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Abstract

[F-18]-AV-1451 is a novel positron emission tomography (PET) tracer with high affinity to neurofibrillary tau pathology
in Alzheimer’s disease (AD). PET studies have shown increased tracer retention in patients clinically diagnosed with
dementia of AD type and mild cognitive impairment in regions that are known to contain tau lesions. In vivo uptake
has also consistently been observed in midbrain, basal ganglia and choroid plexus in elderly individuals regardless of
their clinical diagnosis, including clinically normal whose brains are not expected to harbor tau pathology in those
areas. We and others have shown that [F-18]-AV-1451 exhibits off-target binding to neuromelanin, melanin and blood
products on postmortem material; and this is important for the correct interpretation of PET images. In the present
study, we further investigated [F-18]-AV-1451 off-target binding in the first autopsy-confirmed Parkinson’s disease (PD)
subject who underwent antemortem PET imaging. The PET scan showed elevated [F-18]-AV-1451 retention
predominantly in inferior temporal cortex, basal ganglia, midbrain and choroid plexus. Neuropathologic examination
confirmed the PD diagnosis. Phosphor screen and high resolution autoradiography failed to show detectable [F-
18]-AV-1451 binding in multiple brain regions examined with the exception of neuromelanin-containing neurons in
the substantia nigra, leptomeningeal melanocytes adjacent to ventricles and midbrain, and microhemorrhages in the
occipital cortex (all reflecting off-target binding), in addition to incidental age-related neurofibrillary tangles in the
entorhinal cortex. Additional legacy postmortem brain samples containing basal ganglia, choroid plexus, and
parenchymal hemorrhages from 20 subjects with various neuropathologic diagnoses were also included in the
autoradiography experiments to better understand what [F-18]-AV-1451 in vivo positivity in those regions means. No
detectable [F-18]-AV-1451 autoradiographic binding was present in the basal ganglia of the PD case or any of the
other subjects. Off-target binding in postmortem choroid plexus samples was only observed in subjects harboring
leptomeningeal melanocytes within the choroidal stroma. Off-target binding to parenchymal hemorrhages was
noticed in postmortem material from subjects with cerebral amyloid angiopathy. The imaging-postmortem correlation
analysis in this PD case reinforces the notion that [F-18]-AV-1451 has strong affinity for neurofibrillary tau pathology but
also exhibits off-target binding to neuromelanin, melanin and blood components. The robust off-target in vivo
retention in basal ganglia and choroid plexus, in the absence of tau deposits, meningeal melanocytes or any other
identifiable binding substrate by autoradiography in the PD case reported here, also suggests that the PET signal in
those regions may be influenced, at least in part, by biological or technical factors that occur in vivo and are not
captured by autoradiography.
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Introduction
[F-18]-AV-1451 (Flortaucipir) is a novel positron emis-
sion tomography (PET) tracer that preferentially binds
to paired helical filament (PHF)-tau containing neurofib-
rillary tangles (NFTs) in Alzheimer’s disease (AD) brains
[33, 51] and those that form as a function of age [31, 33].
Recent data have also shown that [F-18]-AV-1451 binding
in legacy postmortem material closely correlates with
NFT Braak staging and regional tau burden [34], suggest-
ing that [F-18]-AV-1451 holds promise as a biomarker
for the in vivo staging and quantification of tau pathology
in AD. The affinity of this tracer for tau aggregates com-
posed of straight filaments in non-AD tauopathy cases re-
mains controversial [31–33, 39, 42]. Several studies,
including our own, have shown that [F-18]-AV-1451 does
not bind to a significant extent to β-amyloid, α-synuclein
or TDP-43-containing lesions [31, 33, 42].
An increased in vivo [F-18]-AV-1451 retention in mid-

brain, basal ganglia and choroid plexus has been observed
in a high percentage of elderly individuals regardless of
their clinical diagnosis; including not only patients clinic-
ally diagnosed with AD [5, 8, 18, 40] and other non-AD
tauopathies [7, 9, 11, 13, 19, 32, 38, 44, 45, 47, 49], but also
patients with Parkinson’s disease (PD) and other synuclei-
nopathies [9, 10, 21] as well as clinically normal individ-
uals [5, 8, 9, 18, 26, 40, 45] whose brains are not
anticipated to harbor tau pathology in those regions.
Our previous work using [F-18]-AV-1451 autoradiog-

