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Abstract

Blast-related traumatic brain injury (TBI) has been a common cause of injury in the recent conflicts in Iraq and
Afghanistan. Blast waves can damage blood vessels, neurons, and glial cells within the brain. Acutely, depending on
the blast energy, blast wave duration, and number of exposures, blast waves disrupt the blood-brain barrier,
triggering microglial activation and neuroinflammation. Recently, there has been much interest in the role that
ongoing neuroinflammation may play in the chronic effects of TBI. Here, we investigated whether chronic
neuroinflammation is present in a rat model of repetitive low-energy blast exposure. Six weeks after three 74.5-kPa
blast exposures, and in the absence of hemorrhage, no significant alteration in the level of microglia activation was
found. At 6 weeks after blast exposure, plasma levels of fractalkine, interleukin-1β, lipopolysaccharide-inducible CXC
chemokine, macrophage inflammatory protein 1α, and vascular endothelial growth factor were decreased.
However, no differences in cytokine levels were detected between blast-exposed and control rats at 40 weeks. In
brain, isolated changes were seen in levels of selected cytokines at 6 weeks following blast exposure, but none of
these changes was found in both hemispheres or at 40 weeks after blast exposure. Notably, one animal with a
focal hemorrhagic tear showed chronic microglial activation around the lesion 16 weeks post-blast exposure. These
findings suggest that focal hemorrhage can trigger chronic focal neuroinflammation following blast-induced TBI,
but that in the absence of hemorrhage, chronic neuroinflammation is not a general feature of low-level blast injury.

Introduction
Military personnel exposed to blast overpressures are at
risk of developing behavioral and cognitive abnormalities
[11]. Acutely, several studies in animal models have
shown that blast exposure induces brain inflammation
and increased levels of pro-inflammatory factors. Infil-
tration of polymorphonuclear leukocytes and lympho-
cytes is observed in the brain parenchyma within 1 h
post-blast exposure [53]. In rats, a single 551-kPa blast
exposure induced glial fibrillary acidic protein (GFAP),
S100β (an astrocytic marker), cyclooxygenase (COX)-2,

interleukin (IL)-1β, and tumor necrosis factor (TNF)-α,
and these changes were present by 1 h and remained de-
tectable at 3 weeks post-injury [53]. Similarly, GFAP
levels were significantly higher in all measured brain
regions of rats exposed to 133.8-kPa blast overpressure
[26]. In another study, a 120-kPa blast triggered release
of IL-1β, TNF-α, IL-10, and erythropoietin (EPO) as
early as 3 h after injury, and peak levels were reached at
24 h before they diminished by 48 h [33]. Moreover, a
129-kPa blast induced transcriptional upregulation of
the proinflammatory interferon (IFN)-γ and monocyte
chemoattractant protein (MCP)-1 by 4 h post-blast, and
increased levels of these proteins were detected 24 h
post-blast while strong Iba1-immunoreactive microglial
cell activation was detected at 2 weeks post-blast [8]. El-
evated levels of IFN-γ and IL-6 have also been found in
the amygdala and ventral hippocampus, together with an
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increased number of Iba1-expressing activated microglia
following blast injury [26].
A cDNA microarray analysis of the brains of mice ex-

posed to a 142-kPa blast showed significant upregulation
of several interleukin receptors in the midbrain [55]. In
the frontal cortex, hippocampus, and cerebellum, the ex-
pression of IL receptors was significantly reduced,
whereas the expression of TNF-α and its receptors was
increased [55]. In rats subjected to multiple 138-kPa
blast exposures (5×), plasma levels of vascular endothe-
lial growth factor (VEGF) and neuron-specific enolase
(NSE) were significantly elevated after 2 h compared to
levels in sham controls and rats exposed to a single blast
[27]. By day 22 post-injury, animals exposed to either a
single blast or multiple blasts had significantly higher
levels of VEGF, neuron-specific enolase (NSE), neurofila-
ment H (NFH), and GFAP than did those in the non-
injured control groups [27]. At 1 day post-blast expos-
ure, increased GFAP immunoreactivity was observed in
the hippocampus of animals exposed to a single blast,
whereas no such increase was seen in animals exposed
to multiple blasts [27]. However, by day 22, an apparent
increase in GFAP immunoreactivity was observed in the
hippocampus of the multiple blast-exposed rats. In both
the single and multiple blast-exposed groups, increased
apoptosis was found in the hippocampal hilus [27] .
In a temporal evaluation of cytokines in rat serum

