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Abstract

Basal forebrain cholinergic neurons (BFCNSs) are believed to be one of the first cell types to be affected in all forms
of AD, and their dysfunction is clinically correlated with impaired short-term memory formation and retrieval. We
present an optimized in vitro protocol to generate human BFCNs from iPSCs, using cell lines from presenilin 2
(PSEN2) mutation carriers and controls. As expected, cell lines harboring the PSEN2N™T mutation displayed an

increase in the AB42/40 in iPSC-derived BFCNs. Neurons derived from PSEN2""#"" lines generated fewer maximum
number of spikes in response to a square depolarizing current injection. The height of the first action potential at
rheobase current injection was also significantly decreased in PSEN2""*" BFCNs. CRISPR/Cas9 correction of the

PSEN2 point mutation abolished the electrophysiological deficit, restoring both the maximal number of spikes and

spike height to the levels recorded in controls. Increased AB42/40 was also normalized following CRISPR/Cas-
mediated correction of the PSEN2""*"" mutation. The genome editing data confirms the robust consistency of
mutation-related changes in AB42/40 ratio while also showing a PSEN2-mutation-related alteration in

electrophysiology.
Keywords: Alzheimer's disease, iPSC, BFCN, CRISPR/Cas9, Electrophysiology, Basal forebrain, Cholinergic, Presenilin,
PSEN2

Introduction tauopathy, neuroinflammation, and neurodegeneration

The “amyloid hypothesis” is one of the most popular for-
mulations for the pathogenesis of Alzheimer’s disease
(AD). Recent examples of clinicopathological and/or clini-
coradiological dissociation have led to the consideration of
alternative models in order to explain, respectively, why
neuropathological AD is not always associated with de-
mentia [24], and why about one-third of patients with
clinical AD have negative amyloid brain scans [40]. It has
been proposed that clinical AD can be caused by one of
several “feed-forward” scenarios linking amyloidosis,
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[22]. Mutations in the gene encoding presenilin 2 (PSEN2)
are associated with autosomal dominant early onset famil-
ial Alzheimer’s disease (EOFAD). The linkage of a locus
on human chromosome 1q31-42 linked to EOFAD led to
the identification of the PSEN2™**! point mutation in the
Volga German kindreds in 1995 [43]. This mutation
causes elevation in the AP42-43/40 ratio, thereby promot-
ing assembly of AP oligomers and fibrils [83].

In considering the progression of AD, human basal fore-
brain cholinergic neurons (BFCNs) are one of the first cell
types whose dysfunction underlies the early loss of short-
term memory recall in all forms of AD. The “cholinergic hy-
pothesis of AD” was formulated in the mid-1970s [6, 20, 61],
and the discoveries of reduced acetylcholine release from
neurons of the nucleus basalis of Meynert confirmed the
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presence of a presynaptic cholinergic deficit in the
basal forebrain of AD patients [1, 71]. Based on those
observations, acetylcholinesterase inhibitors were de-
veloped and continue as the most widely used symp-
tomatic treatments for AD [21, 28, 33, 82].
Eventually, post-mortem brain biochemical and volu-
metric studies at different stages of the disease identi-
fied several other regions of the brain that were also
affected early in the course of AD [63]. These studies
have traditionally focused on the hippocampus and
cortex, but more recently, attention has begun shift-
ing back to the basal forebrain and adding other
areas, such as the striatum [27, 62]. The latest ana-
lyses suggest that cholinergic basal forebrain volume
measurement may be a better predictor of the transi-
tion from MCI to AD than the previous standard,
hippocampal volume [10].

We previously reported the generation of iPSC-derived
neurons from banked fibroblasts from subjects harbor-
ing PSENI***** and PSENIM'"" mutations [77]. In
characterizing the gene expression profiles from these
iPSC-derived neurons, we observed an unexpected asso-
ciation of elevated expression of the inflammasome gene
NLRP2 in undifferentiated PSENI mutant iPSCs and
their and neuronally differentiated progeny [77]. This led
us to examine NLRP2 expression in our PSEN2 mutant
lines and employ CRISPR/Cas9 [15] to investigate if acti-
vation of the inflammasome was tightly linked to the
pathogenic mutation in PSEN2. While we did not find
altered expression of NLRP2 in gene-corrected PSEN2
lines, we observed significant mutation-related, editing-
reversible differences in excitability of BFCNs.

Materials and methods

Generation and maintenance of iPSC lines

7889(s)B, 050643 (Control), 948 (AD1), 949(fControl),
and 950 (AD2) iPSC lines were obtained via the NYSCF
Repository following the guidelines from [60]. The deriv-
ation and characterization of Nkx2.1-GFP ESC line was
previously published [30]. ES and iPS cell lines were ex-
panded and maintained in serum-free mTeSR1 media
(Stem Cell Technologies). Cells were lifted using
StremPro Accutase (ThermoFisher) and media was
supplemented with 10 pM ROCK inhibitor (Y27632,
Stemgent) during cell passaging.

For all studies in this paper, cell lines underwent at least 3
independent differentiations from the iPSC stage to the ma-
ture neuron stage. Data were routinely compared across
these independently derived genotype-identical neurons (or
in some cases neuronal precursors), and if comparable re-
sults were obtained across independently genotype-
identical derived cells, they were considered to be qualified
representatives of their genotype and so were passed along
for genotype-specific experimentation.
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AB42 oligomer preparation

AP42 oligomers were prepared as previously reported
[23, 78]. Briefly, we dissolved 1 mg of AP42 (American
Peptide Company) in 1,1,1,3,3,3-hexafluoro-2-propanol
(HFIP) (Sigma). This preparation was aliquoted and
dried using a SpeedVac centrifuge. The pellet was then
resuspended in DMSO to obtain a 5 mM solution which
was sonicated in a water bath for 10 min. From here ali-
quots were stored at -20C and used within 2 weeks by
diluting with 100 pl of PBS and leaving for 12 h at 4 °C
in order for oligomerization to proceed. This final solu-
tion was diluted 1:16 in cell media for studies, allowing
cells to be exposed to 5 uM of AP42 oligomers. Control
wells were diluted with 1:16 PBS. Cells were exposed to
oligomers or PBS without media change for a period of
3 days.

Cell death assays

Cells were assayed in a 96-well plate format. Oligomer or
vehicle solutions were added to media and allowed to incu-
bate for a period of 3 days. Media was then collected and
assayed using a lactate dehydrogenase toxicity assay
(Thermo Fisher Scientific). 50 pl of media and an equal
amount of reaction mix buffer were incubated for a period
of 30 min. An additional set of wells per experiment were
treated with 2% Triton X-100 for a 5-min period in order
to lyse all cells, and media from these wells was also col-
lected and incubated as described. After incubation absorb-
ance was recorded at 490 nm and 680 nm, signal and
background absorbance, respectively. Signal values were
subtracted from background, and values were adapted to
the total LDH content as determined by Triton X-100
treated wells. Propidium iodide (Thermo Fisher Scientific)
was added to cell media for a 1 uM final concentration and
allowed to incubate for 5 min. Cells were then washed
twice with media and imaged. Images were captured using
CELIGO image cytometer and accompanying software
(Nexcelom Bioscience). Each biological variable was
assessed in technical triplicates within each designated
“Experiment”, and each designated “Experiment” was per-
formed in at least three complete “start to finish” iterations.

