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Abstract

Pediatric high-grade gliomas (pHGGs) are aggressive neoplasms representing approximately 20% of brain tumors in
children. Current therapies offer limited disease control, and patients have a poor prognosis. Empiric use of targeted
therapy, especially at progression, is increasingly practiced despite a paucity of data regarding temporal and therapy-
driven genomic evolution in pHGGs. To study the genetic landscape of pHGGs at recurrence, we performed whole
exome and methylation analyses on matched primary and recurrent pHGGs from 16 patients. Tumor mutational
profiles identified three distinct subgroups. Group 1 (n = 7) harbored known hotspot mutations in Histone 3 (H3)
(K27M or G34V) or IDH1 (H3/IDH1 mutants) and co-occurring TP53 or ACVR1 mutations in tumor pairs across the
disease course. Group 2 (n = 7), H3/IDH1 wildtype tumor pairs, harbored novel mutations in chromatin modifiers
(ZMYND11, EP300 n = 2), all associated with TP53 alterations, or had BRAF V600E mutations (n = 2) conserved across
tumor pairs. Group 3 included 2 tumors with NF1 germline mutations. Pairs from primary and relapsed pHGG samples
clustered within the same DNA methylation subgroup. ATRX mutations were clonal and retained in H3G34V and H3/
IDH1 wildtype tumors, while different genetic alterations in this gene were observed at diagnosis and recurrence in
IDH1 mutant tumors. Mutations in putative drug targets (EGFR, ERBB2, PDGFRA, PI3K) were not always shared between
primary and recurrence samples, indicating evolution during progression. Our findings indicate that specific key driver
mutations in pHGGs are conserved at recurrence and are prime targets for therapeutic development and clinical trials
(e.g. H3 post-translational modifications, IDH1, BRAF V600E). Other actionable mutations are acquired or lost, indicating
that re-biopsy at recurrence will provide better guidance for effective targeted therapy of pHGGs.
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Introduction
Genetic and epigenetic molecular profiling techniques
have revolutionized our understanding of the etiology
and biology of pediatric high-grade gliomas (pHGGs)
(reviewed in [20]). Unfortunately, this has not yet led to
an improvement in outcome for children with this dis-
ease [40] despite the use of agents that target pathways
identified through these biological advances. Novel
agents for the treatment of pHGGs are first tested in the
relapse setting, and target genomic alterations typically
present in therapy-naïve diagnostic tumor samples or
models. However, there is limited data on the relevance
of genomic aberrations at diagnosis on disease progres-
sion after multimodal therapy, making the effectiveness
of this approach questionable. An improved understand-
ing of temporal and therapy-driven evolution of recurrent
pHGGs is therefore needed, especially in the context of
hemispheric HGGs that show increased genetic hetero-
geneity [5, 12, 13, 19, 37, 50, 51].
Clonal evolution is a dynamic process that has been

reported in many cancer types [3, 28, 39, 48], even with-
out exposure to therapy [11]. Morrissy et al., have re-
cently demonstrated poor overlap in genetic events
between primary and post-treatment medulloblastoma
both in murine models and human samples [28]. This
included a marked divergence in actionable genes be-
tween diagnosis and recurrence, despite conservation of
molecular subgroup affiliation [28, 36, 47]. Whole exome
sequencing (WES) of 23 initial and recurrent gliomas in
adults by Johnson et al., revealed variable genetic re-
latedness across pairs; in 10 cases, most mutations from
diagnosis were not conserved in the recurrent sample,
including the BRAF V600E hotspot mutation [19]. In
adult glioblastoma multiforme (GBM), a longitudinal
study of the genetic landscape of 114 untreated and recur-
rent paired tumors revealed a switch in expression-based
subtypes in 63% of cases. Enrichment of a hypermutated
phenotype in recurrent disease exposed to temozolomide
(TMZ) was also identified, suggesting the occurrence of
therapy-induced mutagenesis [45]. Moreover, an analysis
of tumor phylogeny revealed that dominant clones at re-
currence were infrequently direct descendants of domin-
ant clones from diagnosis [45]. We have previously shown
that disease-defining somatic mutations in oncohistones
[K27M in Histone 3 (H3) variants (H3F3A, HIST1H3B)]
are spatially stable in diffuse intrinsic pontine glioma
(DIPG), and co-occur with highly conserved partners
throughout geographically distinct tumor sites [18, 30].
However, limited data on disease recurrence are available
for supratentorial pHGGs. This is of major therapeutic
interest as hemispheric pHGGs show more genetic va-
riability at diagnosis than midline tumors, the vast major-
ity of which are defined by H3K27M mutations (> 90%)
[14, 51]. In the current study, we characterize the temporal

genomic heterogeneity in pHGGs by assessing the muta-
tional profile and methylome of paired primary and recur-
rent tumors with emphasis on supratentorial pHGGs.