after a single 117-kPa blast exposure, a significant de-
crease in IL-1α expression was observed at 3 h as well as
a decrease in M-CSF expression at 24 h, an increase in
EPO at 48 h, and decreased levels of IL-1α, IL-1β, IL-6,
IL-10, and EPO along with increased levels of VEGF and
macrophage colony stimulating factor (M-CSF) at 72 h
post-blast [44]. Blast injury (142 kPa) in stressed rats re-
sulted in elevated levels of serum corticosterone, NFH,
NSE, GFAP, and VEGF compared to levels in non-blast-
exposed controls 2 months post-injury. The hippocam-
pus and prefrontal cortex (PFC) also contained increased
numbers of apoptotic cells (TUNEL-positive) and ele-
vated levels of GFAP, S100β, Iba1, VEGF, IL-6, IFN-γ,
and phosphorylated tau [32]. In humans, 35- to 81-kPa
blast exposures result in increased levels of IL-6 and
TNF-α in the serum that were maintained for 24 h [18].
These data altogether suggest that acute blast exposure

induces brain inflammation and increased levels of pro-
inflammatory factors. Acute inflammation has long been
considered a transient phenomenon in many forms of
TBI. However, there is accumulating evidence that the
inflammatory response after TBI may persist [14]. In-
deed, studies in animals document persistent inflamma-
tion in brain after TBI [14]. Postmortem human studies
find inflammatory changes that can persist for years after
TBI [24], and a recent study using positron emission
tomography to image a ligand that targets microglia

found increased microglial activation up to 17 years after
injury [43] .
We previously reported that rats exposed to low-level

blast overpressures (74.5 kPa) develop a post-traumatic
stress disorder (PTSD)-like phenotype associated with
chronic brain vascular degeneration and rarely
hemorrhagic brain cortical tears that follow the lines of
penetrating vessels [17, 49]. In the present study, we in-
vestigated whether three 74.5-kPa blast exposures can
induce chronic microglial activation and increase the
levels of pro-inflammatory factors in brain. Our results
show that under this blast protocol and in the absence
of vascular disruption, low-level blast exposures do not
alter the microglial cell density nor microglial activation
in the hippocampus and prelimbic cortex and do not
significantly alter the levels of cytokines involved in neu-
roinflammation (over 6–40 weeks post-blast). However,
in the presence of focal hemorrhage, neuroinflammation
with increased microglial activation and astrocytosis was
observed 16 weeks post-blast exposure. These results
show that neuroinflammation is induced by leakage of
blood elements from a fragile vasculature into the brain
parenchyma. However, in the absence of hemorrhage,
chronic neuroinflammation is not a general feature of
low-level blast injury.

Materials and methods
Animals and blast exposure
All studies were approved by the Institutional Animal
Care and Use Committees of the James J. Peters VA
Medical Center, Bronx, NY and the Walter Reed Army
Institute of Research/Naval Medical Research Center,
Silver Spring, MD. Long Evans rats were exposed to
three 74.5-kPa (10.8 psi) blasts of compressed air in a
shock tube under isoflurane anesthesia at 10 weeks of
age as previously described [1]. Rats were randomly
assigned to sham or blast conditions with the head fa-
cing the blast exposure without any body shielding
resulting in a full body exposure to the blast wave. One
exposure per day was administered for three consecutive
days. Control animals were anesthesized and placed
inside the shock tube but not exposed to blast overpres-
sures. For stereology, animals (n = 5/group) were eutha-
nized by cardiac perfusion 6 weeks post-blast exposure
with cold 4% paraformaldehyde in phosphate-buffered
saline (PBS). For cytokine analyses, blast-exposed and
control animals were euthanized with CO2 at 6 and
40 weeks post-blast exposure.