Differentiation of basal forebrain cholinergic neurons
from iPS and ES cells

Human ES or iPSC were plated as single cells after chem-
ical dissociation using Accutase (Sigma-Aldrich) into Cul-
trex (Trevigen) coated plates, at a density of 4—8 x 10° cells
per well in 6-well plates or petri dishes and adapting cell
numbers. Cells were initially maintained in mTeSR1 media
(Stem Cell Technologies) until reaching full confluency. On
“day 0” of differentiation, media was replaced by Custom
mTeSR1 media (Stem Cell Technologies) lacking factors
promoting pluripotency i.e., bFGF, TGF-Beta, Li-Cl, GABA
and pipecolic acid. The addition of dual SMAD inhibitors
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(SB431542 10 uM plus LDN193189 250 nM, Selleckchem)
at day O drives cells towards neuroectoderm specification.
At day 2 of differentiation, media was replaced by Custom
mTeSR1 containing dual SMAD inhibitors plus two ventra-
lizing agents: SAG at 500 nM (R&D) and Purmorphamine
at 2 pM (Stemgent). Cells were fed every 2 days with this
media until day 9, when media was progressively switched
to Brainphys media (Stemcell Technologies) supplemented
with B27 (Life Technologies) [3]. Neural progenitors were
harvested at day 11 using Accutase, p75" (CD271) NPCs
were purified by FACS and plated at a density of 80,000
cells per well into non-adherent 96 well V-bottom plates in
Brainphys + B27 supplemented with 10 uM ROCK
inhibitor (Y27632, Stemgent), Nerve Growth Factor, NGF,
(Alamone labs, 50 ng/mL) and Brain Derived Neurotrophic
Factor, BDNF, (R&D, 50 ng/mL). Cells were allowed to ag-
gregate and form Neuronal Embryoid Bodies (NEBs) and
were fed every other day until day 19. At day 19 NEBs were
dissociated using Accutase (Sigma-Aldrich) and were plated
as monolayer cultures on plates coated with branched poly-
ethynilimine (.1%, Sigma-Aldrich) and laminin (10 mg/mL,
Life Technology) in Brainphys media + B27 supplement
with BDNF and NGF. The media was changed every 2 days
until analysis. As an alternative, 3D NEBs were dissected
manually into 3—4 pieces for expansion and further grown,
or were cryopreserved. Initial versions of the protocol used
Neurobasal as a base media instead of BrainPhys.

Genomic DNA isolation and sequencing

Genomic DNA was isolated from PSEN2 mutant or control
iPSC lines using High Pure PCR Template Preparation Kit
(Roche) following manufacturer instructions. Genomic
samples were treated with RNAse (QIAGEN) prior to amp-
lification. A fragment from exon 5 of PSEN2 containing
PSEN2M"*!" mutation was amplified using the following
primers: Forward 5'-CATCAGCCCTTTGCCTTCT-3,
Reverse: 5'-CTCACCTTGTAGCAGCGGTA-3’, generat-
ing a 173 bp fragment, regardless of the genotype. For
detection of ApoE allelic variants, a fragment of 244 bp was
amplified prior to sequencing using the primers: For-
ward: 5'-ACAGAATTCGCCCCGGCCTGGTACAC-3/,
Reverse: 5'-TAAGCTTGGCACGGCTGTCCAAGGA-
3. Both PCR were performed with the following set-
tings: 10 min 94C, 40 cycles (30 s 94C, 20s 62C, 10s
72C) 7 min 72C. PCR products were run in a 2%
agarose gel to check the size of the amplified frag-
ment. After amplification, samples were cleaned using
EXOSAP-it (Thermo Fisher Scientific) and then se-
quenced using the following primers: PSEN2 (For-
ward: 5'-TCAGCATCTACACGCCATTC-3’, Reverse:
5'-AGCACCACCAAGAAGATGGT-3’), from [53];
ApoE (Forward: 5'- ATTCGCCCCGGCCTGGTACAC
TGCCA-3’, Reverse: 5'- CTGTCCAAGGAGCTGC
AGGCGGCGCAG-3’), from [36].
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Bold highlight = base of the ssODN that corrects
the point mutation

CRISPR/Cas9 gene correction

iAD1 Control and iAD2 Control lines were originated from
948 (AD1) and 950 (AD2) iPSC lines by CRISPR/Cas9-me-
diated correction of the PSEN2V'*""WT heterozygous point
mutation to PSEN2""W7T, gIN141l single guide RNA
(sgRNA) was cloned into pSpCas9(BB)-2A—GFP (PX458)
vector, generating pSpCas9-gIN141I-GFP vector to direct
gene editing to the sequence in exon 5 of PSEN2 where the
Volga mutation is located. Single stranded oligonucleotides
(ssODN) are efficient templates for the CRISPR/Cas9 cor-
rection [13, 66]. ssODN#A-N1411 (sequence detail below)
was used as donor sequence for gene correction. We de-
signed asymmetric ssODN sequences with a long homology
arm of 91 bp, and a short homology arm of 36 bp since
asymmetrical ssODNs showed a higher efficiency of
homology-directed repair using CRISPR/Cas9 [68].

Sequence Name Bases

g1N141l guide 25

Sequence
/5Phos/CACCGCATCATGATCAGCGTCATCG

RNA F

g1N141l guide 25 /5Phos/AAACCGATGACGCTGATCATGATGC
RNA R

Donor ssODN#A 127 GAGAGAAGCGTGGCTGGAGGGCAGGGC
N141 CAGGGCCTCACCTTGTAGCAGCGGTACT

TGTAGAGCACCACCAAGAAGATGGTCA
TAACCACGATGACGCTGATCATGATGA
GGGTGTTCAGCACGGAGT

The donor sequence and pSpCas9-g1N141I-GFP vector
were transduced in the AD1 and AD2 iPSC lines, plated
at 50-70% confluency, using Amaxa Human Stem Cell
Nucleofector kit (Lonza VPH-5002) and re-plated for re-
covery. GFP™ cells were sorted in a BD FACSAria IIu Cell
Sorter and were seeded at 30-50 cells per well in 96-well
format to detect and pick single clones. Positive clones
were expanded, qDNA was extracted and analyzed for
successful HDR was determined using a custom designed
TagMan genotyping assay with a probe specific for the
SNP (dbSNP ID: rs63750215) located in Chr1:227,073,304
A > T. Selected clones were analyzed by Sanger sequen-
cing to confirm correction of Chrl:227,073,304 location
and discard possible insertions or deletions in the sur-
rounding areas.

Fluorescence-activated cell sorting (FACS)

Neural progenitors at day 12 of differentiation were
dissociated with Accutase (Sigma-Aldrich) for 5 min at
37C and inactivated in Neurobasal media. Cells were
spun at 1000 rpm for 4 min and the pellets were
resuspended in FACS buffer (DPBS, 0.5% BSA Fraction
V-Solution, 100 U/mL Penicillin-Streptomycin, 0.5%
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EDTA and 20 mM Glucose) with PE Mouse anti-human
CD271 antibody (clone C40-1457, BD) at 1:100, also
known as p75 or NGFR, and incubated for 20 min at
room temperature (RT) in the dark. After the incubation
time, cells were washed with FACS buffer and the pellet
was resuspended in 2 mL of FACS buffer with 10 uM
ROCK nbhibitor (Y27632, Stemgent). p75 positive cells
were purified in a BD FACSAria ITu Cell Sorter and data
was analyzed using FlowJo software.

