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Abstract

The human complement system is represents the main effector arm of innate immunity and its ambivalent
function in cancer has been subject of ongoing dispute. Glioma stem-like cells (GSC) residing in specific niches
within glioblastomas (GBM) are capable of self-renewal and tumor proliferation. Recent data are indicative of the
influence of the complement system on the maintenance of these cells. It appears that the role of the complement
system in glial tumorigenesis, particularly its influence on GSC niches and GSC maintenance, is significant and
warrants further exploration for therapeutic interventions.

Introduction
Traditionally, the human complement system is regarded
to be a main effector arm of the innate immunity and com-
prises around thirty soluble and membrane-associated pro-
teins. Innate immunity forms the first line of defense
against invading micro-organisms, and is ancient compared
to the adaptive immune system. Analogues of components
of the mammalian alternative complement pathway have
been identified in deuterostomes/protostomes over 1000
million years ago, whereas the first molecules from the
jawed-invertebrate specific adaptive immune system
emerged at least 400 million years later [63]. After breach-
ing the host’s environmental barriers, invading microbes
are detected by the pattern recognition molecules (PRM) of
the classical (C1q) and lectin (MBL, ficolins) complement
pathways (CP, LP) [75, 96]. (Fig. 1). Further, activation of
the complement cascade through the AP is achieved
through insufficient inhibition of spontaneous hydrolysis of
C3 (C3-H20) by the microbe (AP). All three activation
pathways converge at the level of C3 which, after formation
of the C3 and C5 convertase complexes, continues with the
formation of the terminal complement complex (TCC) ei-
ther as the pore-like membrane attack complex (MAC) or
as cell-activating sC5b-9 [51]. MAC assembly in the cell
membrane causes prompt colloid osmotic lysis [56, 59].

Over a century after the initial discovery of the com-
plement system by Buchner et al. it was realized that
the actions of complement are not constrained to an ef-
fector mechanism of the innate immunity, but are also
involved in directing the adaptive immune response,
angiogenesis, tissue regeneration, fat metabolism and
development of the central nervous system (CNS) [75].
The complement system acts as intricate immune sur-
veillance system that is able to discriminate between
healthy host tissue, cellular debris, apoptotic cells and
foreign intruders (Fig. 1) and contributes to a large var-
iety of inflammatory-, immune-, ischemic-, age-related
pathologic processes of the CNS [75]. A wide repertoire
of specific complement inhibitors has been developed
against a variety of diseases of which eculizumab, an
antibody against C5 and C1 (C1-INH) became FDA ap-
proved for the treatment of paroxysmal nocturnal
hemoglobinuria, atypical hemolytic uremic syndrome
and hereditary angiogoedema [1]. In recent years it be-
came clear that many factors of the complement system
are expressed in the brain [60, 93]. The production of
the complement proteins in CNS is constrained to
microglia, oligodendrocytes, astrocytes and, to a lesser
extent, ependymal cells [93]. The complement system
appears to be a key player in CNS homeostasis as com-
plement effector mechanisms have been identified in
neurogenesis and regulating synaptic pruning [54].
Various pathological conditions cause an imbalance be-
tween complement activation and inhibition.
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Activation of the complement system contributes to a
wide variety of CNS diseases including Alzheimer disease,
CNS inflammation, traumatic brain injury and tumors [6,
55]. The cross-link between inflammation and cancer is
generally accepted as chronic and insidious inflammation
is recognized to play decisive roles at different stages of
tumor development, including initiation, promotion, ma-
lignant conversion, invasion, and metastasis [28, 52]. The
actions of the immune system against tumors in progress
can be referred to as the cancer immunoediting process,
which is composed of three distinct phases: elimination,
equilibrium and escape. During the elimination phase and
the equilibrium phase the immunological response is able
to prevent tumor progression. In contrast, during the es-
cape phase acquired adaptations of malignant cells and
the host immune system response allow for expansion of
the tumor cell population [94]. By acting as an intrinsic ef-
fector mechanism and by forming a functional bridge be-
tween the innate and the adaptive immune system, the
complement system is an integral component of the anti-
tumor immune response [94]. Complement activation fol-
lowing recognition of damage-associated molecular
patterns (DAMPs) expressed by tumor cells, or improper
regulation, allow for a potent anti-tumor response [37].
The potent antitumor response by complement has been
utilized for antibody-based cancer immunotherapies by
eliciting complement-dependent cytotoxicity, exemplified
by the use of rituximab and ofatumumab in the treatment
of B cell lymphomas and chronic lympocytic leukaemia,
respectively [89]. However, the complement system also