Materials and methods
Clinical cohort
Institutional review board approval was obtained to per-
form this retrospective study at Cincinnati Children’s
Hospital Medical Center (CCHMC, Study ID: 2014-
6849) and Nationwide Children’s Hospital (NCH: IRB15-
00143). The patient cohort was chosen based on the
availability of material from both the primary and recur-
rent tumor for each case with a confirmed HGG diagno-
sis Two neuropathologists (CF and JK) independently
reviewed tumor samples. Patient tumor samples were ac-
quired from diagnosis as well as recurrence or autopsy
and preserved either as fresh-frozen or formalin fixed par-
affin embedded (FFPE) tissue. Blood or other matched
normal tissue was obtained when available for germline
analysis. To ensure adequate tumor content, hematoxylin
and eosin (H&E) slides were reviewed from each frozen
specimen, the initial cut of each FFPE block, and an
additional cut of FFPE block after scrolls were obtained
for DNA extraction. All patient tumor and matched
blood samples were collected after informed consent
was provided by patients or legal guardians through in-
stitutional review board approved protocols at the re-
spective institutions.

DNA extraction
DNA extraction was carried out from frozen tissue using
the Qiagen AllPrep DNA/RNA/miRNA Universal Kit fol-
lowing the manufacturer’s instructions. DNA from FFPE
scrolls or core punches were isolated by suspending the
paraffin scrolls in deparaffinization solution (Qiagen)
followed by DNA extraction using the QIAamp DNA
FFPE Tissue Kit. DNA quantification was conducted
using the Quant-iT Picogreen dsDNA assay kit (Thermo
Fisher Scientific). Droplet digital PCR (ddPCR) assays for
H3K27M mutations were performed as previously de-
scribed [30].

Whole Exome Sequencing (WES) analysis
The Nextera Rapid Capture Exome kit (Illumina) was
used to prepare 36 libraries, and the Agilent SureSelect
Reagent Exome kit (Agilent) was used to prepare 6 li-
braries according to the manufacturer’s instructions.
Genomic DNA was extracted from frozen tissue and
FFPE blocks representing tumor or normal tissue and
from monocytes. Sequencing was performed on the Illu-
mina HiSeq 2000 using rapid-run mode with 100 bp
paired-end reads. Adaptor sequences were removed, and
reads trimmed for quality using the FASTX-Toolkit
(http://hannonlab.cshl.edu/fastx_toolkit/). An in-house
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program was used to ensure the presence of exclusively
paired-reads. We next aligned the reads using Burrows-
Wheeler Aligner (BWA) 0.7.7 to GRC37/hg19 as a ref-
erence genome. Indel realignment was performed using
the Genome Analysis Toolkit (GATK) 29 (https://softwar-
e.broadinstitute.org/gatk/). Duplicate reads were marked
using Picard (http://broadinstitute.github.io/picard/), and
excluded from further analyses. The average coverage for
all the samples was 69X. Single Nucleotide Variants
(SNVs) and short indels were called using our in-house
pipeline that exploits three different variant callers: Free-
Bayes 1.1.0 (https://arxiv.org/abs/1207.3907), SAMtools
1.3.1 (http://samtools.sourceforge.net/) and GATK Haplo-
typeCaller 3.7 [43]. Thresholds were set for calling a true
variant to two out of three variant callers. Next, variants
were filtered for quality so at least 10% of reads supported
each variant call. ANNOVAR [46] and in-house programs
were used to annotate variants that affect protein-coding
sequence. Variants were screened to assess whether they
had previously been observed in public datasets including
the 1000 Genomes Project data set (November 2011), the
National Heart, Lung and Blood Institute (NHLBI) Grand
Opportunity (GO) exomes as well as in over 3000 exomes
previously sequenced at our center (including cancer and
non-cancer samples).