Real-time quantitative polymerase chain reaction (RT-
qPCR)

Human iPSC from PSEN2 mutants or control patients
were grown in a monolayer and lysed directly in the cell
culture wells with RLT buffer. Total RNA purification was
performed with the RNeasy Micro kit (Qiagen), and was
carried out according to the manufacturer’s instructions.
c¢DNA was synthesized using SuperScript® III Reverse
Transcriptase (RT) (Invitrogen, Carlsbad, CA). Semi-
quantative real-time PCR was performed on StepOnePlus™
Real-Time PCR System (Applied Biosystems, Foster City,
CA) using the primers listed in the table below. We nor-
malized expression levels to GAPDH. The PCR cycling pa-
rameters were: 50 °C for 2 min, 95 °C for 10 min, followed
by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Each
biological variable was assessed in technical triplicates
within each designated “Experiment”, and each designated
“Experiment” was performed in at least three complete
“start to finish” iterations. Expression levels were normal-
ized to the control line, and results were expressed as
AVG + SEM.

Gene Forward Primer 5’ - 3 Reverse Primer 5" - 3'

BDNF  TAACGGCGGCAGACAAAAAGA  GAAGTATTGCTTCAGTTGGCCT
BF1 AGAAGAACGGCAAGTACGAGA  TGTTGAGGGACAGATTGTGGC
Nkx2.1 TAACGGCGGCAGACAAAAAGA  GAAGTATTGCTTCAGTTGGCCT
NLRP2,  From [77] From [77]

ASB9

NLRP3  ACGAATCTCCGACCACCACT CCATGGCCACAACAACTGAC
Tuj1 GAAGTGTCCCAGGACATGATAA  CTCTTGAGTAGCTGGGATTGAG
A assays

Cells were conditioned for 3 days after day 8 of dual
SMAD inhibition to measure secretion of A by neural
progenitors in vitro. AP levels were quantified using
human/rat f amyloid 40 ELISA Kit and B amyloid 42
ELISA Kit high sensitive (Wako). Each biological
variable was assessed using technical triplicates within
each designated “Experiment”, and each designated
“Experiment” was performed in at least three complete
“start to finish” iterations.
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Immunostaining/ICC

Cells were fixed with PFA 4% directly on the wells of 12,
48 or 96 well plates for 20 min, washed 3 times with
DPBS 1x (ThermoFisher). For the staining, cells were
incubated in blocking solution (DPBS 1x with 0.1%
Triton X-100 plus 5% Donkey serum) for two hours at
room temperature. The corresponding primary antibodies
were diluted at suitable concentration in blocking solution,
and incubated overnight at 4C. The primary antibodies
used are represented in (Additional file 1: Table S1). Cells
were washed three times with DPBST (DPBS 1x + 0.1%
Triton X-100) and suitable secondary antibody was added
in blocking solution for 1 h at room temperature. Then
cells were washed three times with DPBST and incubated
with DRAQ5 or Hoescht 33342 (1 pg/mL, diluted in
DPBS 1x) for 10 min at room temperature for nuclear
counterstain. Cells were visualized using an inverted fluor-
escence microscope (Olympus IX71 microscope) or a
confocal microscope (Zeiss LSM5 Pascal microscope)
under 10x, 20x or 63x magnification. See Additional file 1:
Table S1 for complete details of antibodies used in
this study.

Western blots

Human iPSC from PSEN2 mutants or control patients
were grown in a monolayer and lysed directly in the cell
culture wells with RIPA buffer (Thermo Scientific) with
protease and phosphatase inhibitors. The protein
concentration was measured using the BCA protein
assay kit (Thermo Scientific). After protein estimation,
20 pg of cell lysate were separated by SDS-PAGE
electrophoresis on a 4-12% Bis-Tris gel (Bolt® protein
gels) and transferred onto nitrocellulose membranes by
electrophoresis blotting. The membranes were blocked
with blocking buffer 1X TBST (tris-buffered saline
+0.1% Tween) plus 5% nonfat dry milk for 1 h in
agitation at room temperature and washed three times
with TBST. After washing, membranes were incubated
at 4 °C overnight in agitation, with the primary anti-
bodies against NLRP2 (1:1000), PSEN2 (1:200) or p-actin
(1:1000). After rinsing, the membranes were incubated
with horseradish peroxidase (HRP)-conjugated suitable
secondary antibodies for 1 h at room temperature.
Finally, protein bands were visualized with a chemilu-
minescent reagent according to the manufacturer’s in-
structions. B-actin was used as loading control.

Electrophysiology

Whole cell patch-clamp recordings were obtained from
single neurons between differentiation days 38 and 55.
Cells were seeded at low density onto plastic coverslips
which were placed in a perfusion based enclosed record-
ing chamber. Neurons were localized using differential
interference contrast optics under an Olympus BX61W1I
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microscope fitted with a Hamamatsu Orca R*> CCD cam-
era. Recordings were carried out at room temperature
using MultiClamp 700B amplifier (Molecular Devices,
Sunnyvale, CA, USA). Signals were sampled at 10 kHz
and filtered at 6 kHz using a Digidata 1440A analog to
digital converter (Molecular Devices). Amplifier control
and data acquisition was done using pClamp 10.0 soft-
ware (Molecular Devices).

During recordings neurons were perfused with
oxygenated BrainPhys media (StemCell Technologies
Inc). Medium resistance recording pipettes (4-6 MQ)
were filled with an intracellular solution consisting of (in
mM) 130 K-gluconate, 10 KCI, 2 Mg-ATP, 0.2 Na-GTP,
0.6 CaCl,, 2 MgCl,, 0.6 EGTA, and 5 HEPES titrated to
pH 71 and osmolarity of 310 mOsm. In some
experiments, the intracellular solution also contained
4 mg/mL biocytin (Sigma-Aldrich) for post-hoc identifica-
tion of individual neurons, which were visualized with
streptavidin-conjugated Alexa 488 (Life Sciences) as de-
scribed elsewhere [42]. After initial break-in, access resist-
ance (Rs) was constantly monitored and recordings
were discarded if Rs exceeded 20 MQ or changed
more than 30%. The voltage protocol for compound
Na + and K+ currents characterization was as follows:
cells were held at -80 mV potential followed by
500 ms steps from -100 mV to 30 mV with 10 mV
increment at a frequency of 0.1 Hz. Following transi-
tion to current-clamp mode, resting membrane poten-
tial was recorded and cells were hyperpolarized by a
negative DC current injection to -70 mV to ensure
consistency of excitability measurements. Action po-
tentials were evoked with square 1 s current steps
from -10 pA to 40 pA with 1pA steps.

Electrophysiological recordings were analyzed using
ClampFit software (Molecular Devices, Sunnyvale,
CA, USA) and statistical significance of the results
was measured using ANOVA test with Tukey’s post-
hoc comparison of means. Salts and other reagents
were purchased from Sigma-Aldrich (St. Louis, MO,
USA).