Quantitative morphometric analyses of microglial
phenotypes in the hippocampus and prelimbic cortex
Vibratome-cut coronal sections (50 μm-thick) from 4%
paraformaldehyde-perfused brains of blast-exposed and
control animals were sampled every 500 μm throughout
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the brain. Sections were rinsed with PBS, blocked with
50 mM Tris–HCl, pH 7.6, 0.15 M NaCl, 0.1% Triton X-
100, and 5% goat serum (TBS-TGS) for 1 h, and incu-
bated overnight with rabbit anti-Iba1 antibodies (ionized
calcium-binding adapter molecule 1 [41], 1:300, Wako,
Japan) in TBS-TGS at room temperature. After 6 washes
with PBS over a period of 1 h, sections were incubated
with goat anti-rabbit horseradish peroxidase-conjugated
secondary antibodies (1:300, Pierce, Waltham, MA) for
2 h in TBS-TGS and rinsed with PBS. Microglial immu-
nostaining was visualized by incubation with 0.05% 3,3′-
diaminobenzidine (DAB), 0.015% H2O2 in 0.15 M NaCl,
50 mM imidazole, pH 7.0 at room temperature. Stereol-
ogy of prelimbic (interaural, 12.00 mm) and hippocam-
pal microglia (interaural, 4.44–5.76 mm) was performed
using the MBF StereoInvestigator software with the Op-
tical Fractionator probe (Williston, VT) [38]. Stereologic
analyses were done with the investigator blinded to the
experimental condition. Areas of interest were traced
using an Olympus PlanFI 4×/0.13 objective lens on an
Olympus BX51 microscope, and a PlanApo 60×/1.40 oil-
immersion objective lens was used for cell counting.
Sampling grids of 500 × 400 μm were randomly placed
over the hippocampal and prelimbic cortical regions,
and contained an optical disector of 80 × 80 μm, within
which cell numbers were counted. A 1-μm guard zone
was set at the top and bottom of each section. Microglial
profiles contained either within the frame or touching
the permitted green lines were counted, whereas those
that touched the forbidden red margins were excluded.
The morphology, according to the microglial phenotype,
of each counted cell was also noted (types 1–4: ramified,
primed, reactive, and ameboid) [30, 31, 46, 48, 50, 54].
Analysis of microglia activation in the hippocampus was
further performed by immunohistochemical determin-
ation of MHC class II antigen (MHCII) expression in
Iba1-positive cells. Sections (interaural, 5.64 mm) from
the 5 blast-exposed and 5 control animals described
above were immunostained with rabbit anti-Iba1 and
mouse anti-rat MHC class II antibodies (1:200, Novus
Biologicals, Littleton CO, USA) as described above. Im-
munostaining was detected with species-specific Alexa-
Fluor 488- and 568-conjugated secondary antibodies
(1:300; Molecular Probes, Eugene OR, USA). Nuclei
were counterstained with 1 μg/ml 4′,6-diamidino-2-phe-
nylindole (DAPI). The relative fraction of MHCII+/Iba1+

cells was determined in both hemispheres.

Immunoassay for selected rat cytokines
Levels of selected cytokines in plasma and regional brain
extracts taken from control and blast-exposed animals at
6 and 40 weeks post-blast exposure were measured
(n = 5/group). Brains were regionally dissected and ex-
tracts were prepared from the left and right posterior

cortex (association, auditory, visual, and entorhinal corti-
ces), anterior cortex (prefrontal, motor, somatosensory,
and insular cortices), hippocampus, and amygdala. The
tissues were homogenized in a solution of 0.1 M Tris
HCl, pH 7.6, 0.15 M NaCl, 5 mM EDTA, 0.1% sodium
dodecyl sulfate (SDS), and 1% Triton X-100 supple-
mented with a protease and phosphatase inhibitor cock-
tail (Abcam, Cambridge, MA). The homogenates were
centrifuged at 14,000×g for 20 min at 4 °C, and the su-
pernatants collected for analysis. The total protein con-
centration was determined with the BCA reagent
(Pierce, Waltham, MA), and the protein concentration
of the brain samples was adjusted to 1 μg/μl. The levels
of the selected cytokines/chemokines were determined
using a multiplexed bead-based immunoassay [23],
which has been extensively used for the study of cyto-
kine dysregulation in rat models of blast-induced TBI
[33, 44, 58] and allows for simultaneous detection of
cytokines/chemokines involved in inflammation. The
Milliplex MAP Rat Cytokine/Chemokine Magnetic Bead
Panel-Premixed 2 (EMD Millipore, Billerica, MA) was
used in our study to analyze 27 targets namely IFN-γ, in-
terleukins IL-1α, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-
10, IL-12p70, IL-13, IL-17A and IL-18, IFN γ-induced
protein 10 (IP-10), leptin, lipopolysaccharide-inducible
CXC chemokine (LIX), M-CSF, MCP-1, macrophage in-
flammatory protein (MIP)-1α and MIP-2, RANTES
(Regulated on Activation, Normal T-Cell Expressed and
Secreted), TNF-α, EPO, VEGF, epidermal growth factor
(EGF), C-C motif chemokine 11 (eotaxin/CCL11), che-
mokine C-X-C motif ligand 1 (CXCL1/GRO/KC), and
fractalkine.