Somatic and putative somatic mutation identification
from Whole Exome Sequencing
Protein coding variants were identified as nonsynon-
ymous missense, frameshifts, stopgains, indels, splice
variants, and present with a minimum of 5% mutant al-
lele frequency (MAF) or greater. A MAF of > 5% was used
in order to reduce removal of low frequency mutations in
genes of interest (H3F3A, TP53, ATRX, ZMYND11,
LZTR1). All other reported mutations have a MAF > 15%.
To be considered somatic, zero mutant variant reads were
present in the normal sample. In some cases where < 2
variant reads were present in the normal, the sequencing
alignments were manually checked to verify as sequen-
cing artifacts. Additionally, all somatic and putative
somatic variants were manually checked for alignment
and sequencing artifacts. To further remove germline
SNPs where normal was not available, all samples were
filtered based on a MAF (mutant allele frequency) <
0.0005 in the 1000 Genomes Project (November 2011),
EVS, and < 0.00005 from ExAC databases. Finally, in
cases with no associated normal, variants were only re-
ported when present in COSMIC or high/medium
functional impact as assessed using MutationAssessor
(http://mutationassessor.org/r3/). Targeted validations
on selected variants were performed using Sanger se-
quencing or high-depth sequencing on an Illumina
Miseq as previously described [30].

Allelic Imbalance and CNV analysis
Allelic Imbalance was assessed in whole exome sequen-
cing data using the ExomeAI program [29] for 15 pHGG
tumor pairs using the default parameters of the program.
HGG1 was not analyzed due to low WES coverage of
the recurrence tumor. Copy number variations (CNVs)
were analyzed in 8 pHGG tumor-normal pairs using an
in-house program (CNAXX; unpublished) we developed
that takes both coverage (normalized average) and the
deviation of B allele frequency from 50% into account
(adapted from methods used in FishingCNV [38] and
ExomeAI [29]). Different CNV events (amplification, de-
letion and copy neutral LOH) were called based upon
the status of the normalized coverage and the B allelic
imbalance as we described previously in [30]. We
assessed the CNV events at both the chromosomal arm
level and the union of the segments called by each of the
two features used by the program (i.e. B allele frequency
and normalized average coverage). Paired t-tests were
performed using the statistical program R version 3.1.1.

DNA methylation analysis
Illumina 450 K methylation chips were used on 28 sam-
ples, and profiling data was analyzed as previously de-
scribed [14, 32]. In some cases, only the tumor from the
primary (HGG1, HGG3, HGG11) or recurrence (HGG12)
were included in the final analysis due to insufficient or
poor quality FFPE DNA from the respective tumor pair.
The raw data were subject to quality control and pre-
processing utilizing the R package minfi, and normalized
for technical variation between the Infinium I and II
probes using the SWAN method. We removed probes on
sex chromosomes (chr X, Y), those containing SNPs
(dbSNP: https://www.ncbi.nlm.nih.gov/projects/SNP/) as
well as non-specific probes that bind to multiple genomic
locations. Unsupervised hierarchical clustering was per-
formed using average linkage, and Pearson rank correl-
ation distance on the top 3000 most variable probes
selected based on standard deviation of beta values (β-
values).

Immunohistochemistry for MMR proteins
Immunohistochemistry (IHC) staining for expression of
MMR proteins (MLH1, MSH2, MSH6, PMS2) was per-
formed on slides cut from FFPE blocks of pHGG sam-
ples using conventional methods [53].

Results
Patient characteristics
Paired primary and recurrent pHGG tumor samples
were available from 16 patients. Median age at diagnosis
was 15 years (range: 4–29 years). Among the 16 cases,
one patient with a germline NF1 mutation was initially
diagnosed with a WHO grade II glioma with pilocytic
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features (HGG16) before recurring as a HGG. Median
time to progression was 13 months (range: 4–45 months).
Fourteen patients received radiation therapy at diagnosis,
and 10 patients (63%) had received temozolomide (TMZ)
prior to last progression. Five tumors (31%) were midline [2
pontine tumors (HGG2, HGG4), 1 thalamic tumor (HGG8),
2 spinal tumors (HGG1, HGG3)], and 11 tumors (69%) were
hemispheric. Two patients (HGG15 and HGG16) were pre-
viously known to have germline neurofibromatosis type 1
(NF1). All clinicopathological features are shown in Table 1.