Statistical analysis

qPCR gene expression experiments and Ap42/40
ELISAs were analyzed for statistical significance using
Student ¢-test. LDH Release assays were analyzed by
2-Way ANOVA Bonferroni post hoc tests. ANOVA
test with Tukey’s post hoc comparisons were used for
analysis of electrophysiology results. The experiments
needed to study each of the 94 neurons recorded for
electrophysiology analyses required days to weeks. On
each experimental day, representatives from each
genotype were included, with at least three samples
from each genotype studied on each day. * p < .05; **,
p < .0L; ***, p < .001.
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Results

Optimization of protocol for BFCN differentiation

The scheme of BFCN differentiation is described in Fig. 1a.
iPSCs from control subjects or AD patients were plated in
feeder-free conditions and allowed to reach 100% con-
fluency prior to differentiation using mTeSR1 basal media.
Both branches of TGFbeta signaling were inhibited (dual
SMAD inhibition) to induce neuroectodermal fate on “day
0” [12]. Differentiations (day 2—10) were performed using a
modified mTeSR1 formulation, lacking factors that support
pluripotency (bFGF, TGF-Beta, Li-Cl, GABA and pipecolic
acid). To specify these cells to basal forebrain cholinergic
neurons, ventralization for medial ganglionic eminences
(MGE) induction is required [19, 85, 91]. As such cells were
treated with the Sonic Hedgehog (Shh) analog (SAG) at
500 nM and Purmorphamine at 2 uM from days 2 to 8.
SAG is a suitable substitute to activate Shh signaling, as
demonstrated during differentiation of ChAT" motor neu-
rons and glutamatergic interneurons [91], with lower cost
than recombinant Shh and some advantages in neuronal
survival properties over Shh itself [7, 35]. We used the
Nkx2.1-GFP embryonic stem cell (ESC) reporter line as a
tool to adjust the combination, dosage and timing of ven-
tralizing agents more beneficial for specification of BFCNs
from induced Nkx2.1 basal forebrain precursors. However,
given the potential of Nkx2.1 intermediate neural precur-
sors to generate multiple neuronal subtypes, such as TH+
and GABA+ hypothalamic neurons, we analyzed the ex-
pression of the downstream cholinergic specification factor
Lhx8 over expression of the GABAergic interneuron spe-
cific transcription factor Lhx6 [26] under different specifica-
tion conditions (Fig. 1b). These data agree with those from
[50] supporting the existence of a synergistic effect of SAG
and purmorphamine on Nkx2.1 induction although an ef-
fect that is less than the effect of Shh plus purmorphamine
(Fig. 1b). Nkx2.1-driven GFP levels were maintained after
Day 14, even after withdrawal of SAG + purmorphamine at
day 8 (Fig. 1b). We observed higher L/hx8 induction upon
SAG plus purmorphamine treatment than SAG alone, or
even Shh plus purmorphamine (Fig. 1b). Interestingly,
intermediate Nkx2.1 levels driven by SAG plus purmor-
phamine correlate with higher induction of Lhx8 and BF1
gene expression (Fig. 1b). Our choice of starting SHH
pathway-driven ventralization at day 2 was based on re-
ports demonstrating other MGE-derived populations be-
ing generated by earlier (e.g., hypothalamic neurons) or
later (e.g., GABAergic interneurons.) ventralization in the
context of dual smad inhibition protocols.

Following the patterning stage, we gradually switched
from Custom mTESR1 media to Brainphys media with B-
27 supplement to support neuronal survival and growth
[3]. At day 11, we observed neural rosettes positive
for Nestin and Sox2 markers (Fig. 1c); also, we ob-
served Tujl+ neurites as early as day 11 (Fig. 1c). To
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Fig. 1 Overview schematic of basal cholinergic differentiation protocol. a Cells are plated and allowed to reach 100% confluency (Day 0), before
the initiation of dual smad inhibition and the subsequent introduction of ventralizing agents (Day 2). At day 10 the monolayer is dissociated,
sorted for p75+ cells, and kept as NEBs until day 19. Then the culture is dissociated again into a monolayer (See Methods for more details). b Left
panel shows sustained EGFP expression driven by Nkx2.1 induction in NKx2.1-EGFP hESCs upon SHH plus purmorphamine or SAG plus
purmorphamine treatment, maintained at Day 14, after removal of treatment at Day 8. Right panel shows Nkx2.1, Lhx8 and BF1 relative gene
expression to GAPDH measured by gPCR, in NKx2.1-EGFP cell line in the presence of the indicated ventralizing agents, or unpatterned (UNP) at
Day 12. n = 3, in technical triplicates. ¢ Confocal microscope images of Nestin (green), Sox2(red) and DRAQ5 (blue) immunostaining in fControl
and control lines at Day 11, showing typical neural rosettes (left panel), or Tuj1 (green), Nkx2.1 (red)right and DRAQ5(blue) in the right panel.
Images representative of 3 independent experiments. d Fluorescence microscope images of immunostained NEB cryosections or dissociated NEBs
into a monolayer with the BFCN markers Nkx2.1/Tuj1/p75/BF 1/MAP2/ChAT. e Dissociated NEBs into a monolayer immunostained at Day 50 with
MAP2(green), ChAT(red) and Hoescht (blue). Fluorescence microscope images the effect of NGF addition to SAG plus purmorphamine treatment
alone. Images are representative of at least 3 independent experiments

obtain cholinergic populations of a higher purity, we the adult brain). Support for this strategy includes a
developed a P75" FACS strategy to isolate progenitors  previously published protocol using FACS to isolate
specific for cholinergic neurons due to the fact that high expressing P75+ cells from the embryonic mur-
BFCNs are the only CNS neuron type to express ro- ine septum [65]. This population correlated with best
bust levels of P75 under non-pathogenic conditions in  expression of cholinergic-related markers.
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Fig. 2 Basal cholinergic markers in PSEN2 "' neuroprecursors. a Table showing the cell lines used. Four iPS lines reprogrammed from fibroblasts
were used; two controls (949 and 050643, labelled as fControl and Control, respectively) that do not carry the PSEN2Y™" mutation nor the €4
allele; and two AD patients (948 and 950, labelled as AD1 and AD2, respectively) who carry the mutation and the €4 allele. Three of the four iPS
lines were family related (fControl, AD1, and AD2). b Representative Sanger sequencing chromatograms showing a fragment of exon 5 of PSEN2.
Red arrow marks site of the missense point mutation Chr1:227,073,304 A > T. ¢ Immunocytochemistry and RT-PCR for early neuronal and basal
forebrain markers. n = 3, 3 independent experiments with technical triplicates. d RTPCR fold changes for TUJT and BFI. n = 3, 3 independent
experiments with technical triplicates. e Representative histograms for P75 staining. n > 6. f AB40 and AB42 ELISA quantifications. n = 3, 3
independent experiments with technical triplicates. ***, p < .001. *, p < .05

At dayl1/12, we lifted the cells using chemical
dissociation (Accutase) and purified day 11-12 p75+
(CD271) neural progenitors and generated 3D neuronal
embryoid bodies (NEBs) by spinning down neural
progenitors in V-bottom 96 well plates. On day 19 NEBs
were dissociated and re-plated as a monolayer on plates

coated with branched polyethylenimine (Aldrich catalog
number 408727) and laminin. Monolayer cultures were
maintained with the addition of growth factors BDNE,
NGF and protease inhibitor DAPT until day 26, when
cultures no longer had DAPT added. Immunostaining of
both cryosections of NEB structures and fixed
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monolayers, resulting from chemical dissociation of
NEBs from several control iPSC and H9 hESC lines,
demonstrated expression of BFCN lineage markers Tujl,
MAP2, BF1, Nkx2.1 and p75, at final stages of the differ-
entiation protocol (Fig. 1d). NGF addition to neuronal
cultures showed an advantageous effect on maturation,
neurite outgrowth and presence of ChAT (Fig. 1e).