shows another face. Recent pre-clinical cancer models
showed that the activated complement system contributes
to a tumor facilitating micro-environment [1]. This ad-
verse capacity seems to be a consequence of imbalanced,
rather than physiological, complement activation [74].
Various studies have reported significant reductions of
orthotopic tumor growth following complement system
inhibition within the cascade [74]. Further, diverse com-
plement effectors are implicated in other cancer-related
phenomena as sustained proliferative signaling, angiogen-
esis and invasion and metastasis [33, 74].
Contributory to treatment resistance of glial neoplasms

is the presence of glioma stem-like cells (GSCs) [85].
GSCs reside in specific anatomical niches within the
tumor and propagate glioma repopulation by converting
into either a differentiated tumor cell, or a new cancer
stem cell [46]. The maintenance of GSCs requires specific
intrinsic factors within the cells and various paracrine cues
from adjacent cells [46]. The complement system repre-
sents an as yet unidentified effector in GSC maintenance,
and unraveling its interplay will reveal new targets for
therapeutic intervention.

Complement and GSC maintenance: Intrinsic
regulation
Factors that are involved in GSC maintenance comprise of
metabolic, genetic and epigenetic regulatory mechanisms
[90]. Although the mechanisms underlying GSC plasticity
are largely unknown, several intrinsic regulatory mecha-
nisms are known to be involved in reprogramming

Fig. 1 Schematic and simplified representation of the complement system. Complement regulatory proteins, both fluid-phase and membrane-
bound are coloured light grey. C1INH: C1-inhibitor; CD46: Membrane Cofactor Protein; CD55: Complement decay-accelerating factor; FI: Complement
factor I; CR1: Complement receptor type 1; FH: Complement factor H; C4BP: C4bbinding protein
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differentiated GBM cells into stem-like cells. Among these
are Sex Determining Region Y -Box 2 (SOX-2) [88], signal
transducer and activator of transcription 3 (STAT-3),
octamer-binding transcription factor 4 (OCT-4) and
mammalian target of rapamycin (mTOR) signaling [23, 82].
The GSCs maintain their multipotent state through
autocrine stimulation of the C3a- and C5a-receptors on the
plasma membrane by secretion of alternative pathway
C3-convertase components (C3, factor D and factor B) and
subsequent extracellular cleavage of C3, as observed in rest-
ing T-cells (Fig. 2) [87]. The C3 and C5 convertases (Fig. 1)
are responsible for the release of their respective bioactive
fragments C3a and C3b, and C5a and C5b. The anaphylo-
toxins C3a and C5a signal through the G protein coupled
receptors C3aR and C5aR (CD88) respectively. Interaction
of several downstream signal transduction pathways
followed by C3aR and C5aR activation with recognized
GSC regulatory mechanisms effectors may therefore aid to
GSC maintenance. Figure 2 presents a schematic overview
of the interaction of autocrine derived complement with
GSC regulatory mechanisms. C3a-C3aR interaction
activates STAT-3 and causes an increase of Wnt2b and
SOX-2 expression in a serine protease MAPK dependent
fashion, as was shown in a model of retinal regeneration
[36]. C5aR1 activation contributes to the maintenance of

pluripotency of OCT-4 positive human induced pluripotent
stem cells (hPSC) through extracellular signal-regulated
protein kinases 1 and 2 (ERK1/2) activation [35]. In vitro
administration of recombinant C5a to C5aR expressing gas-
tric cancer cells promotes the activation of PI3K/Akt and
downregulates p21 activation [11]. Inhibition of p21 is a key
mechanism of GSC self-renewal and prevention of differen-
tiation [99].
Further, complement C3 activation is not limited to

the extracellular space because intracellular C3 activa-
tion is an ubiquitous event within human cells [50].
Resting T-lymphocytes contain intracellular pools of C3
that are activated by cysteine protease cathepsin-L. This
‘tonic’ intracellular C3a generation engages C3aR
present on lysosomes and sustains the basal mammalian
target of rapamycin (mTOR) activation required for
T-cell survival [50]. Activation of the PI3K/Akt/mTOR
signaling cascade is involved in GSC phenotype main-
tenance [18]. In addition, GBM tissue shows the pro-
found presence of cathepsin L, which has been shown to
negatively affect apoptosis and promotes invasion [104].
Intracellular C3a activation by cathepsin-L may provide
for an as yet unidentified additional intrinsic GSC
effector mechanism. Noteworthy is the critical role of
autocrine derived C5a-C5aR1 signalling in affecting the