Statistical analyses
Between group comparisons were made using unpaired
Student’s t tests and are reported without correction for
multiple comparisons and after a Bonferroni correction
for multiple comparisons. Statistical tests were per-
formed using the program GraphPad Prism 7.0 (Graph-
Pad Software, San Diego, CA, USA) or SPSS 24.0 (SPSS,
Chicago, IL, USA).

Results
Similar microglial activation in control and blast-exposed
animals
Brains of 16 week-old rats were analyzed 6 weeks post-
blast exposures, a time by which chronic inflammation
should be well established. No evidence of the presence
of hemorrhages was observed on freshly-cut sections
nor on hematoxylin-eosin (HE)-stained sections. General
microscopic observations of Iba1-immunoreactive cells
throughout the brain did not reveal major differences in
the microglial cell density or phenotype morphologies
between sequential brain sections from control and
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blast-exposed animals and did not identify focal regions
of microgliosis (Fig. 1).
A quantitative stereologic analysis of Iba1-

immunolabeled microglia was performed to evaluate the
relative distribution and abundance of microglial pheno-
types in the prefrontal cortex and hippocampus of blast-
exposed and control animals (Fig. 2). Distinct morpho-
logical phenotypes were observed in the selected areas

corresponding to the previously described microglial
phenotypes associated with different states of activation
including ramified, primed, reactive, and ameboid micro-
glia (types 1–4, respectively; Fig. 2) [30, 31, 46, 48, 50,
54]. No statistically significant differences were observed
in the total microglial populations in the analyzed brain
regions of control and blast-exposed animals. Similarly,
no significant differences were observed in the relative
numbers of microglial subtypes, with the most abundant
being the ramified (type 1) and primed (type 2) microglia
(Figs. 1 and 2).
It is well known that brain injury triggers the prolifer-

ation and activation of quiescent ramified microglia
that transform into proinflammatory brain macro-
phages (M1) devoid of branching processes and with
upregulated expression of MHCII and other surface
molecules such as CD86, and Fcγ receptors [7]. The
negligible presence of MHCII+ Iba1+ cells in the hippo-
campus (<1% of total Iba1+ cells) of blast-exposed ani-
mals (similar to controls) further confirms the lack of
neuroinflammation induced by the blast waves 6 weeks
post-exposure (Fig. 3).

Fig. 1 Three low-level 74.5-kPa blast exposures do not result in microglial
activation. Hippocampal microglia in Vibratome-cut sections visualized by
Iba1-peroxidase immunohistochemistry as described. Control (a); blast (b).
Scale bar, 10 μm

Fig. 2 Similar local densities of microglia and microglial subtypes in the hippocampus and prefrontal cortex 6 weeks following blast exposure. Estimated
densities of total microglia and microglial subtypes are shown for the hippocampus (a) and prefrontal cortex (b). Panel (c) shows examples of microglial
subtypes. Error bars indicate the standard error of the mean (SEM). There was no statistically significant difference between blast and control
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Limited alterations in plasma or brain inflammasome
after low-level blast exposure
We also investigated the effects of low-level blast over-
pressures on the cerebral inflammasome in the amyg-
dala, hippocampus, anterior cortex (prefrontal, motor,
somatosensory, and insular cortices), and posterior cor-
tex (association, auditory, visual, and entorhinal cortices)
of both hemispheres and in plasma at 6 weeks and
40 weeks post-blast exposure (Tables 1 and 2, Figs. 4
and 5). As shown in Table 1, at 6 weeks post-blast ex-
posure there were significant or near significant 1.4- to
1.8-fold decreases in the levels of fractalkine, IL-1β, lep-
tin, LIX, MIP-1, and VEGFα in plasma. However, none
of these changes was replicated in plasma at 40 weeks
post-blast, where no cytokine differences between blast
and control were detected (Fig. 5, Table 2). In brain, iso-
lated changes were seen in selected cytokines at 6 weeks
following blast exposure. However, none of these
changes was replicated in both hemispheres (Table 1) or
at 40 weeks post-blast exposure (Table 2). In addition, if
a Bonferroni correction was applied for multiple com-
parisons (using p = 0.0002 for significance) none of the
comparisons would reach statistical significance. Inter-
estingly, as found in plasma in most cases where differ-
ences in brain were noted, the levels were decreased in
blast-exposed animals. For example, as shown in Figs. 4