Generation and QC of PSEN2""*"" iPSC lines

PSEN2 N*I' mutant iPSC and control lines were
generated from fresh skin biopsies. Established fibroblast
lines were grown from skin punches donated by a kindred
of 2 carriers for presenilin 2 Volga familial AD mutation
(PSEN2 N*1y and one non-affected member. Additionally,
we included a non-family related control. Fibroblasts were
reprogrammed using modified RNA method to introduce
the Yamanaka factors (Oct4, KLF4, SOX2 and c-Myc), and
the iPSC lines obtained were subject to several quality con-
trol processes to ensure robust cell-renewal and pluripo-
tency, including alkaline-phosphatase (AP) enzymatic
activity, gene expression analysis and immunostaining for
pluripotency markers, as well as karyotyping for detection
of chromosome abnormalities, following the automated
iPSC reprogramming and QC methods developed by [60].
A summary of the genotypes, sex and age of the subjects
included in the study is shown in Fig. 2a. The two
PSEN2M*1{iPSC lines were also heterozygous for APOE &4
(€3/e4), whereas the control iPSC lines were homozygous
€3/e3. The characterization of the iPSC lines, expression of
pluripotency markers and quality control results are shown
in Additional file 2: Figure S1. Briefly, all iPSC clones se-
lected demonstrated pluripotency by embryoid body forma-
tion and differentiation into the three germ layers
(Additional file 2: Figure S1A). Finally, the lines were finger-
printed (Cell Line Genetics) to ensure they matched the
parental fibroblast lines (data not shown). All the parental
fibroblast lines and the iPSC lines were subject to Sanger
sequencing to determine PSEN2 and APOE genotypes. A
173 bp fragment from the exon 5 of PSEN2, surrounding
the area where the PSEN2V*' point mutation is located
(Chr1:227,073,304 A > T), was amplified by PCR and
sequenced using the primers published in [53]; similarly a
fragment of 244 bp from APOE locus that contains two
SNPs which determine the three allelic variants was
amplified by PCR from genomic DNA, and subsequently
sequenced to distinguish between €2/e3/e4 variants, using
the primers from [36]. Sample chromatograms showing
the presence of PSEN2V'* point mutation are shown in
Fig. 2b, and all genotypes are summarized in Fig. 2a.

Characterization of PSEN2""*" neural progenitors

To study the effect of the PSEN2 M* mutation in early
stages of the differentiation of cholinergic neurons, we
analyzed the neural progenitors (NPCs) obtained at DIV
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11-16 along the BFCN differentiation protocol. The
analysis of this intermediate immature population allows us
to detect possible early alterations in the generation of
BFCNs that would otherwise not be detected in terminally
differentiated cholinergic neurons. Such defects could
potentially play roles in mature neurons and contribute to
the pathophysiology of AD. We analyzed the expression of
early neuronal markers in PSEN2 ™*/ mutant and control
NPCs by gene expression and immunofluorescence
methods. Although, we found a lower RNA expression of
Tujl (BIII-Tubulin), a general neuronal marker, in mutant
NPCs at day 11 of differentiation, we did not detected
quantifiable differences by immunocytochemistry circa days
16-21, (Fig. 2c and d). NPC monolayer cultures at day 11
were also immunostained for typical NPC markers: Sox2,
and Pax6; with Pax6 levels dropping as expected along with
Nkx2.1 induction (not shown). We observed comparable
expression of Sox2 and Nestin in PSEN2Y'* cultures at
day 11 (Fig. 2c, top panel). At day 21, mutant NPCs
expressed comparable levels of Nkx2.1 (MGE marker), but
reduced levels of BF1 (forebrain marker) by qPCR;
however, BF1 protein expression did not seem affected by
immunostaining at this differentiation stage (Fig. 2c bottom
panel, and d). We did not observe differences in the surface
expression of NGFR (p75/CD271) in DIVI11-12
PSEN2M'™* cells, in terms of percentage of positive cells or
fluorescence mean peak value (Fig. 2e).

As previously published by [59, 73], the expression of
mutant PSEN2V'* causes an increase in the AP42/40
ratio in the brains of transgenic mice; additionally, this
enhanced AB42 production was observed in neural cell
lines upon induced overexpression of mutant PSEN2 /4
protein [83] and in iPSC derived from PSEN2 NIl
mutant patients [93]. Consistently, we observed a 2-fold
increase in the AP42/40 ratio, a 50% increase in the
amount of secreted AP40 and 2.5-fold increase in Ap42
species in the conditioned media from PSEN2V'* neural
progenitors at DIV 11 (***p < 0.001) (Fig. 2e). The levels
of secreted AP40 and 42 observed in our study and the
levels found in [93], using a different neuronal differenti-
ation method applied to FAD1/PS2 iPSC lines derived
from fibroblasts from the Coriell repository are very simi-
lar in both absolute number and in fold-increase.

Characterization of mature BFCNs from PSEN2""#"" iPSC
lines and controls

With the aim of determining the impact of PSEN.
mutation on the differentiation, gene expression, function,
and communication of BFCNs, we characterized cells at
later time points for appropriate expression markers; our
goal was to explore whether PSEN2V'* iPSC were able to
complete BFCN maturation process and if so, if any
abnormalities along later stages of BFCN differentiation
may account for the pathophysiology of EOFAD (Fig. 3). In
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Fig. 3 Neuronal and basal cholinergic markers by immunocytochemistry. a Immunostaining for TrkA on DIV 21. b Immunostainings for ChAT and
VAChT at different magnifications at DIV65; and Tuj1 and MAP2. Images are representative of at least 3 independent experiments

addition to p75, which preferentially binds pro-NGEF, we
analyzed the expression of TrkA, the primary mature NGF
receptor, was also expressed in PSEN2V*/ BECNs and
control (Fig. 3a). This suggested that PSEN2"'*/ BFCNs
are susceptible to receiving and benefiting from NGF pro-
survival and differentiation signals as expected and further
confirms their proper identity. We observed comparable
expression of additional cholinergic neuron specific
markers choline acetyltransferase (ChAT) and vesicular
acetylcholine transporter (VAChT) in PSEN2V'* BFCNs
and controls (Fig. 3b). Other general neuronal markers
such as Tujl, and the mature marker microtubule-
associated protein 2 (MAP2) showed no apparent differ-
ences by immunofluorescence (Fig. 3b).

CRISPR/Cas9-mediated correction of PSEN2""*"" mutation
and effect on AP 42/40 ratio

To determine if the molecular alterations in the processing
and cleavage of APP and/or the exacerbated activation of
NLRP2 inflammasome, as previously observed in PSEN1
mutants [77], can be attributed to PSEN2V*! mutation
only, we modified the PSEN2 locus in our iPSC lines
employing CRISPR/Cas9 technology. We did this by
correcting the PSEN2Y'* point mutation in the two
PSEN2 mutant iPSC lines (AD1, AD2). For this purpose, a

specific guide RNA (gIN141I) was designed using an
online tool (http://tools.genome-engineering.org) to direct
Cas9 to the region of PSEN2 exon 5 surrounding
PSEN2M'"* mutation (23 bp upstream of Chr1:227,073,304
A > T). gIN141I was cloned into pSpCas9(BB)-2A-GFP
(PX458) vector. Expression was assessed by GFP
fluorescence upon transfection of pSpCas9-gIN1411-GFP
in HEK293T (Fig. 4a).

In order to correct the mutation, we designed an
asymmetric ssODN HDR (homology directed repair)
template, ssSODN#A-N141I, with a long homology arm of
91 bp, and a short homology arm of 36 bp since
asymmetrical donor sequences with a shorter arm
oriented to the area closer to the PAM side demonstrated
a superior efficiency of homology-directed repair using
CRISPR/Cas9 system [13]. We then proceeded to trans-
duce pSpCas9-gIN141I-GFP and ssODN#A-N141I into
the iPSC lines using Amaxa nucleofection (Fig. 4a). Forty-
eight hours post-nucleofection cells were dissociated and
the GFP™ population was purified by FACS and replated
at low density feeder free for isolation of single gene-
corrected clones (Fig. 4b). Subsequently, clones were
grown and gDNA extracted post expansion. The screening
of positive clones that demonstrated successful HDR was
determined by qPCR using a custom designed TagMan
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genotyping assay with a probe specific for the SNP
(dbSNP ID: rs63750215) located in Chrl:227,073,304
A > T. We were able to distinguish by this method be-
tween homozygous PSEN2V"*, heterozygous PSEN2N'*!!
and PSEN2"" single clones derived from the original iPSC
lines, and pre-selected clones were subjected to Sanger se-
quencing to confirm Chr1:227,073,304 location and detect
possible insertions, deletions or mismatches introduced by
CRISPR/Cas9 modification in the surrounding area and
corroborate successful HDR (Fig. 4c).

