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Abstract

Anti-ribosomal P, Anti-a-tubulin

Systemic lupus erythematosus (SLE) is a potentially fatal autoimmune disease that is often accompanied by brain
atrophy and diverse neuropsychiatric manifestations of unknown origin. More recently, it was observed that
cerebrospinal fluid (CSF) from patients and lupus-prone mice can be neurotoxic and that acute administration

of specific brain-reactive autoantibodies (BRAs) can induce deficits in isolated behavioral tasks. Given the chronic
and complex nature of CNS SLE, the current study examines broad behavioral performance and neuronal Ca®*
signaling in mice receiving a sustained infusion of cerebrospinal fluid (CSF) from CNS SLE patients and putative
BRAs (anti-NR2A, anti-ribosomal P, and anti-a-tubulin). A 2-week intracerebroventricular (i.c.v.) infusion of CSF
altered home-cage behavior and induced olfactory dysfunction, excessive immobility in the forced swim test, and
perseveration in a learning task. Conversely, sustained administration of purified BRAs produced relatively mild,
both inhibitory and stimulatory effects on olfaction, spatial learning/memory, and home-cage behavior. In vitro
studies revealed that administration of some CSF samples induces a rapid influx of extracellular Ca** into murine
neurons, an effect that could be partially mimicked with the commercial anti-NR2A antibody and blocked with
selective N-methyl-D-aspartate (NMDA) receptor antagonists. The current findings confirm that the CSF from CNS
SLE patients can be neuroactive and support the hypothesis that intrathecal BRAs induce synergistically diverse
effects on all domains of behavior. In addition, anti-NMDA receptor antibodies may alter Ca’* homeostasis of
central neurons, thus accounting for excitotoxicity and contributing to the heterogeneity of psychiatric
manifestations in CNS SLE and other autoantibody-related brain disorders.
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Introduction

Systemic lupus erythematosus (SLE) is a chronic auto-
immune/inflammatory disorder accompanied by damage
to multiple organs, including the brain [21]. Neurologic
and psychiatric (NP) manifestations of varying severity
are common, often conferring a grave prognosis and
increased mortality rates [40]. Central nervous system
(CNS) symptoms can range from focal abnormalities
(i.e., seizures, cerebrovascular disease etc.) to diffuse
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disorders such as anxiety, depression, cognitive impair-
ment, and psychosis [2]. Whereas focal presentations
seem to be predominately associated with coagulopa-
thies [103], much less is known about the mechanisms
underlying diffuse manifestations. The heterogeneity of
neuropsychiatric manifestations points to a complex
pathophysiology involving multiple factors that contribute
to vasculopathic, glial, and neuronal injury [39].

For many years, autoantibodies reactive to diverse
brain antigens (brain-reactive autoantibodies, BRAs)
have been attracting considerable attention as ter-
minal factors mediating brain damage and behavioral
manifestations in neurological malignancies, seizures,
movement disorders, ischemic syndromes, as well as
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autoimmune diseases including multiple sclerosis and
CNS SLE [22, 25]. However, the data from clinical
studies are largely correlational in nature and based
on the identification of BRAs in the serum [5, 15, 20,
41, 74, 112, 113], cerebrospinal fluid, CSF [6, 13, 35,
50, 117, 118], and post-mortem neuronal tissues of
SLE patients [66, 121]. It is not yet clear whether
antibodies passively diffuse from the systemic circula-
tion through a breached blood-brain barrier, BBB [1]
and/or are synthesized intrathecally during a CNS
flare [49, 81, 114] by infiltrating leukocytes [29, 47].
Given the tentative relationship between serum BRAs
and NP manifestations [37], autoantibodies in CSF
have been proposed as better predictors of CNS in-
volvement [6, 101, 118]. Confirming a cause-effect
relationship has proven difficult, partly because the
assessment of CNS function in SLE patients can be
confounded by peripheral organ damage, opportunis-
tic infections, and treatment with high doses of corti-
costeroids and cytotoxic agents [12].