Fig. 2 Proposed interaction of complement C3a and C5a with GSC regulatory mechanisms. C5a-C5aR interaction activates PI3K/Akt/mTOR
signaling and PKCζ but suppresses p21 with subsequent OCT-4 activation. Intracellular activation of C3a by cathepsin-L may occur,
thereby sustaining basal mTOR activation. Either intracellular or extracellular derived C3a phosphorylates STAT-3 and causes an increase of
SOX-2 expression

Bouwens van der Vlis et al. Acta Neuropathologica Communications  (2018) 6:91 Page 3 of 12



fate of Neural Progenitor Cells (NPCs). C5a was found
actively secreted within neural rosettes [16]. Atypical
protein kinase C zeta (PKCζ) dependent C5a-C5aR1
signaling regulates the apicobasal polarity of the NPC,
thereby maintaining symmetrical self-renewing cell
division [16]. PKCζ inhibition reverses C5a-C5aR
induced p42/44 phosphorylation (ERK) and attenuates
the mitotic activity of NPCs [16]. PKCζ is overexpressed
in GBM cells and its downregulation inhibits in vitro
migration and invasion of GBM cells. Another
mechanism through which the GSC could generate C5
in order to self-activate C5aR is by expressing cell
membrane-bound serine protease, as was found in dif-
ferent cancer cell types [62].

Complement and GSC maintenance
The neuropil constitutes the extracellular matrix of the
brain in which endothelial and perivascular cells, micro-
glia, tumor-associated macrophages and non-neoplastic
astrocytes are present and networks of cytokines and
growth factors are active [32]. Together with neoplastic
cells the microenvironment coalesces into the tumor
mass. GSC are enriched in areas of hypoxia, in perivas-
cular niches and at the invasive edge of the tumor [46].
A graphical representation of the various cells involved
is provided in Fig. 2. The actions of the complement
factors within the various glioma niches are summarized
in Table 1.

Hypoxic niche
The inadequate neo-angiogenesis in GBM results in hyp-
oxic areas within the tumor. The neoplastic cells respond
to low oxygen levels by the expression of members of the
hypoxia inducible factor (HIF) family of transcriptional
factors [49]. HIFs are upregulated in GSC and its forced
expression induces a stem-cell like phenotype in glioma
cells [49]. Transcriptional targets of HIFs include angio-
genic genes like Vascular Endothelial Growth Factor
(VEGF) as well as stem cell markers [49]. Areas of hypoxia
optimally accommodate complement activation as provide
for damage-associated molecular patterns (DAMPs) that
are recognized by C1q. Hypoxic conditions induce (HIF-
dependent) down-regulation of complement regulatory
genes CD55, CD46 and factor H and upregulate C3, C3a
and C3aR and enhance C3a-C3aR engagement [27, 66].
The constituents of the complement system have been
identified to interact with HIF associated signaling path-
ways and may therefore act as an additional effector
mechanism in HIF dependent GSC survival, self-renewal
and tumor growth. Firstly, the complement system
contributes to facilitate HIF transcription through STAT-3
activation that is critical for the transcription of HIF-1α in
GSCs and tumor-associated myeloid cells [69]. The
production of reactive oxygen species, as a result of

overexpression of nicotinamide adenine dinucleotide
phosphate oxidase 4 (NOX-4), was identified as the mo-
lecular mechanism underlying hypoxia-induced STAT-3
activation in GBM cells [103]. In a model of renal ische-
mia/reperfusion injury, oxidative stress induces an in-
creased expression of NOX-4 in tubular cells and NOX-2
infiltrating monocytes and myeloid dendritic cells [84].
This effect is dramatically reduced after the administration
of the complement 1-inhibitor (C1-INH). In vitro admin-
istration of C3a to cultured proximal tubular cells induces
NOX-4 expression regardless of hypoxic conditions [84].
Secondly, through C3aR and C5aR interaction on the