Successfully corrected clones were expanded and
subjected to the BFCN differentiation protocol in

parallel to the other 4 lines used in the study. We
collected media from BFCNs (DIV 34) and re-tested
for amyloid beta production. In support of our previ-
ous finding in NPCs at DIV11-12 (Fig. 2f), we ob-
served that mature BFCNs also display significant
increases in AP42/40 ratio (Fig. 4d) and overall AB
production (Additional file 3: Figure S2). Importantly,
these results also showed a normalization of AP42/40
ratio to control levels in corrected lines (IAD1 Con-
trol and iAD2 Control, are corrected clones of AD1
and AD2, respectively) (Fig. 4d). These results also
strengthen previous findings linking the PSEN2V'*
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mutation to abnormal APP processing and reinforcing
that presenilins contains the catalytic site of y-secre-
tase [90].

Assessment of sensitivity to AB42 oligomer toxicity in
iPSC-derived PSEN2""*"" neurons

Previous reports have shown that iPSC lines carrying
FAD mutations may display an enhanced susceptibility
to noxious stimuli, such as high concentrations of Ap42
oligomers [2]. We therefore tested whether our BFCNs
from PSEN2'* mutants would display enhanced
toxicity to AP42 oligomers in the media (Fig. 5). We
assessed neurotoxicity by measuring the percentage of
lactate dehydrogenase (LDH) released by dead cells, thus
providing an indirect measurement for toxicity. Using
this methodology by 2-way ANOVA we detected a
significant effect in toxicity driven by 5 uM Afp42 oligo-
mer addition to the culture media, after 72-h exposure
(***, p < 0.01). Post hoc Bonferroni analysis revealed
significant differences between the AD2 line and its cor-
rected isogenic control (iAD2 Control). However, this
apparent enhanced sensitivity to AP42 oligomer toxicity
was not observed in the AD1 line and its corresponding
control. These results indicate that differences in suscep-
tibility to AP42 are not exclusively linked to mutant
PSEN2 genotype, and that likely additional genetic

factors different between AD1 and AD2 subjects affect
susceptibility to this stress, further emphasizing the im-
portance of multiple isogenic models.

Assessment of NLRP2 mRNA in iPSC-derived PSEN2""#"!
neurons

We previously reported that NLRP2 mRNA was elevated
in PSENI mutant iPSC and NPCs, [77] which was also
the case for PSENI mutant cortical neurons
(unpublished observation). Therefore, we wanted to
analyze the status of the components of the
inflammasome in the context of PSEN2"'*!/ mutation.
When we assayed by qPCR the mRNA levels of NLRP2
in NPCs at DIV12, we observed an increase over 100-
fold in AD1 and AD?2 lines, as compared to control lines
(Fig. 6a). This correlated with a notable increase in
NLRP2 protein, as observed by SDS-PAGE in whole cell
lysates from day 11 PSEN2 mutants (Fig. 6d). Noticeably,
however we did not detect bands for NLRP2 by immu-
noblot in the AD2 line lysates. Further, we were unable
to corroborate some other transcriptional events previ-
ously seen in PSENI mutant iPS neural precursors, such
as the elevated ASBY that encodes an E3 ligase that di-
rects mitochondrial creatine kinase for degradation. In-
stead, we observed a trend toward decreased levels in
PSEN2 mutation carriers by 20—30%.
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Fig. 6 NLRP2 inflammasome mRNA levels are over-expressed in some PSEN2V"*" cells, but it is not driven by mutation. RT-PCR expression of (a)
NLRP2, (b) NLRP3, and (c) ASB9 in cholinergic neuroprecursors. d Western blot showing NLRP2, PSEN2 and B-Actin. RT-PCR expression of NLRP2 in
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Assessment of excitability of iPSC-derived
PSEN2""#"'BFCNs

Using BFCN differentiation protocol, we were able to
generate  electrophysiologically active  cholinergic
neurons in a dish from two PSEN2V'* mutant AD
patients, wild-type and familial controls starting from
differentiation day 35. We were initially unable to obtain
mature action potential waveforms from BFCNs grown
in Neurobasal media at this stage, but switching to
BrainPhys media significantly improved electrophysio-
logical properties of cultured neurons [3]. These findings
are in line with electrophysiological characterization of
other iPSC generated neurons used to compare both
media [3]. We have also replicated the benefits of our
protocol containing BrainPhys media in two additional
cell lines (including the H9 embryonic stem cell line)
with comparable endpoint expression of ChAT and
VAChHT as well as electrophysiological responses (data
not shown).

In order to investigate the electrophysiological properties
of BFCN, we recorded from a total of 94 neurons (22 wild-
type control, 21 familial control, 18 AD1, 28 AD2 and 5
iAD1_control) using whole cell patch-clamp method. In all
experimental groups, recorded neurons displayed voltage-
activated currents through sodium and potassium ion
channels, ability to generate action potentials and displayed
classical neuronal morphologies (Fig. 7). In subset of exper-
iments, recorded neurons were labeled with biocytin
through a patch pipette, which allowed for post hoc cell
identification and ICH characterization. We found that all
biocytin-labelled cells were also immuno-positive for ChAT
and VACHT (n = 12, Fig. 8a).

We did not observe significant differences between the
groups in terms of neuronal membrane resistance and
capacitance, membrane resting potential and the minimum
current required for generation of a single action potential
(Fig. 9). However, we observed significant mutation-related,
editing-reversible differences in excitability of BFCNs.
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Fig. 7 Electrophysiological and morphological features of BFCN. a Top row — compound sodium and potassium currents produced by a voltage
protocol shown in bottom row. Current trace produced by a voltage step to —20 mV shown in red. Inset shows first 25 ms of a current produced
by a voltage step to =20 mV (scale bars 200 pA, 5 ms). b Differential interference contrast image of a patched BFCN recorded in a. Ninety-four
neurons (22 wild-type control, 21 familial control, 18 AD1, 28 AD2 and 5 iAD1_control). Scale bar is 30 um

Neurons derived from AD1 and AD2 lines (as compared to
WT and familial controls) were able to generate fewer max-
imum number of spikes in response to a square depolariz-
ing current injection (ANOVA test with Tukey’s post hoc
comparisons, Fig. 8b, c). Height of the first action potential
at rheobase current injection was also significantly de-
creased in AD1 and AD2 BFCNs (Fig. 1c). Importantly,
CRISPR/Cas9 correction of the PSEN2 point mutation in
the AD1 mutant iPSC line abolished the observed electro-
physiological deficit, restoring both the maximal number of
spikes and spike height to the levels recorded in wild-type
and familial controls (ANOVA test with Tukey’s post hoc
comparisons, Fig. 8).

Discussion
There are 5 million people currently affected by
Alzheimer’s disease in the US and, according to the
Alzheimer’s Association, this number will increase to 16
million by the year 2050. Unfortunately, we only have
direct evidence for genetic causation that accounts for
3-5% of these patients. This percentage encompasses
the EOFAD variants, caused by inherited fully penetrant
autosomal dominant mutations in the amyloid protein
precursor (APP), or PSEN1, PSEN2 that constitute the
y-secretase apparatus [87], and changes in their function
increases the production of AB42 oligomers and/or de-
position of amyloid plaques.