raphy in postmortem brain tissue revealed that the
nearly universal midbrain uptake observed in vivo seems
heavily influenced by the tracer off-target binding to
neuromelanin-containing neurons in the substantia nigra
(SN) [32, 33]. The basis for increased in vivo [F-18]-AV-
1451 retention frequently seen in basal ganglia and chor-
oid plexus, however, remains unknown. To date, only a
few [F-18]-AV-1451 imaging-pathological correlation
studies have been conducted on either single cases or
small series of autopsy-confirmed non-AD tauopathies
[27, 32, 36, 44, 46] yielding conflicting results. We have
suggested that tau conformation (specifically, paired hel-
ical vs. straight tau filaments) may be critical for [F-18]-
AV-1451 binding, limiting the potential usefulness of
this tracer for in vivo detection of tau in many non-AD
tauopathies [32, 33]. Of note, in nearly all published
autopsy-confirmed non-AD tauopathy cases imaged, the
highest in vivo signal and postmortem tau pathology
burden were noted in basal ganglia. However, many
other regions in these cases also contained high amounts
of tau aggregates at postmortem but exhibited very little
or no in vivo signal. These findings suggest a potential
off-target binding of this tracer within brain regions of
interest in many non-AD tauopathies; in particular, off-
target binding in the basal ganglia would confound pos-
sible detection of tau lesions within the basal ganglia.

Literature on [F-18]-AV-1451 PET imaging in patients
clinically diagnosed with α-synucleinopathies is still
scarce [17, 20, 28]. A recent study reported increased in
vivo tracer retention in patients with dementia with
Lewy bodies (DLB) and cognitively impaired PD patients
in inferior temporal cortex and precuneus that corre-
lated well with severity of cognitive deficits [17]. An-
other study observed that in vivo [F-18]-AV-1451
retention is significantly lower in DLB compared to AD
patients, especially in the medial temporal lobe, but ele-
vated in posterior temporoparietal and occipital cortices
relative to controls [28]. Another study showed that in
vivo [F-18]-AV-1451 retention in PD patients with mild
cognitive impairment is not significantly different than
that of healthy controls and it does not correlate with
cognitive dysfunction. Even though no imaging-
pathological correlation studies have been published so
far in DLB or PD patients, it is well-established the over-
lap of α-synuclein-containing lesions with AD pathology
in many of them; something that likely accounts, at least
in part, for the tracer retention observed in vivo in some
of these patients [24, 25, 41].
We have had the opportunity to study in detail the [F-

18]-AV-1451 imaging-pathologic correlates in an
autopsy-confirmed PD case and have used this to inves-
tigate the off-target in vivo signal observed in this pa-
tient in midbrain, basal ganglia, choroid plexus and
some focal areas in the cortex. Additional legacy post-
mortem material containing basal ganglia, choroid
plexus and parenchymal hemorrhages from 20 subjects
(including controls free of pathology, AD, non-AD tauo-
pathies, DLB, vascular dementia, and cerebral amyloid
angiopathy (CAA)) were also studied for comparison
purposes to better understand what [F-18]-AV-1451 in
vivo positivity in those regions means.

Materials and methods
The study was approved by the local Institutional Review
Board and informed consent for neuroimaging and aut-
opsy was obtained for each subject. Demographic and
postmortem data are shown in Table 1.

PET imaging
The PD subject underwent [F-18]-AV-1451 PET scan
12 months prior to death. [F-18]-AV-1451 PET (80-
100 min acquisition, 4 × 5-min frames) data were ac-
quired using a Siemens/CTI (Knoxville, TN) ECAT HR+
scanner (3D mode; 63 image planes; 15.2 cm axial field
of view; 5.6 mm transaxial resolution and 2.4 mm slice
interval). PET data were then reconstructed and attenu-
ation corrected, and each frame was evaluated to verify
adequate count statistics and absence of head motion.
T1-weighted MRI images were acquired on a 3 T Tim
Trio (Siemens) and segmented using Freesurfer (FS) as
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previously described [12, 14, 15]. [F-18]-AV-1451 PET
images were co-registered and fused with 3 T MRI im-
ages. [F-18]-AV-1451 specific binding was expressed in
FS regions of interest (ROIs) as standardized uptake
value ratios (SUVR) using cerebellar grey matter as
reference.