GSC, complement may provide for additional signal trans-
duction pathways for PI3K- or mitogen-activated protein
kinase (MAPK)/ERK1/2-dependent HIF-1α protein transla-
tion [68, 69]. HIF-1α and the components of the comple-
ment cascade converge at the level of the Notch signaling
pathway. Notch activation restricts glioma cell differenti-
ation and stimulates astrocytes into a neural stem-like cell
state [69]. HIF-1/2α driven GSC maintenance requires
Notch signaling [69]. In resting T-cells, CD46 sequesters
the Notch ligand Jagged-1, thereby preventing the inter-
action between Jagged-1 and Notch that activates T-cells
[48]. Hypoxia-mediated downregulation of the expression
of CD46 or CD46-C3b interaction following complement
activation may allow for Notch-Jagged-1 interaction. A dir-
ect contribution of CD46 downregulation in maintaining
the undifferentiated state of the GSC remains to be eluci-
dated. C3a inhibits SDF-1α induced neuronal differenti-
ation of NPCs through ERK1/2 phosphorylation regulation
[83]. SDF-1α is a HIF-1α target gene in GBM cells [22].
Importantly, SDF-1α induces recruitment of bone-marrow
derived CD45+ myeloid cells, endothelial and pericyte pro-
genitor cells to GBM [22].
Lastly, HIF-1α modulated, Wnt/ β-catenin activation has

been identified to stimulate GSC differentiation and there-
fore promotes a less-aggressive, neuronal tumor phenotype.
Subsequent β-catenin mediated Notch inhibition further al-
lows for GSC differentiation [71]. The role of Wnt activation
in regulating the GSC state remains controversial as many
reports claim that Wnt activation promotes GSC mainten-
ance and expansion [42]. C1q is an activator of canonical
Wnt signalling through binding with the Fz-receptor and
subsequent induction of C1s dependent cleavage of
low-density lipoprotein receptor-related protein 6 (LRP6)
[61]. Intriguingly, C1q-induced activation of Wnt signalling
attenuates the proliferation of muscle stem cells [61].

Perivascular niche
As a result of vigorous and abnormal angiogenesis, local
regions of hypoxia develop with subsequent complement
activation, facilitating complement mediated GSC
regulation. The actions of the complement system extend
into the perivascular niche, where GSC survival and
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angiogenesis are mediated. In the adult mammalian brain,
neuronal stem cells reside in two germinal niches of which
the subventricular zone is highly vascularized. Adult stem
cells lie in close proximity to the vasculature, where com-
munication occurs through direct cell-cell interactions
and soluble secreted cues [81]. In contrast to germinal
niches, where the rate of stem cell proliferation is low, the
perivascular niche within GBM contributes to the gener-
ation of the GSCs and tumor growth [9]. Besides endothe-
lial cells (EC) and GSCs, major cell types that have been
recognized to reside in the perivascular niche include
pericytes, immune cells, fibroblasts and astrocytes, all of

which provide an additional biological source of comple-
ment proteins [9, 93]. The complement system establishes
an active interplay with the perivascular niche constituents
and GSCs and fulfills an active role in the migration of
GSC and promotes angiogenesis.
Several components of the (activated) complement

system are powerful chemoattractants attracking blood
borne cells and GSCs to the perivascular niche [75]. The
complement system potentiates the migration of GSC
towards the perivascular niche just like it does to mesen-
chymal stem cells (MSCs), NPCs and hematopoietic
stem/progenitor cells (hPSC). In GBM, GSCs move

Table 1 Complement protein in the GBM tumor

Complement proteins Niche Mechanism Proposed effect

C1q GSC Wnt activation Stimulate GSC differentiation

Perivascular Priming SDF-1 gradient GSC migration

Perivascular gC1qR interaction Potentiate tumor cell invasiveness,
chemoattractant

Perivascular cC1qR interaction (IL-8,
MCP-1 and IL-6 secretion)