After decades studying murine models of AD that do not
fully recapitulate the pathophysiology of this disease in the
human brain [5, 57, 58], a complementary new concept of

AD modeling in vitro has emerged upon the breakthrough
by [81] allowing adult human tissue reprogramming into
iPSC using defined factors, and their subsequent in vitro
differentiation into specific brain cell types.

BFCNs are one of the most vulnerable neuronal
populations whose deterioration explains, in part, the
cognitive decline in AD patients. Apart from the
evidence for BFCN failure and atrophy, other studies
have revealed that human embryonic stem cell-derived
BFCNs transplanted into AD mouse models can be asso-
ciated with improvement in the learning behavior of the
implanted mouse [94]. These findings highlight the rele-
vance of iPSC- and ESC-derived BFCNs as not only early
clinical indicators but also as a potential strategy for
subtype-specific cell-based therapy for AD [39]. In order
to move this cell-based therapeutic strategy forward,
there has been an urgent need for a refined differenti-
ation protocol to generate human ESC- and/or iPSC-
derived BFCNs.

Our first goal was to develop an improved protocol for
the generation of BFCNs and intermediate neural
progenitors (NPCs), followed by the use of these
methods when differentiating cell lines from both
control subjects and those harboring the PSEN2 N'*
mutation. Using fibroblasts isolated from 3 sisters, 2
carrying the PSEN2 mutation and displaying cognitive
decline, with the third wild-type for the mutation, iPSCs
were developed [60]. In order to approach the dissection
of the fidelity of linkage of various phenotypes to the
pathogenic mutation, we began by optimizing published
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BFCNs protocols [4, 17, 46, 50, 89] including the purifi-
cation of an intermediate CD271" (p75) forebrain pro-
genitor population by Fluorescence Activated Cell
Sorting (FACS) to generate 3D ventralized neural em-
bryoid bodies (NEBs), which can be later dissociated to
look at neuronal populations in a monolayer.

After induction of BFCN differentiation in these cell
lines, we have analyzed: (1) capacity to generate Tujl
*/BF1*/ChAT" neurons in vitro; (2) expression of genes/
proteins of interest related to neuronal differentiation or
inflammation; (3) generation of soluble and oligomeric
APA0 and 42; (4) electrophysiological (ePhys) properties;
and (5) selective vulnerability of BFCNs to one or more
innate or microenvironmental factors within or in close
approximation to those cells.

Several studies in AD mouse models highlight
electrophysiological defects associated to late stages of
AD pathology. Synaptic function in the hippocampus
was reduced in APP23 mouse models [70]. Similarly,
cholinergic neurons from the prefrontal cortex of
TgCRNDS8 mice are unable to sustain cholinergic
excitation as compared to control mice [64]. Here we
report deficient electrophysiological properties in PSEN2
NI pSC-derived BECNSs in vitro. Notably, correction
of this point mutation re-established neuronal excitabil-
ity to the level of the control iPSC-derived neurons.

We have optimized an in vitro BFCN differentiation
protocol from human iPSC, focusing on generating a
homogeneous population of electrophysiologically active
ChAT+/VAChT+ neurons in a reproducible and fast way.
The innovations introduced to the protocol granted a
homogeneous expression of Nkx2.1, a transcriptional
marker for MGE subregions, as soon as day 8 and very
robust by day 11, compared to day 20 suggested in
previously published protocols [38]; in defined serum-free
media conditions and without forcing overexpression of
factors implicated in cholinergic fate. We were able to rec-
ord mature action potentials in neurons from day 38 in cul-
ture, accompanying co-expression of cholinergic specific
markers, which is an earlier time point as compared to
other existing protocols using ES or iPSC [4, 17, 46, 50, 89].
Therefore, our protocol has potential application to high-
throughput drug screening in homogeneous cholinergic
cultures. In addition, the 3D structure of NEBs themselves
if left undisssociated organoid form would also allow mech-
anistic analysis in a more physiological setting.

After applying this optimized protocol to PSEN.
mutant iPSC lines, we found an increase in Ap42/40
ratio in the conditioned media. We did not observe any
evident defects in the neuronal differentiation process
and expression of BFCN markers. Interestingly, we
observed a decrease on BDNF gene expression in
PSEN2M*T NPCs, similar to results described in a
report [18] wherein BDNF changes were observed in
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homozygous and heterozygous APP™*“PSEN1'*¢Y
mice. The two mutant lines are also carriers of one
APOE €4 allele. The presence of this allelic variant, the
most common and well characterized risk factor
polymorphism for LOAD [16], may modulate the age of
onset and severity of the phenotype [49]. Therefore,
these iPSC lines combining both the EOFAD PSEN2
Volga mutation (or CRISPR/Cas9 corrected) and APOE
€4 allele constitute a tremendously useful tool to study
the pathophysiology of early onset AD in vitro,
especially when apoE-secreting iPSC-derived astrocytes
are also present.

Searching for adjacent mechanisms or events that may
be a cause or a consequence of elevated -amyloid pro-
duction, researchers have found overactivated inflamma-
tion and electrophysiological defects associated with AD
mutations. The concept of these defects being independ-
ent from P-amyloid deposition and their demonstration
using CRISPR/Cas9 technology to correct EOFAD muta-
tions would open the debate to the need of combined
AD treatments not only targeting B-amyloid plaques
(Gandy et al, in press), but also to overcome parallel in-
flammatory processes or excitotoxicity/defective neur-
onal firing.

NLRPs are components of the inflammasome, which
induces the secretion of mature pro-inflammatory cyto-
kine IL-1f in response to pathogens and toxic stimuli
[11, 41]. NLRP2 appears dysregulated in astrocytes [45,
51], and NLRP3 in microglia [34] in the context of
Alzheimer’s disease as well as in other neurological dis-
eases like Parkinson’s disease [14, 32]; additionally,
NLRP2/3 are altered in pathologies that show comorbid-
ity with AD: obesity, type-2 diabetes. We previously re-
ported an unexpected association of elevated expression
of the inflammasome gene NLRP2 in iPSC-derived neu-
rons from banked fibroblasts from subjects harboring
PSEN1*?*** and PSEN1""**" mutations [77]. This asso-
ciation reminded us of the association of the inflamma-
tory skin disease acne inversa (AI) with mutations in
presenilin 1, nicastrin, APH-1 and PEN-2, raising in our
minds the question of whether some y-secretase compo-
nent mutations might be associated not only with proa-
myloidogenic actions but also with proinflammatory
mechanisms.