Regional correlation between [F-18]-AV-1451 PET imaging
and postmortem tissue ROIs
[F-18]-AV-1451 PET images were co-registered and
fused with 3 T MRI images. A manual method was used
to identify and match 31 ROIs defined on postmortem
10 mm-thick coronal brain slabs and aligned visually to
the corresponding coronal T1-weighted MRI images
with coregistered PET images. To optimize correspond-
ence between ROIs defined on PET images and their
pathological substrate, we used the gyral and ventricular
morphology on tissue slabs to guide visual identification
of matching ROIs on MRI-T1 images, using a dynamic
resampling of MRI in planes of view that matched the
tissue blocks planes of sectioning. ROIs were then drawn
manually on MRI-T1 images using the medical software
AMIDE v.1.0.5 (A Medical Image Data Examiner, http://

amide.sourceforge.net) [30, 52], expanded to sample a
10 mm-slice depth at the identified ROI location and
saved to represent an object map on the MRI. The ob-
ject map was then used to sample the previously co-
registered PET data. Mean [F-18]-AV-1451 PET-relative
standardized uptake values (SUVR) in each ROI sampled
were obtained.

Brain tissue samples
In addition to the PD case, legacy postmortem brain ma-
terial from 20 representative cases with various neuro-
pathologic diagnoses (including controls free of
pathology, AD, non-AD tauopathies, DLB, vascular de-
mentia, and CAA) from the Massachusetts Alzheimer’s
Disease Research Center (MADRC) Neuropathology
Core were included in this study (Table 1). These add-
itional cases were selected based on the availability of
enough frozen tissue containing basal ganglia, choroid
plexus, and parenchymal hemorrhages to perform auto-
radiography experiments. Tissue blocks from the 21
cases included in the study were fixed in formalin for 1 week
before being embedded in paraffin and cut at 8-μm. The
diagnostic histological evaluation in all cases included in

Table 1 Demographic and postmortem data from the study subjects

Case # Postmortem diagnosis Age at death Gender Braak stage for NFTs [3] CERAD score [37] Figure

Study case PD 71 M II A 1, 2, 3

BG AD#1 AD 51 F VI C 4

BG AD#2 AD 90 F VI C 4

BG AD#3 AD 64 F VI C N/A

BG AD#4 AD 86 M VI A N/A

BG CTL#1 CTL 58 F I 0 4

BG CTL#2 CTL 92 M II 0 4

BG CTL#3 CTL 73 F I 0 N/A

BG CTL#4 CTL 94 M I 0 N/A

BG PSP#1 PSP 69 M I 0 4

BG PSP#2 PSP 68 M II 0 N/A

BG PiD PiD 62 M I A 4

BG DLB DLB 76 M I 0 N/A

CP#1 CTE 40 M I 0 5

CP#2 VaD 95 M I 0 N/A

CP#3 AD 79 F VI C 5

CP#4 AD 73 F VI C N/A

CP#5 DLB 62 M III B N/A

CP#6 AD 91 F IV C N/A

HE#1 CAA, AD 71 M VI C 6

HE#2 CAA 87 M III B 6

Abbreviations: AD Alzheimer’s disease, BG basal ganglia, CAA cerebral amyloid angiopathy, CERAD Consortium to Establish a Registry for Alzheimer’s disease, CP
choroid plexus, CTE chronic traumatic encephalopathy, CTL control, DLB dementia with Lewy bodies, F female, HE hemorrhage, M male, NFT neurofibrillary tangle,
NP neuritic plaques, PD Parkinson’s disease, PiD Pick disease, PSP progressive supranuclear palsy, VaD vascular dementia
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this study was performed on 19 regions representative for a
spectrum of neurodegenerative diseases in accord with
published guidelines [6, 23, 35].
Frozen tissue blocks from the left hemisphere from

the index case containing multiple ROIs along with
blocks containing basal ganglia, choroid plexus, and
parenchymatous hemorrhages from the 20 additional
cases (Table 1) were sectioned in a cryostat (Thermo-
Shandon SME Cryostat) into 10-μm-thick slices and
used for PHF-1 immunohistochemistry (1:100, kind
gift of Dr. Peter Davies), hematoxylin and Thioflavin-
S staining, and [F-18]-AV-1451 autoradiography. Fresh
frozen homogenates from the PD case prepared from
adjacent tissue blocks were used to assess tau content
in multiple ROIs by Semi-denaturing detergent agar-
ose gel electrophoresis (SDD-AGE).

