bodies and remind of granular osmiophilic deposits (GRODs). Note the different polygonal shape of
physiological Nissl substance (b; white arrowheads). Scale bar: 50 μm in a, 10 μm in b, 2 μm in c, 250 nm in d and e
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Morphological classification of TCBK-DD
Neuronal inclusions correspond to lipofuscin granules
The foremost observation were the frequent intraneuro-
nal granular deposits spread throughout almost the
whole central nervous system. Neuronal storage material

is characteristic for LSDs, which comprise more than 50
diseases with a wide variation of storage products de-
pending on defects in lysosomal enzymes, lysosomal
membrane-associated proteins or non-lysosomal associ-
ated enzymes [33]. Here, positive staining for Sudan

a b c

d e f

Fig. 8 Morphological changes in the cortex of patient 2. Many cortical neurons in lamina V and VI incorporate storage material, which stains
strongly with luxol fast blue in the Klüver Barrera staining (a, arrows) and with sudan black (b, arrows). A massive reactive astrocytosis is seen in
GFAP immunohistochemistry (c). The intraneuronal inclusions (arrows) and glial inclusions (arrowheads) exert a strong autofluorescence (d, unstained
section). Several cortical glia cells show cytoplasmatic PAS-positive granula (e, arrows). Note the numerous PAS-positive corpora amylacea
(e, arrowheads). The laden glia cells are mainly astrocytes, as shown in double staining for PAS and GFAP (f, upper panel, arrows) and very few
microglia cells, as shown in double staining for PAS and CD68 (f, lower panel, arrow). GFAP, glial fibrillary acidic protein. Scale bar: 50 μm in a-e,
20 μm in f

a

b c d

Fig. 9 Diffuse PAS-positive material in the cerebellum of patient 1. The PAS-positive deposits are abundantly present in the subcortical cerebellar
white matter (a, Δ; b and c) with sparing of molecular layer (#), Purkinje cell layer (*) and granular cell layer (+++). The deposits often accumulate
perivascular (b, arrows) and are sometimes seen in glia cells (c, arrow). The nucleus dentatus is also affected (d). Note the shrunken and
hyperchromatic neurons (arrows) as a sign of previous hypoxia. Scale bar: 65 μm in a, 50 μm in b-d
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black and luxol fast blue, a moderate PAS reaction to-
gether with the absence of eosinophilia demonstrated
that the inclusions consist predominantly of lipopig-
ments with minor or no protein content [49]. In
addition, the inclusion material showed strong autofluo-
rescence, a characteristic feature of lipofuscin, the
storage material in neuronal ceroid lipofuscinosis (NCL)
and mucopolysaccharidosis type III (MPS III, Sanfilippo
syndrome), respectively [12, 46, 52].
In concordance with the light microscopical character-

istics, ultrastructurally the majority of storage material
corresponded to lipofuscin granules in lysosomal
residual bodies and in particular resembled granular
osmiophilic deposits (GRODs) as seen in NCL types 1,
4, 5, 8–10, 12 and 14 [34]. Moreover, few zebra body-
and MCB-like structures similar to inclusions in ganglio-
sidoses and MPS were observed [16, 21]. In contrast to
MPS, the neuronal deposits did not stain with Alcian
blue and they showed strong autofluorescence distin-
guishing the disorder from gangliosidoses and all but
one MPS (MPS III). Since the electron microscopical
investigation was performed on material that was recov-
ered from formalin fixed and paraffin embedded tissue,
ultrastructural morphology was suboptimally preserved
and therefore we cannot fully exclude the possibility that
TBCK-DD pathology consists of further alterations.
The autofluorescent glial inclusions differed from the

neuronal deposits in that they were PAS-positive and
negative in luxol fast blue and Sudan black stains,
suggesting that they contain a larger fraction of carbohy-
drates in addition to autofluorescent lipofuscin. The in-
clusions were mostly present in astrocytes, but also seen
in few microglia.

