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Abstract

Cancer cells have altered cellular metabolism. Mutations in genes associated with key metabolic pathways (e.g.,
isocitrate dehydrogenase 1 and 2, IDH1/IDH2) are important drivers of cancer, including central nervous system
(CNS) tumors. Therefore, we hypothesized that the abnormal metabolic state of CNS cancer cells leads to abnormal
levels of metabolites in the CSF, and different CNS cancer types are associated with specific changes in the levels of
CSF metabolites. To test this hypothesis, we used mass spectrometry to analyze 129 distinct metabolites in CSF
samples from patients without a history of cancer (n=8) and with a variety of CNS tumor types (n=23) (i.e, glioma
IDH-mutant, glioma-IDH wildtype, metastatic lung cancer and metastatic breast cancer). Unsupervised hierarchical
clustering analysis shows tumor-specific metabolic signatures that facilitate differentiation of tumor type from CSF
analysis. We identified differences in the abundance of 43 metabolites between CSF from control patients and the
CSF of patients with primary or metastatic CNS tumors. Pathway analysis revealed alterations in various metabolic
pathways (e.g., glycine, choline and methionine degradation, dipthamide biosynthesis and glycolysis pathways,
among others) between IDH-mutant and IDH-wildtype gliomas. Moreover, patients with IDH-mutant gliomas
demonstrated higher levels of D-2-hydroxyglutarate in the CSF, in comparison to patients with other tumor types,
or controls. This study demonstrates that analysis of CSF metabolites can be a clinically useful tool for diagnosing
and monitoring patients with primary or metastatic CNS tumors.
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Introduction

Alterations in cellular metabolism are a critical part of cancer
cell biology [8]. Studies of cellular metabolism have shown a
variety of metabolic alterations in cancer [5, 9, 15, 22]. In the
presence of oxygen, energy production in normal cells occurs
primarily through oxidative phosphorylation. In contrast,
anaerobic glycolysis followed by lactic acid fermentation, is
utilized to produce energy in the absence of oxygen. How-
ever, many cancer cells produce energy through glycolysis
and lactic acid fermentation, even in the presence of oxygen,
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a phenomenon called the Warburg effect [11]. Metabolic
alterations in cancer cells can be useful in the diagnosis and
monitoring of cancer patients. For example, the Warburg ef-
fect leads to an increased rate of glycolysis that is accompan-
ied by an increase in glucose uptake, this becomes the basis
for the use of fluorodeoxyglucose as a tracer for positron
emission tomography (PET) studies [14].