and 5, the proinflammatory IL-1β and IL-6 as well as the
anti-inflammatory IL-10 were not significantly changed
in the various brain areas except for a decrease of IL-6
in the right hippocampus. LIX was also decreased in the
amygdala and right anterior cortex (Table 1). However,
at 40 weeks there were no significant changes in the
same cytokines in brain (Table 2). Collectively, these
data provide little evidence for significant brain inflam-
mation over a period of 6–40 weeks post-blast.

Focal hemorrhage triggers microglial activation in the
blast-exposed brain
Interestingly, at 16 weeks post-blast exposure
(3 × 74.5 kPa), the brain of a 6-month-old animal (part
of a different cohort previously reported [49]) exhibited
an amorphous cellular mass resembling an infiltrated
clot within a scar tissue-tear associated with the peri-
rhinal vein and presented with diffuse microgliosis
within the injured hemisphere (Fig. 6). Microgliosis pre-
sented a gradient of reactivity including ameboid morph-
ologies (types 3 and 4) that extended along the scarred
lesion from the temporal association cortex through the
CA1 stratum radiatum where the clot was found (Figs. 6
and 7). The scar of the focal tear was lined in its imme-
diate vicinity by activated astrocytes and an area devoid
of microglia (Figs. 6c-f, 7a), indicating that the local
microglia are highly susceptible to the initial blast over-
pressure experienced in the region immediately adjacent
to a penetrating vessel. This region was adjoined by an
area of clear type 3 and 4 microgliosis. Type 4 ameboid
microglia were predominantly found immediately next
to the clot, whereas most cells in the cortical region ex-
hibited the morphologies of types 2 and 3 activated cells
(Figs. 6 and 7).

Discussion
Acute inflammation is a recognized feature following
TBI induced by mechanical trauma [47] with recent evi-
dence that a chronic neuroinflammatory component
may also develop and contribute to the late effects of
TBI including the development of neurodegnerative dis-
eases [14]. Inflammation is also a component of acute
blast injury [12]. Activation of resident microglia, influx
of peripheral leukocytes, and release of proinflammatory
mediators are early events of this process. Microglia are
activated by thrombin through MAPK signaling path-
ways via the proteinase-activated receptor-1 (PAR-1) [16,
39]. Microglia can also be activated through Toll-like re-
ceptors (TLRs) and the receptor for advanced glycosyla-
tion endproducts via danger-associated molecular signals
(ATP, neurotransmitters, nucleic acids, heat shock pro-
teins, and high-mobility group box 1 proteins) released
by necrotic cells [10, 40, 52]. Microglial activation leads
to increased production of TNF-α and IL-1β, which

Fig. 3 Lack of activated proinflammatory Iba1+ MHCII+ microglia in
the hippocampus of blast-exposed animals (6 weeks post-blast
exposure). Iba1, green; MHCII, red; DAPI, blue. Similar negligible
presence of MHCII+ microglia (<1% of Iba1+ cells) was observed in
the hippocampus of blast exposed (a-c) and control animals (d-f).
Merged images correspond to Panels c and f, respectively. Scale bar,
100 μm. Panels g-i show MHCII+ cells residing in the meninges
surrounding the motor cortex of a blast-exposed animal (positive
control). Merged image is shown in Panel i. Scale bar, 20 μm
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induces neuronal apoptosis [57]. Microglia are also in-
volved in clearance of cell debris and phagocytosis of
blood components, with a central role in hematoma
resolution.
Explosive blasts rapidly generate very high levels of