Diffuse accumulation of PAS-positive material in the CNS
and in peripheral organs
Moreover, PAS-positive granular deposits were observed
diffusely in the neuropil. Interestingly, the spleen and
liver contained PAS-positive granules in subendothelial
areas, too. These deposits biochemically corresponded to
increased concentration of carbohydrate-positive mater-
ial in the spleen of patient 2 and indicate an insufficient
degradation of saccharides or glycosylated substrates.
Similarly, a recent study described enhanced oligosac-
charide levels in fibroblasts and urine of patients with
TBCK-DD [35]. The absence of urinary oligosaccharides
in our patient 2 might be due to the lower sensitivity of
the test used in 1987 as compared to the mass spectro-
metric analysis recently performed by Ortiz-Gonzalez et
al. [35]. The distribution pattern of PAS-positive mater-
ial was different in the two patients, indicating that these
deposits might be a variable pathologic feature of
TBCK-DD in different organs. The more severe brain af-
fection of patient 1 correlated with the worse clinical

course compared to that of her sister. All in all, storage
of PAS-positive material was much less pronounced as
in mucopoly−/oligosaccharidosis, gangliosidoses or
polyglucosan body disease.

Vacuolated lymphocytes
Here, we discovered the presence of vacuolated B-cells
and immature plasma cells in TBCK-DD. Vacuolated
lymphocytes are a feature of several metabolic diseases
including CLN3 [2, 3, 10, 27, 45] and CLN11 [8],
Pompe’s disease/adult acid maltase deficiency [2, 19, 36],
GM1 gangliosidosis [2, 14, 15] and others as summa-
rized by Anderson et al. [2].
The autofluorescence together with the strong

PAS-reaction of the vacuoles in lymphocytes of our pa-
tients suggest an accumulation of both lipopigment and
carbohydrates. PAS-positive vacuoles in lymphocytes
have been reported in patients with Pompe’s disease/
adult acid maltase deficiency [2, 19] and Danon disease
(LAMP2-deficient cardiomyopathy) [32]. At present it is
unknown whether vacuolated lymphocytes are regularly
present in the peripheral blood of patients with homozy-
gous TBCK mutation. Should this be the case, peripheral
blood film examination might represent a useful and sim-
ple diagnostic tool to support the diagnosis of TBCK-DD.
The vacuolated lymphocytes showed excessive

p62-positive autophagosomes which have been previ-
ously described in TBCK-DD patients’ fibroblasts [35].
This contrasted to neurons that showed no accumula-
tion of p62 immunoreactive organelles. This variance
may be explained either by cell type-specific effects of
TBCK or by alternative pathways regulating autophagy
in postmitotic neuronal cells as compared to dividing
cells such as fibroblasts [11, 28].

Synopsis of morphological changes
In summary, our findings revealed characteristic mor-
phological changes in both patients with TBCK-DD that
are typical for an LSD. Subclassification into a specific
group, however, is not straightforward since we observed
aggregates with different morphological properties
pointing at different storage materials. While the
majority of neuronal inclusions in the CNS indicate an
NCL, the PAS-positive vacuoles in lymphocytes are rem-
iniscent of those seen in Pompe’s disease and the
PAS-positive aggregates in the CNS, spleen and liver as
well as the occasional intraneuronal zebra bodies and
MCB-like structures demonstrate carbohydrate-contain-
ing material as is stored in polyglycosan body diseases,
mucopoly−/oligosaccharidosis or gangliosidosis. To-
gether, TBCK-DD represents a new type of storage dis-
order, characterized by the occurrence of different
storage products with predominance of lipofuscin.
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Future studies will show whether a classification as a
novel subtype of NCL (CLN15) is appropriate.