Mutations in genes involved in important metabolic path-
ways, such as isocitrate dehydrogenase 1 and 2 (IDH1/IDH2),
are important cancer drivers (e.g, gliomas and leukemias)
[19]. IDHI/IDH2 mutations are associated with the produc-
tion of an oncogenic metabolite, D-2-hydroxyglutarate
(D-2-HG), which appears to be a critical aspect of tumor de-
velopment [5, 21]. Increased levels of D-2-HG have been
demonstrated in IDHI/IDH2 mutant cells and culture media
[5]. The survival of patients with IDH-mutant gliomas is
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Patient ID  Age at time of CSF collection ~ LPvs OM  Sex  Race  Diagnosis CSF cytology MRI
1 42 LP F Unk Chiari | malformation N/A Neg
2 47 LP F W Aneurysm N/A Neg
3 56 LP F Unk Left trigeminal neuralgia. ~ N/A Neg
4 37 LP F Unk Benign cyst N/A Neg
5 56 LP M W Motor neuron disease Neg Neg
6 52 LP F Unk Hydrocephalus Neg Neg
7 36 LP M AA Hydrocephalus Neg Neg
8 20 LP F Unk Pseudotumor cerebri Neg Neg
9 37 LP F W Glioblastoma,|DH-WT Neg Pos
10 56 LP M W Glioblastoma,IDH-WT Neg N/A
1M 77 LP M His Glioblastoma,IDH-WT N/A N/A
12 61 LP F W Glioblastoma,|IDH-WT Neg Pos
13 50 LP M W Glioblastoma,|DH-WT Neg Pos
14 47 LP M A Glioblastoma,IDH-WT N/A N/A
15 54 LP M Glioblastoma,IDH-WT N/A N/A
16 76 LP F Unk Metastatic Lung Cancer Neg N/A
17 77 LP M A Metastatic Lung Cancer rare atypical cells Pos
18 60 LP F W Metastatic Lung Cancer Neg Pos
19 63 LP F W Metastatic Lung Cancer Neg Pos
20 70 LP M W Metastatic Lung Cancer Neg Pos
21 60 LP F Unk Metastatic Lung Cancer Neg Pos
22 61 LP F W Metastatic Lung Cancer Neg N/A
23 59 oM F A Metastatic breast cancer suspcious for lobular breast CA Neg
24 59 LP F His Metastatic breast cancer consistent with metastatic carcinoma ~ Neg
25 62 LP F Unk Metastatic breast cancer negative Pos
26 38 LP F His Metastatic breast cancer negative Pos
27 73 OM F W Metastatic breast cancer negative Pos
28 28 LP M W Glioblastoma,IDH-mutant ~ N/A N/A
29-30 OM N/A N/A
31 56 LP M Unk Glioblastoma,IDH-mutant ~ Neg Pos
32-33 OM Neg Pos
34 32 LP M W Glioblastoma,IDH-mutant  atypical cells present Pos
35-37 oM Neg Pos
38 23 LP M W Glioblastoma,IDH-mutant ~ Neg Pos
39-40 oM Neg Pos

significantly better than that of patients with IDH-wildtype
gliomas. As a result, the WHO classification for central ner-
vous system tumors was recently modified to include muta-
tions in IDHI/IDH2 as a critical part of the diagnosis of
infiltrating gliomas [13]. Also, genes frequently mutated in
CNS tumors (e.g., PTEN, PI3K) have known effects in meta-
bolic pathways. For example, activation of the PI3K/AKT/
mTOR pathway leads to increased translation of the hypoxia
inducible factor la (HIFla), increased glucose uptake, and

increased uptake of essential amino acids [7]. Similarly, the
transcription factor Myc can increase the expression of many
metabolic enzymes [7].

The tools currently utilized for the diagnosis and mon-
itoring of patients with CNS tumors include CNS im-
aging, evaluation of tumor cells in the cerebrospinal
fluid (CSE-cytology) and brain biopsies. However, CNS
imaging studies lack specificity, CSF-cytology has ex-
tremely poor sensitivity, and brain biopsies are an
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Fig. 1 Swimmer plot depicting CSF sample collections for each patient. Each bar represents one subject included in the study. The blue crosses
represent CSF collections. Surgery is indicated by the red square. Grey circles represent the initial diagnosis. The X-axis represents months. For
some patients with metastatic disease (i.e, breast and lung cancer) the initial diagnosis of the systemic malignancy occured many months before
the development of CNS disease

invasive procedure. Therefore, there is a critical need for
more specific and less invasive methods for diagnosing
and monitoring patients with CNS tumors. In particular,
minimally invasive methods that inform aspects of CNS
tumor biology that influence treatment decisions. Al-
though it is recognized that metabolic alterations are
common in cancer cells, it remains unclear to what ex-
tent the analysis of cellular metabolites in biofluids can
be utilized in the clinical management of cancer patients.
Several studies have demonstrated differences in circu-
lating metabolites in the blood of patients with a variety
of cancer types [3, 20]. However, blood is not an ideal
fluid for detecting biomarkers in patients with CNS tu-
mors [2, 6]. In contrast, studies have shown that the
cerebrospinal fluid (CSF) is a better source of
CNS-tumor-derived biomarkers [6, 10, 17]. In fact, ele-
vated levels of D-2-HG have been demonstrated in the
CSF of patients with IDH-mutant gliomas [10]. Differ-
ences in the levels of citric acid and lactic acid in the
CSF of gliomas of different histologic grade have also
been shown [16].