kinetic energy that dissipate as supersonic pressure
waves to cause blast-induced TBI [13, 37, 42]. In the
brain parenchyma, these high-energy, high-velocity blast
waves can also cause substantial damage to blood vessels
as well as to neuronal and glial cell bodies and their pro-
cesses [4–6, 17, 19, 28, 49]. Prolonged but not short-
duration high-energy blast waves (620–1570 kPa) result
in the acute onset of neuroinflammation and of in-
creased levels of pro-inflammatory cytokines in the brain
[9]. Depending on the intensity of the blast, TBI may in-
clude an early-onset diffuse cerebral edema and delayed

vasoconstriction [3, 34–36]. Injury secondary to blast-
induced TBI involves vascular remodeling, neuroinflam-
mation, and gliosis that are visible several months after
the initial injury [6, 28, 37, 51].
In contrast to these findings after high-energy blast ex-

posures, our experiments with lower level energy blast
exposures (74.5 kPa) did not demonstrate the presence
of chronic neuroinflammation 6 weeks post-blast expos-
ure. Immunohistochemical analyses of brains from blast-
exposed animals without any evidence of vascular
leakage did not show obvious microgliosis, as shown by
the relatively low abundance of Iba1+ reactive or
amoeboid microglia (types 3 and 4) expressing MHCII,
and did not present major alterations in the brain
inflammasome even at 40 weeks post-blast exposure.
Curiously, lack of inflammation after mild brain injury

Table 1 Changes in cytokine/chemokine levels in plasma and in different brain regions as a consequence of blast exposure,
measured at 6 weeks post-blast exposure

L-Hipp R-Hipp L-Amy R-Amy L-AC R-AC L-PC R-PC Plasma

EGF ND ND ND ND ND ND ND ND ND

Eotaxin ND ND ND ND ND ND ND ND ND

Fractalkine NC NC NC NC NC 1.4↓p = 0.08 1.5↓p = 0.01 NC 1.6↓p = 0.004

G-CSF NC NC NC NC NC NC NC NC ND

GM-CSF NC NC NC NC NC NC NC NC ND

GRO/KC NC NC NC NC NC NC NC 1.4↑p = 0.008 ND

IFNγ NC NC NC NC NC NC NC NC ND

IL-10 NC NC NC NC NC NC NC NC ND

IL-12p70 NC NC NC NC NC NC NC NC NC

IL-13 2.2↓p = 0.07 NC NC ND NC ND ND ND NC

IL-18 1.9↓p = 0.03 NC NC NC NC 1.4↓p = 0.09 1.7↓p = 0.02 NC ND

IL-1α 1.5↓p = 0.02 NC NC NC NC 2.5↓p = 0.09 NC NC NC

IL-1β NC 2.5↓p = 0.07 NC NC NC NC NC NC 1.8↓p = 0.048

IL-2 NC NC NC NC NC NC NC 1.7↑p = 0.02 NC

IL-4 NC NC NC NC NC NC NC NC NC

IL-5 1.5↓p = 0.02 NC NC NC ND ND ND ND NC

IL-6 1.8↓p = 0.02 NC NC NC NC NC ND ND NC

IL-17A ND ND ND ND ND ND ND ND ND

IP-10 NC NC NC NC NC NC NC NC NC

Leptin NC 1.8↓p = 0.01 ND NC NC NC NC 1.9↑p = 0.02 1.5↓p = 0.061

LIX NC NC 5↓p = 0.001 10↓p = 0.08 ND 11.2↓p = 0.02 ND ND 1.8↓p = 0.006

MCP-1 1.2↓p = 0.09 NC NC NC NC ND NC NC NC

MIP-1α NC NC NC ND ND ND ND ND 1.6↓p = 0.011

MIP-2 NC NC NC NC NC NC NC NC ND

RANTES ND ND NC ND ND NC ND ND NC

TNFα 1.4↓p = 0.08 NC NC NC NC NC NC 1.5↑p = 0.005 ND

VEGF NC NC NC NC NC ND ND ND 1.4↓p = 0.007

Up or down arrows indicate increased or decreased relative levels in blast-exposed versus control animals. The respective p value (unpaired t-tests) is also
indicated. NC, no change, ND = not detected. L or R indicate left or right subregion, respectively. Hipp = Hippocampus, Amy = Amygdala, AC = Anterior cortex,
PC = Posterior cortex
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has also been reported in a mouse model of closed head
injury using a standardized weight-drop technique [45].
The lack of inflammation observed in our animals indi-
cates that low-energy blast exposures (74.5 kPa) are not
always sufficient to sustain chronic neuroinflammation. In
a murine model system, microglial activation associated
with microdomains of vascular disruption (tight junction
injury) has been observed 45 min post 105.5-kPa blast ex-
posure [22]. However, by 14 days post-blast, elevated
levels of TNF-α were only sustained in animals exposed to
three repetitive blasts, suggesting that even at higher blast
energy, repetitive exposures are required to promote more
persistent neuroinflammatory changes in the CNS [22].
In blast-induced TBI, vascular blood leakage may be a