Core oncogenic mutations are shared in primary and
recurrent pHGGs
To determine the temporal stability of the mutational land-
scape of pHGGs, WES was performed on all 16 tumor
pairs. Matched germline DNA was available for 9 patients.
Samples were sequenced with an average coverage of 69X
(range 3.5–200.4X) (Additional file 1: Table S1). Tumor
pairs were stratified into three distinct molecular groups
based on the identified mutation patterns (Fig. 1a,
Additional file 2: Table S2). The first group was comprised
of H3/IDH1 mutant tumors (7/16 pairs, 44%), where both
the primary and recurrence harbored shared epigenetic
driver mutations in H3F3A K27M (n = 3, HGG1, HGG2,
HGG3), HIST1H3B K27M (n = 1, HGG4), H3F3A G34V
(n = 1, HGG5), or IDH1 R132H/S (n = 2, HGG6, HGG7).
Consistent with previous studies, all H3K27M mutant tu-
mors were in the brain midline (spine and pons), while
H3F3A G34 V and IDH1 mutant tumors were hemi-
spheric [37, 41]. In addition, all six H3F3A and IDH1 mu-
tant tumors had co-occurring TP53 mutations while the
HIST1H3B (Histone 3.1) K27M mutant DIPG had a
known associated ACVR1 R258G mutation (HGG4) [14,
42, 51]. H3K27M/G34V and IDH1 mutations were as ex-
pected clonal and conserved across primary and recurrent
tumor pairs. Similarly, ACVR1 and TP53mutations, which
have been shown to be obligate partners in H3 and IDH
mutagenesis, were also conserved throughout disease
progression.
The second group had no identifiable H3 or IDH1

mutations, termed H3/IDH1 wildtype (7/16 pairs, 44%).
This is a heterogeneous group of supratentorial, mostly
hemispheric, tumors (6/7, 86%) with clonal mutations
identified in TP53 (4/7, 57%), ATRX (3/7, 43%), BRAF
V600E (2/7, 29%), BCOR (1/7, 14%), CDKN2A (1/7,
14%), ZMYND11 (1/7, 14%), and EP300 (1/7, 14%) in
tumor pairs (Fig. 1a). HGG8, the only H3/IDH1 thalamic
wildtype tumor, had TP53 missense, ATRX missense,
CDKN2A nonsense, and interestingly, EP300 missense
mutations that were retained at recurrence. One sample
(HGG11) had a hypermutated phenotype with 151 pro-
tein coding somatic mutations at diagnosis and 670 at
relapse. The H3/IDH1 wildtype group was enriched for
multiple mutations in receptor tyrosine kinase (RTK),

phosphoinositide 3-kinase (PI3K) pathway, histone mod-
ifiers, integrin, and cadherin genes (Fig. 1a, b). Except
for rare mutations, most of these genetic alterations
were not present across tumor pairs, and seemed to
occur more frequently at disease recurrence (Fig. 1a, b).
Lastly, the third molecular group was composed of pa-

tients with NF1 germline truncating mutations (2/16,
12%) with associated HGG (HGG15, HGG16). There
were few SNVs identified in the primary tumors from
these 2 cases. The primary tumor of HGG15 had no de-
tectable driver SNVs, however, it acquired an ATRX
frameshift mutation as well as a RAD50 missense muta-
tion at recurrence (Fig. 1b). In HGG16, both primary
and recurrent samples harbored PPM1D nonsense
(L513X) and ATRX missense mutations. Previous studies
have shown that PPM1D mutations affect p53 function
and are mutually exclusive of TP53 mutations [55]. This
mutation pattern in the NF1 mutant group is reminis-
cent of G34R/V-H3F3A mutated HGGs which co-occur
with ATRX and TP53 alterations.