[F-18]-AV-1451 autoradiography and quantification of tau
content by semi-denaturing detergent agarose gel
electrophoresis (SDD-AGE)
[F-18]-AV-1451 phosphor screen and high resolution
nuclear emulsion autoradiography were performed fol-
lowing protocols previously described in detail elsewhere
[33]. SDD-AGE was carried out according to our previ-
ously published protocol [32].

Statistical analysis
Correlations between [F-18]-AV-1451 in vivo uptake
(SUVRs) and SDD-AGE total-tau and PHF-tau mea-
surements in different ROIs were performed using a
linear regression test. Significance was set at p < 0.05.
Statistical analysis and graphs were generated using
GraphPad Prism v6.0 software (GraphPad Software
Inc., La Jolla, CA).

Results
Clinical case description
The patient was a Caucasian male who developed pro-
gressive stiffness in his left extremities in his early 50s,
along with resting tremor and bradykinesia in his left
hand. He received a clinical diagnosis of idiopathic PD
and had a favorable response to L-DOPA therapy. His
symptoms remained stable for many years but he subse-
quently developed hypophonia and stuttering speech,
constipation, postural instability with falls, dysphagia
and occasional visual illusions. His cognition was only
mildly impaired 1 year before his death (Mini-Mental
State Examination score [16] of 30 and Clinical Dementia
Rating [22] score of 0.5). He died at age 71.

In vivo [F-18]-AV-1451 PET imaging
A [F-18]-AV-1451 PET scan obtained 12 months prior
to patient’s death showed bilateral elevated retention
predominantly in midbrain, putamen and pallidum, and

choroid plexus. Weaker retention was also noticed in in-
ferior temporal (bilateral), left middle frontal and left oc-
cipital cortices (Fig. 1).

Neuropathological examination
The autopsy revealed severe degeneration of the pig-
mented neurons in the SN and sparse Lewy body
(LB) deposition in the SN and entorhinal cortex (EC),
consistent with a diagnosis of PD Braak Stage 3 [4].
There was β-amyloid deposition in the cortex and
basal ganglia consistent with Thal phase 4 [48], with
predominantly diffuse plaques and sparse neocortical
neuritic plaques (Consortium to Establish a Registry
for Alzheimer’s disease (CERAD) score A [37]).
Neurofibrillary tangles (NFTs) were confined to the
EC bilaterally corresponding to Braak stage II [3].
ABC score was A3B1C1 with low likelihood of cogni-
tive impairment due to AD according to the National
Institute of Aging-Alzheimer Association scheme [23].
Mild cerebral amyloid angiopathy and moderate ar-
teriolar sclerosis with vessel wall thickening were also
present, with the latter most pronounced in the deep
white matter.

[F-18]-AV-1451 autoradiography
As expected, given the absence of tau pathology in
this case (with the exception of incidental age-related
NFTs in the EC), phosphor screen autoradiography
failed to show detectable [F-18]-AV-1451 binding in
most ROIs analyzed. The only exceptions, exhibiting
both autoradiography signal and elevated in vivo reten-
tion, were EC (#10), substantia nigra (#18), thalamus
(#12) and occipital cortex (#16) (Fig. 2a-b). High reso-
lution nuclear emulsion autoradiography in these four
regions confirmed the underlying substrate of tracer
binding: NFTs in the EC (#10), neuromelanin-containing
neurons in the substantia nigra (off-target, #18), lepto-
meningeal melanocytes (off-target, #12 and #18), and he-
mosiderin in a cerebral microhemorrhage (off-target, #16)
(Fig. 2c).
Of note, putamen and pallidum (#2 and #11) were