requirement for the progression and persistence of
neuroinflammation. This is also supported by an

observation in a blast-exposed animal that exhibited an
infiltrated clot within scarred tissue 16 weeks post-blast
exposure that was associated with overwhelming micro-
glial activation (Figs. 6 and 7). As the clot was found
16 weeks post-blast exposure, it could be presumed that
the vascular leakage occurred at a much later time after
the last blast exposure, most likely as a result of a pro-
gressive blast-induced vascular degenerative processes,
leading to induced vascular fragility, subsequent rupture,
and blood leakage [17]. We have previously reported the
selective vulnerability of penetrating vessels that follow
the patterns of blast-induced focal tears and of the asso-
ciated microvasculature to 74.5-kPa blast exposures.
Vascular injuries are present acutely at 24 h after blast
exposure and lead to a chronic vascular degenerative pro-
cesses that can lead to vascular rupture later in life [17].

Table 2 Changes in cytokine/chemokine levels in plasma and in different brain regions as a consequence of blast exposure,
measured at 40 weeks post-blast exposure

L-Hipp R-Hipp L-Amy R-Amy L-AC R-AC L-PC R-PC Plasma

EGF NC NC NC NC NC NC NC NC NC

Eotaxin NC NC NC NC NC NC NC NC NC

Fractalkine NC NC NC NC NC NC NC NC NC

G-CSF NC NC NC NC NC NC NC NC NC

GM-CSF NC NC NC NC NC NC NC NC NC

GRO/KC NC NC NC NC NC NC NC NC NC

IFNγ NC NC NC NC NC NC NC NC NC

IL-10 NC NC NC NC NC NC NC NC NC

IL-12p70 NC NC NC NC NC NC NC NC NC

IL-13 NC NC NC NC NC NC NC NC NC

IL-18 NC NC NC NC NC NC NC NC NC

IL-1α NC NC NC NC 1.3↓p = 0.03 NC NC NC NC

IL-1β NC NC NC NC NC NC NC NC NC

IL-2 NC NC NC 1.3↑p = 0.06 NC NC NC NC NC

IL-4 NC 1.3↑p = 0.06 NC NC NC NC NC NC NC

IL-5 NC NC NC NC 1.3↓p = 0.04 NC NC NC NC

IL-6 NC NC NC 1.3↑p = 0.06 NC NC NC NC NC

IL-17A NC NC NC NC NC NC NC NC ND

IP-10 NC NC NC NC NC NC NC NC NC

Leptin NC NC NC NC 1.2↓p = 0.04 NC 1.2↓p = 0.04 NC NC

LIX NC NC NC NC NC NC NC NC NC

MCP-1 NC NC NC NC NC NC NC NC NC

MIP-1α NC NC NC NC NC NC NC NC NC

MIP-2 NC NC NC NC NC NC NC NC NC

RANTES NC NC NC NC NC NC NC NC NC

TNFα NC NC NC NC NC NC NC NC NC

VEGF NC NC NC 1.3↑p = 0.03 NC NC NC NC NC

Up or down arrows indicate increased or decreased levels in blast-exposed versus control animals.The respective p value is indicated. NC, no change; L or R
indicate left or right subregion, respectively. Hipp, Hippocampus; Amy,
Amygdala; AC, Anterior cortex; PC, Posterior cortex
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Comparison of high- and lower-energy blast-induced
TBI clearly indicates that BBB leakage, microglial activa-
tion, and increased production of pro-inflammatory cy-
tokines depend on the blast overpressure energy and the
number of exposures. Acutely, after 72 h, animals ex-
posed to 74.5-kPa blasts present pathological alterations
that mainly included blood leakage from the choroid
plexus into the lateral ventricles, focal non-hemorrhagic
tissue tears, and vascular alterations [17, 49]. In other
rat models, blast-induced BBB leakage appeared prefer-
entially at higher blast pressures (>110-kPa), as it was
shown that extensive leakage occurred in all brain