Other mutational patterns at diagnosis and recurrence
In all groups of pHGG tumors, core oncogenic driver
mutations in H3 variants, IDH1, TP53, ACVR1, BRAF
V600E, and PPM1D were conserved at recurrence. As
expected, the TP53 pathway (TP53 or PPM1D) was the
most frequently altered (11/16, 69%) across all tumor
subgroups (Fig. 1a). ATRX mutations were also frequent
(8/16, 50%) and, as previously described, were enriched
in supratentorial samples (7/10, 70%) [1, 9, 14, 26]. In
the H3/IDH1 mutant group, ATRX mutations were
observed in 3 hemispheric tumor pairs: one pair with
H3G34V (HGG5), and two with IDH1 R132H/S (HGG6,
HGG7) mutations. Additionally, ATRX mutations were
identified in three H3/IDH1 wildtype tumor pairs, two
of which co-occurred with alterations in chromatin
modifiers (HGG8, HGG9), and in both samples from pa-
tients with germline NF1. We observed the same ATRX
mutation at recurrence in all tumor pairs of the H3/
IDH1 wildtype subgroup. In IDH1 mutant tumors,
HGG7 harbored two ATRX alterations including a
frameshift mutation exclusive to the primary tumor,
while HGG6 acquired an additional ATRX missense muta-
tion in the recurrence, in keeping with previous findings
in IDH1 mutagenesis [19]. While taking into consider-
ation the limitations imposed by our relatively small co-
hort, our findings indicate that in H3/IDH1 wildtype
pHGGs, the same ATRX mutation, when present at diag-
nosis, is retained at disease recurrence despite gross total
resection of the primary tumor in most cases. Interest-
ingly, while loss of BRAF V600E at recurrence has been
reported in adult gliomas [19], the two cases in our study
(HGG12, HGG13) retained this mutation at recurrence.
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Novel epigenetic alterations in H3/IDH1 wildtype pHGGs
Two tumor pairs in the H3/IDH1 wildtype group
showed potentially novel epigenetic drivers that con-
verge to affect the same histone mark directly affected in
pHGGs carrying H3.3 G34R/V or H3K27M mutations.
Both primary and recurrent samples from HGG9, an
adolescent patient with a parietal brain tumor, shared a
ZMYND11 frameshift mutation that possibly abrogates
expression of this protein, and they also harbored concur-
rent TP53 and ATRX missense mutations. These charac-
teristics are typical of pHGGs that harbor H3.3G34R/V
mutations. ZMYND11/BS69 has been shown to speci-
fically recognize H3K36me3 to regulate and repress
transcription [17, 49]. Conversely, H3.3G34R/V mutant

nucleosomes affect the trimethylation of K36 on the H3.3
mutant nucleosomes [24], impairing the recognition of
H3K36me3 ZMYND11/BS69 and its action on modulat-
ing translation [49]. In HGG8, both primary and recurrent
thalamic tumors shared a mutation in EP300 (D1339N),
concurrent with TP53 and ATRX missense mutations and
a CDKN2A nonsense mutation. The EP300 gene encodes
a histone acetyltransferase (HAT), with acetylation activity
at H3K27, and has been shown to regulate transcription
through multiple mechanisms of chromatin remodeling
[33]. The D1339N mutation has been identified in mul-
tiple tumor types, but not in HGG, and is presumed to
affect the enzymatic activity of the protein [8, 25]. It is
worth noting that HGG8 harboring mutant EP300 was

Fig. 1 Mutational profile of primary and recurrence tumor pairs from 16 pediatric High-Grade Glioma (pHGG) patient samples analyzed in this
study. Vertical columns of circles represent a tumor pair from an individual patient. The left half of a circle represents the primary tumor and the
right half represents the recurrence. A fully colored circle indicates that both primary and recurrence tumors harbor the same mutation, and a
half-colored circle indicates a mutation specific to the primary or recurrence. Horizontal rows show individual genes or gene groups/pathways that are
mutated. Mutations shown are known to be pathogenic, found in COSMIC or TCGA, or have a high/medium functional impact. a Molecular group,
age, sex and tumor location are indicated for each patient. Mutations are represented by colors: light blue = missense, dark blue = truncating
(frameshift or nonsense), orange = additional/different missense, pink = additional or different truncating. b An expansion of each gene group
showing individual genes mutated in each patient. Different gene groups are represented by different colors, truncating mutations are shown
with a slanted line, and an individual dot represents an additional or different mutation is present
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a midline tumor, a location where H3K27M mutations
known to affect H3K27 acetylation usually account for
the vast majority of driver mutations. Taken together,
these data suggest that both these novel epigenetic mu-
tations are relevant in the setting of pHGGs, and may
possibly mimic the effect of genetic drivers in H3-
mutant tumors.

Activating mutations of the RTK-PI3K pathway are not
always conserved
Mutations in the RTK genes involving EGFR, ERBB2,
ERBB4, FLT1 and EPHA/B, were identified in 5/7 (71%) of
the H3/IDH1 wildtype tumor pairs. Many of these were
exclusive to the primary or recurrent sample (Fig. 1b). In
the H3/IDH1 mutant tumor HGG5, a PDGFRA Y288C
missense mutation was acquired at recurrence. Similar to
previous reports, PI3K mutations were temporally hetero-
geneous [30], where 1/5 tumor (20%) exhibited a shared
mutation in a PI3K regulatory subunit PIK3R3 (HGG12).
Additionally, subclonal mutations in the PI3K catalytic
subunit were private to the primary tumor only in one
case (HGG3) and were acquired at recurrence in two
cases (HGG4, HGG13). Prior to our study, testing of a
different tumor sampling from HGG3 was performed
using a clinical genomic panel. This analysis identified a
low frequency PIK3CA H1047R hotspot mutation that
was not found in either the WES analysis of a different
primary tumor tissue block or targeted high-depth se-
quencing of multiple samplings of the recurrent tumor
(Additional file 3: Figure S1). In the hypermutated
HGG11 tumor pair, the primary tumor harbored a mis-
sense MTOR mutation, while at recurrence the tumor
acquired a PI3K catalytic subunit PIK3CD passenger mu-
tation (Fig. 1b).