Metabolic consequences of TBCK defects
A recent study demonstrated an autophagosomal-lyso-
somal dysfunction in TBCK-DD with accumulation of
autophagosomes and impaired degradation of glycosyl-
ated proteins in cultured fibroblasts [35]. Mechanistic-
ally, TBCK can be linked to autophagy as a regulator of
two distinct pathways including mTOR and small
GTPases of the Rab-family. Knockdown of TBCK in
vitro significantly downregulated the main inhibitor for
autophagy initiation, mTORC1 [4, 6, 29], thus explaining
an enhanced production of autophagosomes in case of
defective TBCK. Importantly, disturbed mTORC1 signal-
ing and lysosomal dysfunction have been observed in a
mouse model of CLN11/progranulin deficiency, under-
pinning the concept of TBCK-DD being an NCL [40, 43,
48]. Furthermore, TBCK has been proposed a putative
activator protein for small GTPases of the Rab-family
[9], which regulate fusion of autophagosomes with lyso-
somes [18, 22, 24, 47]. In line with this interpretation,
Rab-associated dysfunctional endocytic membrane traffick-
ing was described in CLN3 mammalian cells [30]. It is
therefore likely that a TBCK defect leads to both, enhanced
autophagosome formation and decreased fusion with lyso-
somes which in turn cause a disturbed clearance of cell
components e.g. glycosylated substrates and an accumula-
tion of non-degradable products such as lipofuscin.
In addition to the effects on autophagy, mTOR has

been reported to mediate key endogenous neuroprotec-
tive mechanisms in motoneurons [41] and to contribute
to peripheral axonal myelination and growth [44], thus
possibly explaining the severe affection of the second
motoneuron due to both CNS (storage inclusions) and
peripheral (myelination and axonal growth) pathologies
in TBCK-DD.
To date, few neurodevelopmental disorders have been

linked to an aberrantly reduced mTOR signaling as seen
in the herein described TBCK-DD, including Rett
syndrome [38, 39], Phelan-McDermid syndrome with
autism spectrum disorder [5] and Galloway-Mowat
syndrome [23]. These diseases share the symptoms of
cognitive deficits and epilepsy, but are not associated
with an accumulation of storage products. Thus, the ap-
pearance of TBCK-DD as an LSD is likely to result from
multifactorial TBCK-specific alterations, which need to
be elucidated in further studies. So far, therapeutic
mTORC1 activation may be a potential strategy to pre-
vent disease progress in patients.

Correlation of morphological changes to clinical symptoms
The presence of storage material in a large number of
neurons in the absence of significant neuronal loss

suggests neuronal dysfunction as the underlying cause of
TBCK-DD. This is a clear difference to most other LSDs
that are characterized by severe neuronal degeneration
with marked brain atrophy in late stage disease. The
distribution pattern of neuronal storage material fits well
with the clinical phenotype: neurogenic atrophy of
skeletal muscle is likely the consequence of secondary
motoneurons in the spinal cord being severely affected
and intellectual disability is consistent with the high
amount of neuronal inclusions in the neocortex, archi-
cortex and hippocampus. Those changes may not only
explain neuronal deficits, but also account for uncon-
trolled neuronal excitations as a source of epileptic sei-
zures. As the patients suffered from declining visual
acuity or blindness, an involvement of the retina like in
CLN1–3 and CLN5 [37] seems possible, although an
electroretinogram in one patient with TBCK-DD was
normal [9] and points to a cause by affected neurons in
the central visual tract. Overall, the clinical symptoms
with severe developmental delay and intellectual disability,
hypotonia, severe visual deterioration and generalized sei-
zures resemble those seen in infantile and late infantile
CLN1 and CLN2, respectively.

Conclusion
In conclusion, our investigations uncover TBCK-DD as a
novel LSD. The predominant neuronal lipofuscin inclu-
sions as well as the clinical symptoms are typical for an
NCL and may indicate a novel subtype (CLN15). The
accumulation of carbohydrate-related material and the
PAS-positivity of lymphocytic vacuoles, however, exceed
the pathological alterations seen in other NCL. Since our
investigations are limited due to restrictedly archived tis-
sue material, further studies, in particular ultrastructural
analyses of the CNS and vacuolated lymphocytes are
needed in order to come to a definite classification of this
disorder. The underlying mechanism can be assigned to
an autophagosomal-lysosomal dysfunction, including
enhanced mTORC1-mediated autophagosome formation
and reduced Rab-mediated autophagosome-lysosome
fusion, thus implicating new targets for therapeutic
approaches in TBCK-DD.
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