regions but preferentially in the thalamus, striatum,
hippocampus, and occipital cortex [25, 29]. However,
limited leakage, mainly through the chorionic plexus,
was observed after exposure to 72-kPa blasts [25, 29,
49]. Kawoos et al. [29] also showed that there is a quali-
tative relationship between BBB leakage and increased
intracerebral pressure (ICP), through which the ICP
levels and sustainability depend also on blast intensity
and the number of blast exposures. As blast induces an
early vasodilation (as evidenced by enlarged blood vessel
diameters [25]), the intravascular forces exercised by the
pressurized circulating blood could damage the vascular

Fig. 4 Selected cytokines in the brains of control and blast-exposed animals (6 weeks post-blast exposure). Shown are levels of IL-1β, IL-6 and
IL-10 in the left (L) or right (R) hemispheres of the indicated brain regions. Error bars indicate the standard error of the mean (SEM). Statistical
differences indicated represent unpaired t-tests
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smooth muscle and endothelial layers [2, 17, 19, 20, 25,
29, 49, 56]. Through buckling, it could induce vascular
tortuosity [21] and through subsequent axial stretch
[15], generate vascular strictures [17, 49]. In small ves-
sels, endothelial damage can also lead to a breakdown of
the BBB and blood leakage [25, 29]. In large vessels,
endothelial damage could trigger chronic vascular
disease through vascular remodeling by induction of
neointima formation, neointima thickening, restenosis,
aneurysm formation, plaque deposition, vascular occlu-
sion, thromboembolism, and vascular rupture. Thera-
peutic approaches aimed at preventing or reversing

vascular damage may improve the chronic neuropsychi-
atric symptoms associated with blast-induced TBI.

Conclusions
Recently much interest has been generated in the role of
ongoing neuroinflammation in the chronic effects of
TBI. We investigated whether chronic neuroinflamma-
tion was present in a rat model of repetitive low-energy
blast exposure. No significant alterations in the levels of
neuroinflammatory indicators (microglia proliferation
and activation as well as pro-inflammatory cytokine/che-
mokine concentrations) were observed in rats 6-40

Fig. 5 Selected cytokines in the brains of control and blast-exposed animals (40 weeks post-blast exposure). Shown are levels of IL-1β, IL-6 and
IL-10 in the left (L) or right (R) hemispheres of the indicated brain regions. Error bars indicate the standard error of the mean (SEM). Statistical
differences indicated represent unpaired t-tests
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weeks after three 74.5-kPa blast exposures. Microgliosis
and microglial activation were observed in one animal
associated with vascular blood leakage 16 weeks post-
blast, most likely due to chronic vascular degeneration.
Thus, extravasation of blood elements may be a trigger
for neuroinflammation in blast-induced TBI. However in
the absence of hemorrhage, chronic neuroinflammation
does not appear to be a long-term consequence of low-
level blast injury.
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Fig. 6 Focal tear and hemorrhage associated with microglia
activation in the rat brain 16 weeks post-blast exposures. HE staining
(a, b). Black arrows indicate location of a blood clot. Scale bars: (a),
500 μm; (b), 200 μm. Brain sections were stained with Iba1 (c) and
GFAP (d) and counterstained with DAPI (e). Arrows in Panel (c)
indicate the areas next to the focal tissue tear devoid of microglia.
Letters inside Panel (c) indicate the relative location of areas
illustrated in Fig. 7. Merged image (f). Scale bar, 200 μm

Fig. 7 Distribution of microglia in the vicinity of a blast-induced
hemorrhagic focal tear. The relative localization of the different
panels in the brain of the blast-exposed animal is indicated in Fig. 6
(e). Panels (a-c), Iba 1 (green) and GFAP (red) immunostaining.
Absence of microglia (green) in the molecular layer of the dentate
gyrus immediately next to the blast-induced tear (a). Presence of
reactive and ameboid microglia in the molecular layer of the dentate
gyrus (b) and in the stratum lucidum (c) of the hippocampus, away
from the tear. Microglial activation gradient, Iba 1 (green) immunostaining
(d-f). Primed and reactive (types 2–3) microglia in the cortex (d, e).
Ameboid (type 4) microglia in the region associated with the molecular
layer of the dentate gyrus away from the tear (f). Scale bar, 50 μm
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