More direct evidence supporting a causative role for
CSF BRAs stems from experimental studies in murine
forms of lupus-like disease [3]. Led in part by the ob-
servation of periventricular damage in the spontaneous
MRL mouse model [8], two groups concurrently re-
ported that CSF samples from autoimmune mice and
CNS SLE patients reduce the viability of murine hippo-
campal neurons [24, 78]. Across-species cell toxicity
was confirmed when CSF samples from behaviorally-
impaired mice and another CNS SLE patient were
shown to be cytotoxic to a neural stem cell line, neuro-
spheres obtained from lupus-prone and healthy mouse
strains, as well as to rat retinal neurons in vivo [92].
Although microfluorometry and electropherograms
suggested more than one mechanism of cellular de-
mise, neurotoxicity was primarily accounted for by im-
munoglobulin G (IgG)-rich fractions of CSF that
induced the release of calcium ions (Ca?") from in-
ternal stores. Taken together, the results obtained from
these studies suggested that antibodies in the CSF bind
antigen(s) that are not only shared between immature
and differentiated neurons but also conserved amongst
mammalian species.

Several autoantigens (expressed centrally and system-
ically) have been proposed as potential targets of patho-
genic BRAs [18, 43, 55, 119]. Among more than 20
BRAs associated with NP manifestations in SLE [119],
experimental studies have largely focused on three sub-
groups. The first is a subset of circulating autoantibodies
to double-stranded DNA (anti-dsDNA) that centrally
cross-react with the GluN2A and GIluN2B subunits of
the N-methyl-p-aspartate (NMDA) receptor [24, 85].
They can access periventricular structures and induce
deficits in emotionality and learning/memory when the
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BBB is chemically-disrupted in healthy mice [52, 66, 67].
When the BBB is bypassed, a single injection of an anti-
NMDA receptor antibody into the hippocampus results
in excessive neuronal apoptosis [24]. Likewise, acute in-
tracerebroventricular (i.c.v.) injection of anti-ribosomal
P antibodies (ARPA) from CNS SLE patients induces
“autoimmune depression” characterized by olfactory
dysfunction [62, 64] and excessive immobility in the
forced swim test [61, 63]. Moreover, intravenous ad-
ministration of human ARPA impairs memory in other-
wise healthy mice following the chemically-induced
opening of the BBB [14]. The third subclass includes
several antibodies against highly-conserved cytoskeletal
proteins including microtubule-associated protein 2
[71, 113], a-tubulin [84], and «-internexin [75]. Al-
though the pathogenic relevance of this last class re-
mains to be explored, a recent study with lupus-prone
MRL-Ipr mice revealed prominent CSF IgG reactivity to
several cytoskeletal proteins [73].

The above evidence supports the hypothesis that BRAs
from CSF bind multiple antigens, induce neuronal
apoptosis, and ultimately alter behavior. Despite these
findings, several gaps in the present knowledge exist.
Namely, previous studies involving CNS administration
of CSF [24] or BRA [61-64] examined acute effects on
behavior, despite the fact that CNS SLE is a chronic
condition. In addition, changes in activity-demanding
tasks (e.g., water-maze, forced swim test, novel-object
recognition) were often interpreted without assessing
potentially confounding deficits in spontaneous activity,
sensory capacity (e.g., olfaction), motivated behavior, or
emotional responsiveness. When antibodies were not
delivered directly into the CNS, access of circulating
BRAs to the brain parenchyma was dependent on BBB
disruption with systemic injections of potent toxins (e.g.,
lipopolysaccharide) and neuropeptides [14, 52, 66, 67, 75],
which per se have profound effects on neuronal metab-
olism and behavior (reviewed in [65, 80]). Issues related
to repeated immunization, lack of comparisons between
induced and baseline behavioral performance, reliance
on results from short, isolated behavioral tests, unbal-
anced study designs, and small sample sizes represent
additional factors that limit behavioral profiling and in-
crease the odds of data misinterpretation. Using a
broad behavioral battery and computerized home-cage
monitoring, the present study addresses these concerns
by examining the behavioral effects of prolonged i.c.v.
administration of CSF from CNS SLE patients and puri-
fied BRAs. In order to elucidate the molecular mecha-
nisms underlying BRA-induced neuronal dysfunction,
we further explored the modulatory effects of human
CSF and purified antibodies on Ca®* metabolism by
using differentiated hippocampal neurons and channel-
specific blockers.
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Materials and methods

Study 1: behavioral effects of CSF from CNS SLE patients
A “proof-of-concept” study was undertaken to validate
our experimental design by administering undiluted
IgG-rich CSF from chronic CNS SLE patients directly
into the right lateral ventricle of healthy mice.