GSC migration

Microenvironment GAM-M2 induction Immunosuppression

Invasive gC1qR (Bradykinin induction) Tumor cell invasiveness

MBL Microenvironment GAM-M2 induction Immunosuppression

C3 Microenvironment MDSC recruitment Immunosuppression

C3b Microenvironment Treg induction (ligand for CD46) Immunosuppression

Microenvironment GAM-M2 induction Immunosuppression

C3a/C3aR Hypoxic STAT-3 activation GSC maintenance

GSC mTOR activation GSC maintenance

Hypoxic NOX-4 activation, (STAT-3, HIF-α) GSC maintenance

GSC SOX-2 activation GSC maintenance

Microenvironment Chemotaxis immune cells

CD46 Hypoxic Jagged-1-Notch disruption GSC maintenance

Perivascular

C5a/C5aR Invasive nice PKCζ activation Potentiate tumor cell invasiveness

GSC PI3K/Akt/mTOR GSC maintenance

GSC P21 inhibition GSC maintenance

GSC OCT-4 expression GSC maintenance

Perivascular MMP-9, MT1-MMP activation Increase tumor cell invasiveness

Perivascular MCP-1 secretion Increase tumor cell invasiveness

Perivascular TGF-β GSC differentation into vascular
pericytes

Perivascular NO secretion (iNOS/eNOS induction) GSC maintenance

Perivascular VEGF expression Vascular tube formation

Microenvironment Chemotaxis immune cells

Microenvironment Treg induction (High concentration) Immunosuppression

Microenvironment GAM-M1 activation (balanced C activation) Anti-tumor response

Microenvironment MDSC recruitment (ROS) Immunosuppression

C5b-C9 Perivascular bFGF release GSC dedifferentiation
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towards the tumor vasculature and engage in cell-cell
contact [9]. The interaction of Stromal Cell-Derived Fac-
tor 1 (SDF1) with its receptor C-X-C Motif Chemokine
Receptor 4 (CXCR4) is operative to guide the tumor
cells to the peri-endothelial space [72]. C1q primes
chemotactic SDF-1-dependent migration of human um-
bilical cord blood derived- Mesenchymal Stem Cells
(MSC), in part by upregulating the expression of CXCR4
and through interaction with its globular heads binding
receptor (gC1qR), which is ubiquitously expressed [70].
The activated complement system potentiates the
SDF1-CXCR4 chemotaxis, independent of C3aR, as has
been observed in hematopoietic stem/progenitor cells
(HSPCs) [38]. C3a modulates concentration-dependent
SDF1-CXCR4 induced migration of NPCs [83]. C5a at-
tracts MSCs in a C5aR dependent fashion and its deg-
radation product C5adesArg causes an increased secretion
of MMP-9 and MT1-MMP, creating a highly proteolytic
microenvironment in favor of cell-migration [79]. In
addition, IL-8 secreted by ECs stimulates GSC migration
and maintains its stemness properties, in part by upregu-
lating the expression of its cognate receptors CXCR1
and CXCR2 [39]. The interaction of C1q with its recep-
tor present on the EC (cC1qR) initiates the release of
IL-8, macrophage chemoattractant protein-1 (MCP-1)
and IL-6, that contribute to the homing of GSCs and
MSCs [92, 97]. IL-8 mediated GSC homing and main-
tenance is amplified by C5a as observed in whole blood
cells and in human dermal microvascular endothelial
cells (HVEC-d) [97]. Lastly, C5a contributes to GSC mi-
gration by increasing the expression of MCP-1/CCL2, as
observed in HVEC-d in a dose dependent matter [102].

Complement modulated Perivascular niche-GSC
interaction
GSCs form intimate contacts along the length of the endo-
thelial tube, essential for their survival and inducing secre-
tion of soluble factors by ECs that keep the GSCs in an
undifferentiated state [80]. Several pathways constitute EC
orchestrated GSC regulation, including the transforming
growth factor-β (TGF-β) pathway [80]. EC-derived TGF-β
induces the differentiation of GSC into pericytes that con-
tribute to vascular formation in GBM [12]. Crosstalk of
TGF-β signaling and complement activation is observed in
various cells. C5a has been shown to upregulate TGF-β tran-
script expression, and vice-versa TGF-β upregulates the ex-
pression of C5aR [29]. Further, TGF-β and C5a signaling
converge downstream at the level of SMAD independent
pathways including, PI3K/AKT/mTOR and MAPK/ERK1/2
signaling pathways [77, 105]. A second pathway through
which the GSC phenotype is maintained is the nitric oxide
(NO) signaling [10]. The biological source of NO is
EC-derived by the expression of endothelial NO synthase
(eNOS) or alternatively, through the expression of inducible