Mutational burden, allelic imbalance and copy number
variations
Analysis of the mutational burden showed no statisti-
cally significant difference in the number of mutations
between primary and recurrent tumors across all
groups (paired t-test, p = 0.24) (Fig. 2a, Additional file 4:
Table S3, Additional file 5: Figure S2). It is worth not-
ing that within the limitations of sample size, we ob-
served a trend towards an increase in the mutational
burden at recurrence that did not reach statistical sig-
nificance despite the use of TMZ as adjuvant therapy in
10/16 (63%) pHGGs. In HGG11, we observed a marked
increase in the number of somatic mutations in the pri-
mary (n = 151) and at recurrence (n = 670) compared to
all other tumor samples, indicating a hypermutated
phenotype. We identified and validated a germline MLH1
splice missense mutation, and also performed immunohis-
tochemistry on MMR proteins (MLH1, MSH6, MSH2,
PMS2) on the primary HGG11 tumor (Additional file 6:
Figure S3). Although IHC results did not show loss of any
MMR proteins, we hypothesize that the splice mutation
that translated extra inframe amino acids (data not
shown), resulted in a dysfunctional yet nuclear-localized
MLH1 protein. This may explain MMR IHC nuclear posi-
tivity in the setting of mismatch repair deficiency resulting
in hypermutation. Interestingly, the mutation burden in
that case dramatically increased at recurrence, which may
be attributable to the combined effects of radiation and
TMZ treatment [45].
To further assess chromosomal alterations in all of the

primary-recurrent tumor pairs, we used WES data to
analyze the state of allelic imbalance using ExomeAI
[29]. Copy Number Variations (CNVs) were analyzed in
eight tumor pairs with available matched normal. We
calculated the numbers of allelic imbalance regions as

Fig. 2 Number of mutations (a) or regions of allelic imbalance (b) calculated by ExomeAI [29] specific to the primary tumor (blue), recurrence
(red), or shared (purple) in the pHGG tumor pairs analyzed in this study. See also Additional files 2 and 8: Tables S2 and S4
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shared or specific to the primary or recurrent tumor
(Fig. 2b, Additional file 4: Table S3), regardless of the
size of each region. Similar to mutation counts, there
was no significant difference in the number of regions of
allelic imbalance between the primary and recurrent tu-
mors across all subgroups (paired t-test, p = 0.071). One
tumor pair, HGG9, was particularly remarkable as there
was an increased number of allelic imbalance regions in
the recurrent tumor compared to the primary. Assess-
ment of copy number variations confirmed genome-
wide loss of heterozygosity events at recurrence result-
ing in a copy number neutral genome (Additional file 7:
Figure S4), compatible with radiotherapy-induced chromo-
somal alterations [22, 54]. Both NF1 germline cases also
showed an increase in the number of regions of allelic
imbalance. In both NF1 germline recurrent tumors, CNV
analysis showed loss of heterozygosity in the whole q arm
of chromosome 17, containing the NF1 gene locus
(Additional files 8 and 9: Tables S4 and S5). Our limited
CNV analysis did not show any focal deletions or amplifica-
tions in genes of interest (PDGFRA, MYC, CDKN2A/B,
CDK6) that have been previously implicated in pHGG [37].
In 5 of 6 tumors with TP53 mutations, large copy number

alterations in the p arm of chromosome 7 were present that
included the TP53 gene loci (Additional file 8: Table S4).

DNA methylation subgroup is maintained at recurrence in
pHGG
We performed unsupervised clustering of DNA methyla-
tion in tumor pairs integrated into a larger pHGG in-
house data set (Fig. 3). As expected, tumors in the H3/
IDH1 mutant group clustered within their respective
methylation cluster, while H3/IDH1 wildtype and NF1
germline groups clustered with H3/IDH1 wildtype
HGGs. In all cases, the recurrent tumors clustered
within the same methylation subgroup, similar to find-
ings in other brain tumors including DIPG and medullo-
blastoma [30, 31].