among the regions showing the highest in vivo tracer
retention in this patient (SUVR 1.7, Fig. 2a), but ex-
hibited no tau deposits or autoradiography signal at
postmortem (Fig. 2b). Elevated in vivo retention
(SUVR 1.5) was also observed in the choroid plexus
(CP, #14) in the absence of tau aggregates, while this
region displayed a questionable faint signal in auto-
radiography (not blocked with unlabeled AV-1451),
and no signal in high resolution nuclear emulsion
(Fig. 2a-c). A cerebral microhemorrhage was found in
the section containing left occipital cortex (#16) cor-
responding to elevated in vivo uptake and autoradio-
graphic binding observed in this area (Fig. 2a-c).
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Quantification of tau contents by semi-denaturing
detergent agarose gel electrophoresis (SDD-AGE)
Quantification of total tau and phospho-tau by SDD-
AGE in this case showed, as expected based on the neu-
ropathologic findings, much lower levels of high mo-
lecular weight tau species when compared to those
observed in cases of AD. PHF-tau levels were nearly un-
detectable in all ROIs examined with the exception of
EC (Fig. 3b), where NFTs were present. We did not de-
tect any significant correlation between in vivo [F-18]-
AV-1451 retention and total content of tau or phospho-
tau species in matched regions (Fig. 3c).

Off-target [F-18]-AV-1451 signal in the basal ganglia
Postmortem tissue containing basal ganglia from 12 add-
itional cases from the Massachusetts Alzheimer’s Disease
Research Center (MADRC) Neuropathology Core, in-
cluding 4 AD, 4 controls (CTL), 2 PSP, a Pick disease
(PiD) case and a DLB case, were also examined (Table 1
and Fig. 4). Consistent with our previous observations
[32, 33], no detectable [F-18]-AV-1451 autoradiography
signal was observed in any of the cases including PSP
and PiD cases harboring abundant tau aggregates pre-
dominantly made of straight filaments in this region.
Two of the AD cases (AD #1 and #2), exhibited a posi-
tive [F-18]-AV-1451 signal in the insular cortex adjacent
to the putamen reflecting the presence of abundant
NFTs and thus provided an internal positive control.

Off-target [F-18]-AV-1451 binding in the choroid plexus
[F-18]-AV-1451 phosphor screen and high resolution
nuclear emulsion autoradiography was performed on
postmortem samples containing choroid plexus from 6
additional cases (Table 1 and Fig. 5). [F-18]-AV-1451 sig-
nal was noted in 3 of the cases. High resolution nuclear

emulsion revealed the presence of leptomeningeal mela-
nocytes in these 3 cases as the substrate of this signal.
PHF-1 immunostaining and Thioflavin-S staining ruled
out the presence of tau pathology in this region in all
cases.

Off-target [F-18]-AV-1451 binding in brain hemorrhages
Tissue samples from two cerebral amyloid angiopathy
(CAA) cases containing multiple parenchymal hemor-
rhages were also included in autoradiography experi-
ments. In agreement with our previously published
observations [33], [F-18]-AV-1451 signal was noticed in
both cases matching the location of the prior hemor-
rhages (Fig. 6).

Discussion
This is the first imaging-pathological correlation of
novel PHF-tau PET tracer [F-18]-AV-1451 in an
autopsy-confirmed PD case with minimal-to-none AD
co-pathology. The study of this single case has been
particularly informative to learn new and valuable in-
formation about the frequently observed in vivo off-
target retention of this tracer in brain regions like
midbrain, basal ganglia and choroid plexus, and inves-
tigate the underlying substrate/s that may be respon-
sible for such signal in the absence of brain tau
pathology. Importantly, this same PET pattern is fre-
quently observed in elderly individuals, including
those clinically normal [5, 8, 9, 18, 26, 40, 45]. Thus,
this PD case sheds light on how to correctly interpret
[F-18]-AV-1451 PET in vivo images.
Our experiments using [F-18]-AV-1451 phosphor

screen and high resolution autoradiography in multiple
brain regions from this PD case showed that this tracer
bound with strong affinity to age-related NFTs in the