NOS (iNOS) by the GSC [10]. Activation of eNOS requires
phosphorylation of AKT, suggestive of a contributory role
for the activated complement system [21]. The complement
system mediates the expression of iNOS and NO levels as
shown in models of gastrointestinal ischemia by inhibition
of C3 and C5 [57]. Lastly, EC derived basic Fibroblast
Growth Factor (bFGF) induces the reversion of differentiated
GBM cells [25]. However, the underlying mechanism result-
ing in functional expression of bFGF remains poorly defined,
given that hypoxia does not induce bFGF expression in
human vascular smooth muscles cells [7]. Interestingly, small
amounts of C5b-9 (membrane attack complex) releases
bFGF from human umbilical vein endothelial cells (HVEC)
[4]. Active and inactive forms of C1s are found to form ag-
gregates with bFGF, thereby reducing its activity [76].

The complement system influences GSC mediated
angiogenesis
Indications for the close interaction of GSC and endothe-
lial cells emerged from the finding that xenotransplanted
tumors derived from GSCs were characterized by wide-
spread angiogenesis that was not encountered in their
non-GSC counterparts [3]. GSCs secrete VEGF and treat-
ment with bevacizumab blocks the pro-angiogenic effects
of VEGF by hampering microvascular endothelial cell mi-
gration and vascular tube formation and inhibiting the
growth and vascularity of GSC derived xenotransplants
[3]. Bioactive complement products have been identified
as important effectors in pathological neovascularization
in age-related macular degeneration (ARMD), diabetic ret-
inopathy, and retinopathy of prematurity [100]. Inter-
action of C5a with its receptor C5aR1 induces VEGF
expression in a dose-dependent matter in retinal pigmen-
ted epithelium (RPE) in-vivo and in-vitro [15]. The induc-
tion of oxidative stress in RPE cells reduces the surface
expression of DAF, CD55 and CD59 and impairs comple-
ment regulation at the level of factor H, resulting in com-
plement activation and complement-dependent VEGF
expression [91]. Consequently, inhibiting the AP using a
recombinant factor H reduces the expression of VEGF
and subsequent angiogenesis in a mouse model of chor-
oidal neovascularization [91]. Conversely, the inhibition of
VEGF causes a decrease of the complement inhibitory
proteins (CIPs) factor H, CD46 and CD59 in human
RPE-cells and glomerular endothelial cells through
VEGFR2/PKC-α/CREB signaling [44]. These observations
imply that VEGF protects neo-angiogenesis by local inhib-
ition of the complement system. It remains undetermined
whether complement activation directly contributes to
VEGF expression or VEGF suppresses complement activa-
tion through CIP induction. In a mouse model of ovarian
cancer, C3 and C5aR were shown to be closely involved in
neo-angiogenesis [63]. Tumors derived from partial C3,
C5aR and complete C5aR knock out mice displayed
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decreased microvascular density compared to their
WT-littermates [63]. Additional in vivo assays showed sig-
nificant impairment of angiogenesis for complete C3 and
C5aR knock-out mice. Interestingly, direct functional ef-
fect of C5a comparable to VEGF-A on tube formation of
endothelial cells was also observed. This effect was found
to be reversible using the C5aR inhibitor PMX-53.
PMX-53 also significantly impaired VEGF165 mediated
HMEC tube formation [63]. In addition to C3 and C5aR,
microvascular density was significant decreased in tumors
in C1q deficient mice bearing a syngeneic B16 melanoma
compared to their WT-littermates [8].

Complement and immune cell crosstalk in the
perivascular niche
Activation of the complement system by means of C3a
and C5a plays an important role in the inflammatory
process by recruiting immune cells such as mast cells,
monocytes, macrophages, neutrophils, MDSCs and
adaptive immune cells including T cells [75]. The BBB
consists of highly specialized endothelial cells that com-
municate with pericytes and astrocytes to protect the
CNS from the chemical variations in the bloodstream,
and establishes a strictly controlled interface for immune
cell trafficking. In GBM the BBB’s integrity is disrupted
due to the abnormal tumor microvasculature, resulting
in an increased vascular permeability and consequently,
an increase in immune cell infiltration including
monocyte-derived cells, microglia and T-lymphocytes
[19, 24]. C5a/C5aR neutralization alleviates the BBB
breakdown in models of traumatic brain injury and sys-
temic lupus erythematodus and it is likely that the acti-
vated complement system also affects the BBB in GBM,
with possible consequences for the passage of immune
cells [40].