Discussion
In this work, we performed whole exome sequencing on
16 primary and recurrent pHGG pairs including two
pHGGs from patients with germline NF1 mutations, and
provide insight into the temporal genomic evolution of
these tumors. A direct comparison of the mutational
landscape of paired samples reveals that oncogenic

Fig. 3 Methylation heatmap of pHGG tumors analyzed in this study. Primary and/or recurrent tumors from 16 pHGG samples from this study
were analyzed with a large in-house dataset using 450 K methylation probes for clustering. In specific cases, tumor DNA from the primary only
(HGG1, HGG3, HGG11) and recurrence only (HGG12) were available. Red bars within the colored group on the left represent the clustering of
pHGG tumor samples within the known pHGG molecular group. Methylation groups are represented by colors: orange = H3K27M, green = H3G34R/V,
blue = IDH1 mutant, purple = histone wildtype (WT). HGG case IDs for each tumor are indicated on the right. The label Prim/Rec indicates the clustering
of both the primary and recurrence together. When the clustering location is different for the primary and recurrence tumor, the label is indicated as
Prim (Primary) or Rec (Recurrence)

Salloum et al. Acta Neuropathologica Communications  (2017) 5:78 Page 8 of 12



driver mutations are typically conserved. The identifica-
tion of these mutations in both the primary and recur-
rent tumors suggests that these mutations are early
initiating events in tumorigenesis, are stable, and un-
affected by treatment. This is in contrast to adult GBM
where cancer driver mutations can be subclonal in the
primary and recurrent tumors [19].
In our dataset, 10 of 16 patients were treated with

TMZ, and despite a trend towards an increase in the
number of mutations at recurrence, there was no statis-
tically significant increase in mutational burden. This is
in contrast to adult GBM, where an increase in muta-
tional burden is observed with TMZ treatment [19]. Al-
though our sample size is small, our findings may reflect
a different biological process in response to TMZ in
children compared to adults and warrants further evalu-
ation. We observed one H3/IDH1 wildtype primary
tumor (HGG11) with an increased number of somatic
mutations compared to other primary tumors, and was
identified to harbor a germline MLH1 splice missense
mutation. Immunohistochemical analysis did not show
loss of the MMR proteins, however, we hypothesize that
the missense splice mutation likely resulted in the trans-
lation of a dysfunctional MLH1 protein product to cause
mismatch repair deficiency (MMRD) and hypermuta-
tion. After treatment with radiation and TMZ, this
tumor acquired an increased number of somatic muta-
tions compared to the primary tumor, suggesting that
treatment further exacerbated the hypermutated pheno-
type. Several controversial and contradictory studies
have variably reported the presence of microsatellite in-
stability which results in mismatch repair deficiency in
pediatric HGG and adults [10, 44], highlighting the need
for further studies. Future genetic testing for MMRD in
pediatric HGG patients could steer treatment towards
immunotherapy, as immune checkpoint blockade has
shown clinical benefits in MMRD colorectal cancers as
well as children with high-grade glioma [4, 23].
Similar to findings in adult IDH1-mutant gliomas [19],

we identify heterogeneous ATRX alterations among
IDH1 mutant pHGG tumor pairs. While IDH1 mutant
tumors are more common in adult GBM and occur in
up to 98% of secondary GBMs, they make up less than
10% of all pediatric HGGs [2, 52]. In contrast to IDH1-
mutant gliomas, ATRX mutations associated with
H3G34V, ZMYND11, EP300, or BRAF V600E were
stable across the disease course in our study. Addition-
ally, the BRAF V600E mutation was present in both pri-
mary and relapse samples in two children in our study
which is in contrast to adult studies where it was identi-
fied either at diagnosis or at recurrence [19].
H3/IDH1 wildtype pHGGs have previously been

shown to be a diverse group of tumors with mutations
in many cancer pathways [35, 37, 51], but have not been