Fig. 1 Coronal in vivo [F-18]-AV-1451 PET images of the PD subject. The color scale indicates SUVR range from 1 to 2. The subject exhibited
increased tracer retention in basal ganglia, midbrain, choroid plexus and eyeballs, and milder retention in inferior temporal (bilaterally), left middle
frontal and left occipital cortices. Abbreviations: PD = Parkinson’s disease; PET = positron emission tomography; SUVR = standardized uptake
value ratio
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Fig. 2 (See legend on next page.)
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EC, neuromelanin-containing neurons in the substantia
nigra and leptomeningeal melanocytes adjacent to the
lateral ventricles, and to a lesser extent to microhemor-
rhages in the cortex. All these findings are consistent
with our previously published observations [32, 33]. In
contrast, no detectable [F-18]-AV-1451 binding was ob-
served in basal ganglia or choroid plexus, the two re-
gions that displayed the highest in vivo tracer retention
in this case (SUVR of 1.7 and 1.5, respectively); these
data are also in agreement with our prior findings [32].
The study of this PD case and additional brain material
from 20 individuals with various neurodegenerative diag-
noses have allowed us to further define the underlying
substrates of in vivo [F-18]-AV-1451 retention in these
two regions.
In our previous studies we observed robust off-target

binding of [F-18]-AV-1451 to neuromelanin- and
melanin-containing cells and alerted on the importance
of carefully taking this finding into account when
interpreting [F-18]-AV-1451 in vivo retention patterns
[32, 33]. Other authors have made similar observations
and suggested that this off-target binding may actually
be of utility to assess dopaminergic cell loss in PD pa-
tients [21].
As noted above, elevated in vivo [F-18]-AV-1451 re-

tention in basal ganglia has been observed in a signifi-
cant proportion of elderly individuals with different
clinical diagnosis, including AD [5, 8, 18, 40] and non-
AD tauopathies [7, 10, 11, 13, 19, 27, 32, 36, 38, 44, 45,
47, 49], but also in cases without suspected underlying
tau pathology like PD [9, 20] and MSA [10] as well as in
clinically normal individuals [5, 8, 9, 18, 26, 40, 45]. Our
previous studies, including correlations in 3 non-AD
tauopathy cases who underwent imaging prior to death
(two PSP and a MAPT P301L mutation carrier), showed
elevated in vivo retention and tau pathology in basal
ganglia, but no tracer binding in this region at postmor-
tem by autoradiography, and no significant correlation
between in vivo signal and tau burden in multiple ROIs
[32]. The study is the largest series published to date on
non-AD taupathies and made us conclude that tracer in

vivo signal in basal ganglia in these cases was likely
representing off-target retention in on-target areas for
those diseases. The PD case studied here, with high in
vivo retention but no tau-containing lesions or calcifica-
tions in this area, further reinforces this idea. Interest-
ingly, several [F-18]-AV-1451 kinetic modeling studies
[1, 2, 43, 50] have suggested that this tracer has a differ-
ent kinetic profile in the putamen, with a higher initial
uptake and much faster clearance in this region com-
pared to the cortex, and enhanced retention with in-
creasing age. It has been proposed that this may be due
to additional off-target binding in the putamen or a sec-
ond binding site in this region with different kinetics.
To further investigate the mismatch between elevated

in vivo [F-18]-AV-1451 retention in basal ganglia and
lack of autoradiography signal in this region, we per-
formed [F-18]-AV-1451 phosphor screen and high reso-
lution autoradiography in basal ganglia sections from 12
cases with various neurodegenerative diseases (Table 1,
Fig. 4). The absence of tracer binding in this region
across cases, regardless of the presence or absence of
tau-containing lesions suggests that the in vivo signal in
this area may be due, at least in part, to non-specific bio-
logical or technical factors unrelated to tau or non-tau
substrates. However, we cannot rule out with absolute
certainty that the autoradiography techniques at post-
mortem may remove some weak [F-18]-AV-1451 label-
ing from the basal ganglia.
Another brain region exhibiting potential [F-18]-AV-

1451 off-target retention is the choroid plexus, a highly
vascular region mostly composed of an overlying special-
ized epithelial layer with a stroma containing blood ves-
sels, sometimes with focal calcifications particularly in
older subjects, and small rests of meningothelial ele-
ments. Elevated in vivo tracer retention was observed in
the choroid plexus in the PD case reported here but,
similarly to the basal ganglia, no tau pathology could be
demonstrated in this area at postmortem, and autoradi-
ography failed to show significant tracer binding. In-
creased in vivo retention in the choroid plexus is a
common finding in a high percentage of individuals