Lymphocytic infiltration and PD-1
In glioma, tumor infiltrating lymphocytes (TILs) con-
sisting of CD4+ and CD8+ cells are present [65]. Gli-
oma TILs show a predominant regulatory T-cell
population (CD4 + CD25 + Foxp3+) [65]. Regulatory T
cells (Tregs) are believed to be the primary regulators of
immunosuppression in the glioma microenvironment
[65]. The proportions of CD3+ and CD8+ over Foxp3+
cells reportedly correlate with the clinical course of
GBM patients [78]. The activated complement system
by means of CD46 may account for an increased pro-
portion of Tregs. The C3 cleavage fragment, C3b, is a
natural ligand for CD46 on T cells. Stimulation of naïve
CD4+ T cells with anti-CD46 monocolonal antibodies
(mAb) or C3b dimers in the presence of IL-2 induces a
differentiation towards a IL-10 producing type 1 regula-
tory T cell (Tr1) [45]. However, CD4+ Foxp3+ regula-
tory T cells present in GBM are predominantly thymus

derived (tTregs) rather than peripheral induced IL-10
producing regulatory T-cells [95]. In the presence of
CD46 stimulation, cell contact-mediated tTreg function
is impaired [47]. Instead, tTregs differentiate to IL-10
secreting Tr1 cells [47]. In several human cancers a po-
tent immunosuppressive subpopulation of IL-10 produ-
cing Tregs has been identified and these Tregs suppress
CD8+ T-cell effector functions which is associated with
poor survival [64].
In models of melanoma and non-small cell lung cancer

combined with genetic ablation or mAb blocking of pro-
grammed death 1/programmed death ligand 1 (PD-1/
PD-L1) and C3aR appears to be more effective in restrain-
ing tumor growth than only blocking PD-1 therapy alone
[2]. In glioma, the expression of PD-L1 is correlated with
glioma grade and has been identified as a negative prognos-
tic factor. Recently, therapeutic blockade of PD-1 in the
GL-261 murine glioma model induced an impressive pro-
longed survival, with TILs showing a shift towards CD8+ T
cells [20]. The dual role of complement activation in the
tumor micro-environment was illustrated by tumor pro-
gression in tumor-bearing mice with either high- or low
C5a-producing syngeneic lymphoma cells [30]. High C5a
producing tumors showed a significant increased tumor
progression associated with an overall decrease CD4+ and
CD8+ T cells in the tumor [30]. Further, it was shown that
in vitro polarization of CD4+ cells is observed to be C5a
concentration dependent. A low C5a concentration pro-
motes Th1 cell differentiation while high concentrations (>
500 ng/ml) promotes Treg induction [30]. Taken together,
imbalanced complement activation may be associated with
an immunosuppressive micro-environment and is therefore
contributory to tumor progression.

Glioma associated microglia and macrophages (GAMs)
Glioma associated microglia and macrophages (GAMs) are
considered to be the most prominent glioma-infiltrating
immune cells, constituting up to 30% of all immune cells
within the tumor microenvironment. GAMs are recruited
into the tumor microenvironment through various glioma
derived factors that contribute to polarization from a
tumor-suppressive to a tumor-promoting phenotype. Acti-
vated complement factors may contribute to the constant
recruitment of GAMs to the tumor micro-environment,
either directly, or through interactions with glioma factors,
and influence their polarization. Several factors have been
recognized to attract GAMs to the tumor environment,
among which are MCP-1 and SDF-1 [31]. C1q and C5a
have been shown to potentiate the actions of these chemo-
kines [67, 70]. Upon lipopolysaccharide (LPS), IFNγ, or C3a
and C5a induced activation (M1) GAMs produce inflam-
matory mediators, phagocytose tumor cells, present anti-
gens to immune cells and induce a T-cell response [34]. In
contrast, GAMs activated through factors such as CSF-1,
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IL-10, TGF-β and the complement opsonins C1q and C3b
acquire a pro-tumorigenic phenotype (M2) which include
promoting and facilitating immunosuppression, glioma
proliferation and invasiveness [98]. Unbalanced comple-
ment activation induces Il-10 and TGF-β expression,
thereby promoting a pro-tumorigenic phenotype [29, 47].
Within the scope of autoimmunity the complement opso-
nins C1q and MBL regulate macrophage polarization to-
wards a M2 macrophage phenotype [5, 26].