Considering the preliminary evidence showing alter-
ations in metabolites in CNS tumors [10, 12] we decided

to perform a comprehensive analysis of 129 metabolites
in the CSF of patients with a variety of CNS tumor
types. We analyzed the levels of metabolites in the con-
text of CNS imaging and CSF-cytology results, routine
clinical assays performed in the evaluation of patients
with CNS malignancies. Our results provide insight into
metabolic pathways that are altered in IDH-mutant gli-
omas in comparison to IDH-wildtype gliomas. Also, our
data demonstrates elevated levels of D-2-HG in the CSF
of patients with IDH-mutant gliomas. In summary, our
data supports the idea that analysis of metabolites in the
CSF can help in the diagnosis and monitoring of patients
with CNS tumors.

Methods

Patients

The study was approved by the institutional review board
(IRB). All patients provided informed consent for participa-
tion of their samples in research. CSF was collected via
lumbar puncture (LP) or intraventricular catheter
(Ommaya reservoir, OM). Samples from patients with glio-
blastoma IDH-WT (n = 7), IDH-mutant (z = 4; 13 samples),
metastatic lung cancer (n=7) or metastatic breast cancer



Ballester et al. Acta Neuropathologica Communications (2018) 6:85

Page 4 of 10

-

Cancer
IDH-mutant Lung

al Control I b Control

Guanidine acetic acid
Betaine
Glucosamine/Galactosamine

N-Aetyl Aspartic acid
Amino Adipic acid
PEP

Aspartic acid

taurine

Methyl Nicotinamide
Methylcysteine

Ethylmalonate/Methyl Malonate
Ormithine

Proline
Aminophosphovaleric acid
Pantothenic acid

Xanthine

betaine aldehyde

Oleic acid

Myristoleic acid

Alanine

Acetyl Camitine

FAD
trehalose-6-Phosphate
Succinic acid semialdehyde
DL-Pipecolic acid
Pyroglutamic acid

Phe-Glu

Creatine

2-Aminooctanoic acid
Butryl Camitine

Methyl alanine
Aminobutyric acid
N-Acetyl-aspartic acid

Color key

-2 o 2

patients with metastatic lung cancer to the CNS

Fig. 2 Analysis of metabolites distinguishes CSF from patients with CNS tumors from patients with non-neoplastic conditions. Heat map of
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20 metabolites (Guanidine acetic acid, betaine, glucosamine/galactosamine, ornithine, methylcysteine, ethonalamine, aminophosphovaleric acid,
3-phosphoglycerate, 3PG and 2PG, 5-methyl-5-thioadenosine, cysteine, quinic acid, lactate, glutamic acid, 3-hydroxykyurenine, amino adipic acid,
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(n=5) to the CNS were included (Table 1). All CSF sam-
ples from patients with CNS tumors were acquired during
the course of the patient’s treatment (Fig. 1). Samples from
patients with no history of cancer were included as controls
(n =8). All gliomas were sequenced for mutations in IDHI
or IDH?2. Contrast-enhanced brain MR with optimum 2D/
3D images matching the CSF collection date were available
for 23 of the 31 patients. MRI scans were interpreted as
positive or negative for tumor by a neuroradiologist. Patient
characteristics are included in Table 1.

CSF-cytology

CSF was collected via LP or OM. Samples were proc-
essed within 2 h from collection time, and centrifuged at
1000 g for 10 min at 4 °C. The cell pellet was discarded
and the CSF supernatant was aliquoted and immediately
stored at — 80 °C. For CSF-cytology examination the CSF
was centrifuged at 1500 rpm for 5 min. The supernatant
was discarded and the cell pellet was resuspended in
RPMI. Two — six drops of fluid were pipetted into cytos-
pin chambers and the chambers centrifuged at 700 rpm
for 7 min into one albumin-covered slide. The slides

were stained with Wright-Giemsa and examined by a
board certified cytopathologist.