(See figure on previous page.)
Fig. 2 Coronal in vivo [F-18]-AV-1451 PET images superimposed to brain MRI (a, left), matching autopsy tissue blocks (a, right), phosphor screen
autoradiography (b), and microphotographs of nuclear emulsion dipped slides after incubation with [F-18]-AV-1451 (c) from the PD subject.
The numbers displayed on PET and autoradiography images correspond to matching ROIs. Most ROIs analyzed did not exhibit detectable
autoradiography signal, with the exception of the EC (red asterisk) (#10, reflecting Braak II age-related NFT pathology), leptomeningeal melanocytes
adjacent to the lateral ventricle (red asterisk) (#12), and the mesencephalus (red and black asterisks) (#18, reflecting off-target binding to neuromelanin-
containing neurons in the substantia nigra and meningeal melanocytes, respectively). The choroid plexus (red asterisk) (#14) displayed a very faint
autoradiography signal that was not blocked with 1 μM unlabeled AV-1451. Numbers correspond to the following anatomical regions: #1 = middle
frontal, #2 = putamen and pallidum, #3 = inferior temporal, #4 = anterior cingulate, #5 = superior frontal, #6 = middle frontal, #7 = inferior frontal,
#8 = superior temporal, #9 = inferior temporal, #10 = HPC/EC, #11 = putamen and pallidum, #12 = thalamus, #13 = caudate, #14 = choroid plexus,
#15 = middle frontal, #16 = occipital, #17 = cerebellar cortex and dentate nucleus, and #18 = substantia nigra. Abbreviations: EC = entorhinal cortex,
HPC = hippocampus; MRI = magnetic resonance imaging; NFT = neurofibrillary tangle; PD = Parkinson’s disease; PET = positron emission tomography;
ROI = region of interest. Scale bar = 1 cm (b), 20 μm (c)
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undergoing [F-18]-AV-1451 PET scans, and especially in
African-Americans (Lee CM et al., communication at
the Human Amyloid Imaging conference, 2017). Of

note, due to the close location of choroid plexus to med-
ial temporal lobe structures, elevated in vivo signal in
this area can potentially interfere with assessment of

Fig. 3 Coronal in vivo [F-18]-AV-1451 PET images (a, left), matching autopsy tissue blocks (a, right), representative images of SDD-AGE membranes
stained with total tau and PHF-1 antibodies (b), and correlation analyses between in vivo SUVR retention values and postmortem LMW and HMW
tau levels in matching ROIs (c) from the PD case. Numbers displayed on PET images and graphs correspond to matching ROIs. As expected, levels
of total tau and phosphorylated tau, particularly in the form of HMW species, were substantially much lower in the PD case in comparison to AD
brain tissue (b). No significant correlation was detected between in vivo [F-18]-AV-1451 signal and postmortem measurements of total tau and
phospho-tau species (c). Numbers correspond to the following anatomical regions: #1 = anterior cingulate, #2 = medial frontal, #3 = inferior
frontal, #4 = frontal white matter, #5 = caudate, #6 = putamen, # 7 = superior temporal, #8 = inferior temporal, # 9 = middle frontal, #10 = occipital,
#11 = cerebellar cortex, #12 = HPC/EC and #13 = substantia nigra. Abbreviations: EC = entorhinal cortex, HPC = hippocampus, HMW = high
molecular weight; LMW = low molecular weight; NFT = neurofibrillary tangles; PD = Parkinson’s disease; PET = positron emission tomography;
ROI = region of interest; SDD-AGE = semi-denaturing detergent agarose gel electrophoresis; SUVR = standardized uptake value ratio
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“true” tracer retention in the hippocampus and entorhi-
nal cortex; thus, it is important to understand the under-
lying substrate of tracer’s uptake in the choroid plexus.
Our autoradiography study of postmortem tissue sam-
ples, which included choroid plexus from 6 individuals,
detected tracer binding in three of them corresponding
to the presence in these cases of abundant leptomenin-
geal melanocytes (see representative cases in Fig. 5a-b).
These data suggest that off-target binding to melanin
contributes, at least in part, to in vivo tracer retention in
choroid plexus. But the PD case reported here also re-
veals that in vivo signal in this region may as well be
present in the absence of tau pathology or melanin,
pointing to an alternative substrate. It is also possible
that there is a distinct kinetic profile of the compound
in this area that contributes to in vivo signal but is not
captured by our autoradiographic methods.