Myeloid-derived suppressor cells (MDSC)
Myeloid-derived suppressor cells (MDSCs) are a heteroge-
neous population of cells containing myeloid cells in various
differentiation stages. MDSCs are found to be significantly
increased in the peripheral blood of glioblastoma patients
[73]. MDSCs are believed to elicit distinct immunosuppres-
sive actions within the glioma micro-environment including
generation of oxidative stress through the production of
ROS and thereby inducing T-cell inhibition [24]. Intri-
guingly, in a TC-1 syngeneic model of cervical cancer in
mice, pharmacological inhibition of C5aR resulted in an

increase in CD8+ T-cell infiltration along with deceleration
of tumor growth comparable to the effects of paclitaxel
[53]. C5a mediated suppression of the antitumor CD8+
T-cell response is associated with an increase of MDSC in
the tumor microenvironment and a subsequent increase in
ROS production [53]. In a syngeneic mouse model for lung
cancer, MDSCs appeared to be reduced in a subpopulation
analysis of splenocytes after C5aR blockade [14]. Concor-
dantly, in a murine model of ovarian cancer C3 silencing
increases the number infiltrating CD8+ T-cells infiltrating
the tumor by 10-fold and reduced the number of MDSCs
by 80% [13]. However, the observed reduction in tumor
growth was found to be independent on the number of
CD8+ T-cells [13].

Invasive niche
High-grade gliomas show aggressive invasiveness in two
compartments: the perivascular space and the brain paren-
chyma [17]. The bradykinin and the SDF-1/CXCR4 axis act
as a chemoattractant that guide glioma cells towards blood
vessels [58]. The bradykinin-forming cascade and the

Fig. 3 Graphical summary of the potential actions of the complement system in the glial tumor microenvironment
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classical complement pathway share many elements, includ-
ing cross-activation, shared binding proteins and control
mechanisms [43]. C1 inhibitor (C1 INH) inhibits the
bradykinin-forming cascade at several levels: its local ab-
sence at the glioma invasive edge may further initiate the
classic complement cascade by activating C1r [43].
Vice-versa, the presence of the ubiquitously expressed re-
ceptor for the globular head of C1q (gC1qR) allows for
bradykinin production on the endothelial cell surface [43].
The activated complement system further stimulates glioma
cell migration through facilitating local degradation of extra-
cellular matrix proteins. In C5aR expressing colon and bile
duc cancer cells C5a enhances cell invasiveness by increas-
ing the expression of several matrix metalloproteinases
(MMPs), including MMP-1 and MMP-9 in C5aR expressing
colon and bile duct cancer cells [62]. Soluble C5b-9, which
is as a pro-inflammatory mediator, induces MMP-2 expres-
sion by microglia upon activation [101]. The molecular
regulation of MMP-2 and MMP-9 is poorly characterized.
The activated complement system signaling may provide an
alternative mechanism for the NF-κB mediated overexpres-
sion of MMP-2 and MMP-9 in glioma cells by means of
C5a-C5aR [86]. C1q may activate the canonical Wnt/β-ca-
tenin signaling pathway, which increases MMP-2 and
MMP-9 expression by glioma cells [41].

Conclusion remarks and future directions
A wide variety of molecular pathways that are characteris-
tic of the aggressive nature of GBM are known to be in-
duced or modulated by the activated complement system
(Table 1 and Fig. 3). The unbalanced activation in the
tumor microenvironment may suppress the antitumor
inflammatory response. There is increasing data that the
complement system could serve as an unidentified
intrinsic and extrinsic regulatory mechanism for GSC
maintenance, thereby supporting treatment resistance.
The activated complement system may contribute to
evade the immune response, activate invasion and induce
angiogenesis. Because several tumor promoting pathways
are activated by complement the elucidation of the role of
complement activation is necessary to discover new tar-
gets for therapy in malignant glioma.
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