Imaging

Contrast-enhanced brain MR with optimum 2D/3D im-
ages were available for 23 patients. The images were an-
alyzed for the presence of tumor by a board certified
neuroradiologist.

Metabolomic analysis

Targeted Metabolic profiling by LC-MS Single Reaction
Monitoring (SRM) was used to characterize metabolites.
We measured the metabolites using three different chro-
matographic methods (Additional file 1: Supplementary
methods A-C), in each method metabolites were normal-
ized with the spiked internal standards and data were
log2-transformed. For each metabolite in the normalized
dataset, a two-tailed t-test was used to compare their ex-
pression levels between two groups and ANOVA was used
to compare more than two groups for their expression
levels. Differentially expressed metabolites were identified
after adjusting p-values for multiple hypothesis testing
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using the Benjamini-Hochberg method [1] and a False
Discovery Rate (FDR) of <0.25. A hierarchical cluster of
the differentially expressed metabolites was generated
using the R statistical system (https://www.r-project.org/).
We have identified 129 metabolites. AUC (area under the
receiver operating characteristic curve) as well as its 95%
confidence interval was evaluated by the “DeLong”
method with “pROC” package in R (Version 3.4.2)
computing environment. The data was log2-transformed
and normalized with internal standards on a per-sample,
per-method basis.

Results

Patients and clinical characteristics

CSF (1 =40) from 31 patients; 13 males and 18 females with
age ranging from 20 to 77 years old were included.
CSE-cytology results were available for 22/31 patients. One
out of three (1/3) available CSE-cytology results from patients
with an IDH-mutant glioma was reported as “atypical cells
present”, 2/5 CSF-cytology results from patients with meta-
static breast cancer were reported as “suspicious” or “consist-
ent” with metastatic carcinoma and 1/7 CSF-cytology results
from patients with metastatic lung cancer were reported as
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Fig. 4 Analysis of metabolites in the CSF from IDH-mutant and IDH-WT gliomas. a Heat map showing differences in metabolites in the CSF of
controls versus patients with IDH-mutant gliomas. b Heat map showing differences in CSF metabolites between controls and IDH-WT gliomas. ¢
Heat map showing differences in CSF metabolites between IDH-mutant and IDH-WT gliomas. d Nine metabolites are significantly associated with
the presence of the IDH-mutation in gliomas (1-Methyltryptophan, 1-Methyl-Histidine, Arginine, N-Acetylputrescine, Succinic acid semialdehyde,
Malonate, betaine aldehyde, Pantothenic acid). e In addition, D-2-HG concentration is higher in the CSF of patients with IDH-mutant gliomas

“atypical cells present”. CSF-cytology results were available
for 3/7 patients with IDH-WT gliomas, the 3 samples were
reported as negative for tumor cells. CSF-cytology results for
4/8 control patients were available and the result was nega-
tive for tumor cells. In total, there were 14 instances in which
CSF samples were reported as negative for tumor cells, but
the MRI results demonstrated the presence of tumor involv-
ing the CNS (Table 1).

Altered metabolites in the CSF of patients with CNS
tumors

Using targeted metabolomics, we detected 129 named me-
tabolites (in positive ionization and negative ionization
mode) in the CSF of individuals with no cancer history.
Differences in the abundance of 43 metabolites were
found between CSF from control patients and CSF from
patients with a history of a primary or metastatic CNS
tumor. (Fig. 2a; FDR adjusted p < 0.25). By mapping the
43 altered metabolites into known metabolic pathways, we
identified several pathways significantly affected, including
glycine, arginine, choline, nitrogen metabolism and
glycolysis (Additional file 2: Figure S1).