Despite our observations PSEN. mutant cells had
elevated NLRP2 compared to controls, we were not able
to attribute this upregulation to the familial PSEN2
mutation, as gene correction did not significantly reduce
NLRP2 levels. Our results suggest that, although
inflammasome dysregulation may occur in the brains of
EOFAD patients, there may be factors triggering this
event apart from any effect of PSENs on inflammasome
biology that are reflected in reprogrammed PSEN2
mutant cell lines. Some potential explanations for this
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Fig. 8 Electrophysiological deficits in BFCNs from AD lines. a Co-localization of biocytin-labelled neurons (green) with cholinergic markers ChAT
(red) and VAChT (blue). Arrows indicate positions of recorded neurons somas, scale bar is 50 um. b Representative firing patterns of BFCNs
produced by a 1 sec negative and positive square current injection are depicted. A grand total of 94 individual neurons were studied electrophysiologically:
22 wild-type control neurons, 21 familial control neurons, 18 AD1 neurons, 28 AD2 neurons, and 5 iAD1_ (CRISPR-corrected) neurons. The experiments on
the 94 neurons required days to weeks. On each experimental day, representatives from each genotype were included, with at least three samples from
each genotype studied each day. ¢ Summary data on maximum number of action potentials that neurons are capable of sustaining (left) and height of a
single action potential at rheobase (right) across all conditions. Individual data points are shown as circles, group means are shown as bars. **, p < 0.01
Tukey HSD test

\

PSEN2-independent NLRP2 upregulation include effects  these defects are attributed to altered function of

of the apoE4 allele present in both PSEN2 subjects (not
preset in controls) or epigenetic effects on fibroblasts
collected from the EOFAD subjects that are maintained
through the reprogramming process.
Electrophysiological defects in neurons have been
associated with PSENI and PSEN2 mutations. Some of

voltage-gated K+ channels, potentially through the
cleavage of channel components mediated by the PS/y-
secretase apparatus [44, 72]. Presenilin mutations also
disrupt calcium signaling by increasing the levels of cal-
cium stored in the endoplasmic reticulum that result in
increased stimulus-induced released into the cytosol,
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Fig. 9 Intrinsic electrophysiological properties of BFCNs. Summary data on all recorded BFCNs from five groups. Ninety-four neurons (22 wild-type
control, 21 familial control, 18 AD1, 28 AD2 and 5 iAD1_control). Histograms show individual values from each neuron (circle) and group means
(bars) for membrane resistance (a), capacitance (b), resting potential (c) and rheobase current (d). Statistical significance was tested with ANOVA
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rather than altered influx of calcium. One of the mecha-
nisms behind neuronal calcium dysregulation was de-
scribed in cortical neurons from PSENI™#V mice,
mediated by inositol triphosphate (IP3) [79]; and, more
directly, the formation of dual function protein-ion
channels by unprocessed PSEN1 and PSEN2 themselves,
modulating the exit of calcium from the endoplasmic
reticulum [29, 55, 80, 84]. Given the important role of
presenilins on potassium and calcium flux and neuronal
excitability, mutations in PSENI and PSEN2 may lead to
reduced neuronal excitability and neurotoxicity. Mice
carrying mutant forms of APP exhibited aberrant action
potentials associated to a decrease in sodium currents
with no alteration in potassium currents, only after
plaque burden was considerable [9]. There is evidence
that APP overexpression causes hyperexcitability in
mouse cortical neurons [75, 86, 92].

Mucke and Selkoe [52] have highlighted a toxic effect
of AP resulting in synaptic and network dysfunction. In
fibroblasts and neural cell lines, AB-mediated accumula-
tion of mitochondrial Ca** was elevated when mutant
forms of PS1 were expressed [31]. Neuronal firing pat-
terns in mouse hippocampal neurons were altered by ex-
posure to AP [67, 69]. AP exposure was also associated
with altered K" channel conductance in pyramidal neu-
rons [54]. PSENI mutations have been observed to

associate with altered Ca®" mitochondrial channels in
the cerebellum, apparently causing reduced spike activity
in Purkinje cells in the absence of amyloid plaque depos-
ition [74]. AP42 may accentuate the defects present in
Ca®* homeostasis by modulation of additional voltage-
dependent ion channels [8, 25, 76, 88].

Apart from mouse data and immortalized neuronal
cell lines, electrophysiological defects in iPSC-derived
neurons upon exposure to AP have been shown: hiPSC-
derived cortical pyramidal neurons and GABAergic in-
terneurons have deficient action potentials upon expos-
ure to AP [56], and neurons differentiated from hiPSC
harboring PS14**** mutation also showed deficient firing
patterns [47]. However, there are no previously pub-
lished data on characterization of electrophysiological
properties of PSEN2 mutant iPSC-derived BFCNs.

Hyper- or hypoexcitatory effects and differences in
firing frequency vary with the gene mutation and are
highly dependent on the neuronal subtype [37, 48]. All
these events may contribute to the progressive
neurodegeneration present in the pathogenesis of AD, and
we specifically document events that may account for the
neuronal defects associated to early stages of EOFAD
human pathogenesis. Here we report defective
electrophysiological properties in iPSC-derived BFCNs
that are specifically associated with the PSEN2™**"familial
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mutation. Interestingly, although some of the previous
studies attribute this impairment in neuronal activity
to the build-up of plaques in the brain of AD mice,
we found a substantial impairment in the induced
action potentials in the absence of amyloid plaques,
solely in the presence of an discrete excess of AP42
oligomers in the culture media, consistent with other
reports [18]. Correction of this point mutation re-
established the firing patterns to those of the wildtype
iPSC-derived neurons.

Modulators of potassium channels in neurons have
proven efficacy in memory improvement in AD
mouse models [44]. Modulation of Ca®* channels and
excitotoxicity may open a new wave of AD drugs.
Understanding the mechanism through which PSEN2
mutations affect the electrophysiological activity in
different subsets of neuronal populations and
unraveling the connection between PSEN2, other
genetic modulatory factors and inflammation will
potentially lead to, not only alternative symptomatic
treatments, but also to novel drugs decreasing the
Ca**-mediated vulnerability to ROS and potentially
stopping the neuronal loss and progression of the
disease, if administered at early stages.

It is clear that mutant presenilins alter neuronal
excitability even before the formation of AB plaques
[18, 74]. One plausible hypothesis is that APP and
presenilins may exert effects that modulate neuronal
excitability through currently unrecognized mechanisms
acting separate from their roles in the biogenesis of Ap.
Accumulation of AP could synergize with the altered
electrophysiological mechanisms in a pathway leading to
AD. With the wealth of data supporting neuronal
excitotoxicity as a key mechanism implicated in AD,
further studies focusing on clarifying the possible role(s)
of PSENs and/or AP in physiological or pathological
events are warranted.

Conclusions

We have optimized an in vitro protocol to generate human
BFCNs from iPSCs from presenilin 2 (PSEN2) mutation
carriers and controls. As expected, PSEN2™* was
associated with an increase in the AB42/40 in iPSC-derived
BFCNs, and this was reversed by CRISPR/Cas9-mediated
gene editing. Unexpectedly, iPSC-derived BFCNs or cortical
neurons from PSEN2"'*! carriers showed diminished basal
excitability as quantified by a reduction of both spike fre-
quency and spike amplitude. This electrophysiological
phenotype was also abolished following CRISPR/Cas9 cor-
rection of the PSEN2"*! mutation. The gene editing data
confirm that there was a robust consistency of mutation-
related changes that characterized all the expected findings
and genotypes from all cells.
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Additional files

Additional file 1: Table S1. Antibodies, Species, Titers, and Vendors
Used in this Study. (DOC 31 kb)

Additional file 2: Figure S1. Quality control of iPSC lines. (A)
Immunofluorescence shows expression of pluripotency markers SSEA4,
Nanog, Tra160 and in 7889(S)B iPSC line. (B) Three germ layers from
teratomas generated by 7889(5)B iPSC line. (TIFF 2702 kb)

Additional file 3: Figure S2 Amyloid {3 levels in mature BFCNs. (A)
Levels of AB40 on BFCNs (DIV 34). *, P < .01 vs. other lines in study
according to One-Way ANOVA Bonferroni Post-hoc test. (B) Levels of
AR42 on BFCNs (DIV 34). n = 3, 3 independent experiments with
technical triplicates. *, P < .01 based on Student’s T-test. (TIFF 1753 kb)
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