directly linked to any particular epigenetic driver as is
the case with H3 and IDH1 mutant tumors. Our data re-
flect the heterogeneity of tumors in the H3/IDH1 wild-
type group while also identifying two novel pHGG
epigenetic cancer drivers (ZMYND11 and EP300) in this
group. ZMYND11 has recently been described as an epi-
genetic regulator that specifically interacts with
H3K36me3 to regulate transcription. Wen et al. have
reported that H3 G34R/V mutations impair binding of
ZMYND11 to an H3.3K36me3 peptide, suggesting that
H3.3 G34R/V and ZMYND11 mutations alter H3K36me3
levels in similar fashions [49]. To the best of our know-
ledge, ZMYND11 mutations have not been previously
described in pHGGs. The tumor harboring this mutation
(HGG9) was located in the right parietal lobe and carried
partner mutations in ATRX and TP53, further supporting
its similarity to hemispheric H3.3 G34R/V mutated tu-
mors. In addition, inactivating mutations identified in the
HAT gene EP300 have been implicated in a wide array of
cancer types including diffuse large B cell lymphoma [34],
head and neck, esophageal, colorectal, medulloblastoma
and non-small cell lung carcinoma [7, 15]. We also report
a specific EP300 hotspot D1399N mutation (HGG8)
which has not been previously identified in HGGs. Struc-
tural analysis of EP300 has shown that the D1399 residue
has effects on the conformation of the HAT domain,
specifically the L1 loop [25]. This is also an inactivating
mutation which abolishes autoacetylation required for
HAT activity, thus affecting post-translational modifica-
tion of K27 on H3 variants [8]. Interestingly, EP300
D1399Y mutations alter its interaction with transcription
factor AP-2alpha indirectly leading to the transactivation
of Myc [16]. Moreover, the tumor harboring the EP300
mutation was located in the thalamus which is a neuro-
anatomical structure in the brain midline where the ma-
jority of HGGs harbor H3K27M mutations. This novel
epigenetic mutation may reproduce some of the effects of
K27M in a wildtype H3K27 tumor. In our study, the
tumor with the EP300 D1399N mutation had increased
Myc expression (data not shown), suggesting that this
particular EP300 mutation may also play a role in Myc-
related oncogenesis similar to K27M mutagenesis. Al-
though interesting, these findings need further testing and
functional validation in relevant disease models. The two
HGGs from patients with germline NF1 did not show a
high mutational burden at diagnosis or at recurrence, and
no clear associated driver mutation. Interestingly, a ten-
dency towards increased copy number alteration was ob-
served in both pairs at recurrence. These findings also
need further validation on a larger sample set.
Somatic mutations in RTKs are common in adult

GBM [5, 6] and are generally found at low frequencies
in pHGGs [41]. Similar to our previous report [41], the
H3/IDH1 wildtype group in this study seemed enriched
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with RTK mutations (5/7, 71%). One striking finding in
this molecular group was the discovery of EGFR mis-
sense mutations in the primary occurrence of HGG10
(T790M and E709A), which were lost in the recurrence.
A shared EGFR R222C missense mutation was present
in both the primary and recurrent tumors, indicating
that alteration of the RTK pathway is nonetheless con-
served in the recurrent tumor. The EGFR T790M muta-
tion has been implicated in acquired resistance to most
EGFR tyrosine kinase inhibitors [21, 27]. This may, in
part, explain tumor progression in this patient despite
treatment with lapatinib (Novartis, East Hanover, NJ),
and highlights the importance of identifying resistance-
promoting mutations in the clinical setting. We also
identified three tumors with targetable RTK lesions
(PDGFRA, ERBB2, ERBB4) that were exclusive to the re-
current tumor (HGG5, HG8, HGG11), indicating that
genomic data from tumor tissue at recurrence may pro-
vide better guidance for therapeutic choices. Conversely,
one case harbored a low level subclonal PIK3CA muta-
tion that was discovered by a clinical genomics panel in
the primary tumor, but was not identified by WES in dif-
ferent primary tumor blocks from the same case, nor in
multiple samplings of the recurrent tumor. Excluding
the subclonal nature of this mutation, and confirming its
maintenance at recurrence are important therapeutic
considerations before embarking on targeted treatment,
especially with single agents such as rapamycin used in
this patient.

Conclusions
In conclusion, this study further highlights the molecular
distinction between pediatric and adult HGGs, especially
in therapy-induced tumor evolution. We show that genes
with driver mutations (H3, TP53, PPMID, ZMYND11,
EP300) as well as some targetable mutations (e.g. IDH1,
BRAF V600E) are conserved. Importantly, we demon-
strate that some actionable mutations are unstable (PI3K,
EGFR), indicating that re-biopsy is warranted in order to
optimize personalized therapy. The presence of subclonal
targetable alterations concurrently with driver mutations
supports the use of combination therapy approaches to
address disease biology and evolution with the aim of im-
proving patient outcomes.
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