A heat map depicting the unsupervised hierarchical clus-
tering of samples is shown in Additional file 3: Figure S2.
Tricarboxylic acid (TCA) cycle metabolites were found to
be elevated in the CSF of patients with CNS tumors includ-
ing malic acid and succinate. Succinate, malic acid and lac-
tic acid were particularly elevated in IDH-mutant gliomas
(Fig. 3). In addition, phosphoenolpyruvate (PEP) levels were
elevated in the CSF of patients with IDH-mutant gliomas in
comparison to patients with IDH-wildtype tumors (Fig. 4).
We also found elevations in amino adipic acid in the CSF of
patients with IDH-mutant gliomas. Acetylcarnitine and shi-
kimate were elevated in the CSF of patients with IDH-WT
gliomas in comparison to CSF from controls. In the case of
patients with metastatic breast cancer, we identified the
levels of 20 metabolites to be elevated in the CSF (Fig. 2b).
Also, we identified 5 metabolites (Glycine/leucine, Glucosa-
mine/galactosamine, Malic acid, 3-phosphoglycerate,
(L)-arginino-succinate and Alanine) significantly elevated in
the CSF of patients with metastatic lung cancer in compari-
son to CSF from controls (Fig. 2c).

CSF metabolites in IDH-mutant versus IDH-WT gliomas

We identified 37 differentiall CSF metabolites between
IDH-WT gliomas and controls, 79 differential metabolites
between IDH-mutant gliomas and controls, and 63

differential metabolites between IDH-WT and IDH-mutant
gliomas (Fig. 4). Further analysis identified several metabo-
lites (1-methyl tryptophan, 1-methyl-histidine, arginine, as-
paragine, N-acetylputrescine, succinic acid semialdehyde,
malonate, betaine aldehyde and pantothenic acid) that are
associated with the presence of an IDHI mutation (Fig. 4d).
In addition, we detected higher D-2HG levels in the CSF of
patients with IDH-mutant gliomas (Fig. 4e). These metabo-
lites were further analyzed individually for the area under the
curve (AUC), in the receiver operator characteristics (ROC)
curve, to evaluate the ability of each metabolite to discrimin-
ate IDH-mutant from IDH-WT gliomas. Individual metabo-
lites were found to have a significant AUC between 0.724—
0.888 (Fig. 5). Taken together, the 10 metabolites had a com-
bined AUC of 0.918. While D-2-HG, malic acid and succin-
ate levels were higher in IDH-mutant gliomas, the levels of
alanine where significantly elevated in patients with
IDH-WT gliomas compared to IDH-mutant tumors (Fig. 3).

Lumbar puncture versus intraventricular catheter

We compared the levels of metabolites in CSF collected
by lumbar puncture (LP) and CSF collected from an intra-
ventricular catheter (Ommaya reservoir, OM). The was
done by fitting a linear mixed effect model and conducting
the likelihood ratio test. To account for the multiplicity,
the p value was adjusted by Benjamini and Hochberg
method [1]. An adjusted p value of less than 0.05 was con-
sidered statistically significant. We did not observe statisti-
cally significant differences in the levels of metabolites in
samples obtained via LP versus OM (Table 1).

Discussion
Our data shows that it is possible to discriminate CSF
from patients with CNS tumors from CSF obtained from
patients with non-neoplastic conditions. There are 14 CSF
samples that were reported as negative for tumor by
CSF-cytology, even when tumor was detected on the MRI,
highlighting the limited sensitivity of CSF-cytology for de-
tecting CNS malignancies, and the need for more sensitive
and specific methodology to evaluate patients with CNS
tumors. Only 1/12 (~ 8%) patients with a metastatic CNS
tumor had a positive CSF-cytology result. Our results
demonstrate that analysis of CSF metabolites could help
identify patients with primary or metastatic CNS tumors,
even in the absence of detectable tumor cells in the CSF.
Metabolites in nitrogen metabolism and aminoacyl-tRNA
biosynthesis were elevated in the CSF of patients with CNS
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Fig. 5 Area under the ROC curve. The levels of 10 metabolites are significantly different between IDH-mutant and IDH-WT gliomas. The area
under the ROC curve for these metabolites individually and combined is shown. The area under the ROC curve for these 10 metabolites ranged
from 0.724 to 0.888. In combination, the area under the ROC curve for the 10 metabolites was 0.918. The levels of these metabolites in CSF can