In our PD case we also noted increased in vivo [F-
18]-AV-1451 retention in focal areas of frontal and oc-
cipital cortices in the left hemisphere. Our autoradiog-
raphy experiments revealed, in the limited number of
sections analyzed, the presence of tracer binding to an
occipital microhemorrhage. It is conceivable that our
PD case may harbor additional microhemorrhages that
would only be revealed by extensive brain sampling.
The analysis of additional legacy postmortem material
from two CAA cases harboring multiple brain hemor-
rhages further confirmed tracer binding to those le-
sions in autoradiography (Fig. 6). This is in agreement
with our previously published observations indicating
that the off-target binding of this tracer also includes
blood products [33]. Also, a recent publication describ-
ing 3 cases with probable CAA imaged with PET-[F-
18]-AV-1451 showed that regions with microbleeds

Fig. 4 Basal ganglia tissue sections stained with PHF-1 antibody (left), [F-18]-AV-1451 autoradiography (middle) and blocking with 1 μm unlabeled
AV-1451 (right) from 2 AD patients, 2 CTL and 2 non-AD tauopathy subjects. No detectable [F-18]-AV-1451 autoradiography signal was observed
in the basal ganglia tissue of any of the subjects studied, including PSP and PiD subjects harboring high burden of tau deposits. AD subjects
(AD#1 and AD#2) showed a strong autoradiography signal in the insular cortex adjacent to the putamen where abundant NFTs were present. Ab-
breviations: AD = Alzheimer’s disease; CTL = control; NFT = neurofibrillary tangles; PiD = Pick’s disease; PSP = Progressive Supranuclear Palsy
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largely overlapped with those with increased [F-18]-
AV-1451 in vivo retention [29].

Conclusion
In conclusion, the imaging-pathologic correlation ana-
lysis of the first autopsy-confirmed PD patient who
underwent [F-18]-AV-1451 PET scan prior to death con-
firms that this tracer not only binds with strong affinity

to NFT tau pathology in AD, but also exhibits off-target
binding to neuromelanin and melanin-containing cells
and, to a lesser extent, to brain hemorrhagic lesions.
These substrates likely explain, at least in part, the en-
hanced PET in vivo signal frequently noticed in mid-
brain, basal ganglia and choroid plexus regardless of the
clinical diagnosis and of the presence or absence of tau-
containing lesions in those regions. However, the robust

Fig. 5 [F-18]-AV-1451 phosphor screen autoradiography (left) and nuclear emulsion autoradiography microphotographs (right) from tissue
blocks containing choroid plexus of CTE (a, case #1) and severe brain vessel disease (b, case #2) subjects. Autoradiography signal was
observed in case #1, corresponding to the presence of leptomeningeal melanocytes. Scale bar = 20 μm (right). Abbreviations:
CTE = chronic traumatic encephalopathy

Fig. 6 Unstained frozen tissue sections (left), [F-18]-AV-1451 phosphor screen autoradiography (middle) and blocking conditions with unlabeled
AV-1451 (right) from two subjects with CAA harboring multiple brain hemorrhages (a and b). Autoradiography signal was observed in both
subjects (asterisks, middle, a and b) matching the location of the hemorrhages (left, a and b). Abbreviations: CAA = cerebral amyloid angiopathy

Marquié et al. Acta Neuropathologica Communications  (2017) 5:75 Page 10 of 13



off-target in vivo retention in basal ganglia and choroid
plexus, in the absence of tau deposits, meningeal mela-
nocytes or any other identifiable binding substrate by
autoradiography in the PD case reported here, suggests
that differential uptake and clearance profiles of this
compound in these brain regions deserve to be further
investigated. All together these data offer new important
clues for the accurate interpretation of the patterns of
[F-18]-AV-1451 retention observed by in vivo neuroim-
aging. Additional imaging-pathological studies on post-
mortem material from individuals studied by imaging
methods prior to death will continue to provide insight
into the implications of [F-18]-AV-1451 signals.
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