help discriminate patients with IDH-mutant gliomas from IDH-WT gliomas

tumors. Also, glycine, serine threonine, alanine, aspartate
and glutamate were present at significantly different levels
in the CSF of patients with tumor when compared to con-
trols. These data show that the metabolism of non-essential
aminoacids is altered in the CSF of patients with brain tu-
mors and elevations of these amino acids in the CSF could
indicate a neoplastic process. Acetylcarnitine and shikimate
were elevated in the CSF of patients with IDH-WT-gliomas
in comparison to control CSE, an observation that is con-
sistent with a previous report that analyzed CSF from 10
patients with gliomas [12].

It is not surprising that several of the altered metabolites
are involved in the TCA cycle. Malic acid and succinate
were particularly elevated in IDH-mutant gliomas, consist-
ent with dysregulation of the TCA cycle in these tumors.
These data indicate that TCA metabolite alterations in the
CSF of patients with IDH-mutant gliomas could be helpful
in distinguishing IDH-mutant from IDH-WT tumors. Also,
our data shows higher D-2-HG levels in the CSF of patients
with IDH-mutant gliomas, consistent with prior reports [5,
10, 18]. In addition, phosphoenolpyruvate (PEP) levels were
elevated in the CSF of patients with IDH-mutant gliomas
in comparison to patients with IDH-wildtype tumors. Ele-
vated PEP levels have been previously described in glio-
blastoma tissue samples [4].

To our knowledge, this study is one of the most compre-
hensive analysis of CSF metabolites in patients with different
types of primary or metastatic CNS tumors [12, 16, 23]. Our
results show that it is possible to discriminate CSF from pa-
tients with IDH-mutant or IDH-WT gliomas and metastatic
carcinomas, from patients with non-neoplastic conditions.
One limitation of our study is that CSF samples were ob-
tained during or after the patient’s treatment. Although the
treatment for IDH-mutant and IDH-wildtype gliomas is
similar, it is possible that some of the changes in metabolites
in CSF could be influenced by the patients treatment.
Therefore, additional studies with CSF obtained prior to
therapeutic intervention will be greatly informative. It is im-
portant to highlight that metabolomic analysis can be per-
formed with ~100ul. of CSF in less than 24 h, and our
results provide evidence for tumor-specific metabolic signa-
tures that can help in discriminating neoplastic from
non-neoplastic disease. Although studies have postulated
differences in CSF biomarkers associated with collection
method [10], we did not observe statistically significant
differences in the levels of metabolites in samples obtained
via LP versus intraventricular catheter. These suggests that
although the collection method might influence the levels of

some metabolites, it does not have significant effect on the
levels of all metabolites. In conclusion, our data suggest that
metabolomic analysis of CSF can provide clinically useful in-
formation with a fast turn-around-time, which could be
helpful in the evaluation of patients with CNS tumors. This
method can serve to complement the measurements of
other tumor biomarkers (e.g., circulating tumor DNA) and
increase the sensitivity and specificity of CSF analysis as a
liquid biopsy approach for patients with CNS malignancies.

Additional files

Additional file 1: Supplementary methods. (PDF 167 kb)

Additional file 2: Figure S1. Pathway analysis was performed using
ingenuity pathway analysis (IPA) through overlap statistics. In this study,
metabolite with raw p value less than 0.05 and absolute fold change
larger than 1.5 was considered as significant metabolites. Enrichment in
the pathway was evaluated by Fisher's Exact test. The pathways with
adjusted p value using Benjamini and Hochberg method less than 0.01
were reported and generated in barplot. (TIFF 57607 kb)

Additional file 3: Figure S2. Heat map of unsupervised hierarchical
clustering of samples. Unsupervised hierarchical clustering using the
complete agglomeration method was used for metabolite and sample
clustering. (TIFF 4103 kb)
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