Human tissue

Given the well-known clinical diversity of CNS SLE,
serum and CSF samples from four female outpatients
(Lupus Clinic Bezanijska Kosa, University Medical
Centre, Belgrade, Serbia) with different psychiatric mani-
festations were currently used (Table 1). All patients
underwent a detailed medical interview and routine
physical examination by a qualified rheumatologist,
neurologist, and psychiatrist prior to inclusion in the
study. Further data regarding various clinical manifesta-
tions of the disease, demographic parameters, and labora-
tory results were obtained from the patients’ medical
records. Disease activity was assessed according to the
SLEDALI (Systemic Lupus Erythematosus Disease Activity
Index) and CNS involvement was confirmed as described
earlier [107]. Upon exclusion of common contraindica-
tions, CSF was obtained by lumbar puncture of the intra-
vertebral space between the third and fourth lumbar
vertebrae. CSF samples from an age-matched, female
patient presenting with neuromyelitis optica (NMO)
was used as a non-SLE control. Blood-free samples
were used exclusively, aliquoted into sterile 100 ul vials,
and stored at 4 °C for further analysis.

Autoantibody assessment

This analysis included assessment of anti-nuclear anti-
bodies (ANA), anti-dsDNA antibodies and anti-aquaporin4
(AQP4) antibodies in serum and CSF (Table 1).

The degree of ANA positivity was assessed in a fully-
automated immunofluorescence assay system (IF Sprinter).
Serum samples were diluted 1:80 in sample buffer
(pH 7.2), and 30 pl of the diluted serum was pipetted onto
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HEp-2 cell slides (EUROIMMUN Canada, Mississauga,
ON). Slides were incubated for 30 min at room
temperature and washed four times with phosphate-
buffered saline (PBS)-Tween20 solution. Thirty microliters
of 1:100 diluted rabbit anti-mouse IgG-fluorescein isothio-
cyanate (FITC) conjugate (Sigma-Aldrich, Oakville, ON)
were pipetted into each well and left to incubate for
30 min. The slides were washed and sealed with a cover
glass following the addition of 10 pl of mounting medium.
Nuclear staining patterns were obtained by an unbiased as-
sessor, who scored slides under an LED-fluorescence
microscope (EUROStar III, EUROIMMUN).

Levels of anti-dsDNA autoantibodies in serum and
CSF were quantified using a fully-automated ELISA
analyzer (EUROIMMUN Analyzer I) as previously de-
scribed [59]. Briefly, 100 pl of each sample (1:50 dilution
in PBS buffer) was transferred into a microtiter plate
well containing antigen substrate of dsDNA complexed
with nucleosomes (Anti-dsDNA-NcX ELISA, EUROIM-
MUN). Each sample was incubated for 30 min at room
temperature and then washed three times with 450 ul of
working strength wash buffer. One hundred microliters
of 1:2000 diluted rabbit anti-mouse IgG-HRP conjugate
(Promega, Madison, W1, USA) were pipetted into each
of the microtiter plate wells, left to incubate, and washed
to remove unbound HRP enzyme conjugate. Subse-
quently, 100 ul of 3,3,5,5 tetramethylbenzidine enzyme/
substrate solution were pipetted into each well of the
microtiter plate and incubated for 20 min at room
temperature. One hundred microliters of stop solution
were added to each well and the microtiter plate was
shaken at 20 Hz for 5 s to ensure a homogeneous distri-
bution of the solution. Optical density was determined
at a wavelength of 450 nm and a reference wavelength
of 620 nm within 10 min of adding the stop solution.
Observed results are expressed as optical densities.

Anti-AQP4 seropositivity was assessed using an
immunofluorescence assay employing HEK293 cells
transfected with recombinant full-length human

Table 1 Demographic, clinical and autoantibody profile of patients whose CSF samples were used in the study

NMO CNS SLE #1 CNS SLE #2 CNS SLE #3 CNS SLE #4

Age 52 59 60 65 49
Sex Female Female Female Female Female
SLE duration (years) 0 6 19 9 8
SLEDAI 0 12 12 9 12
Neuropsychiatric manifestations None Psychosis Cognitive Headaches Vasculitis Depression Cognitive Anxiety Cerebrovascular

Dysfunction Vasculitis Dysfunction Vasculitis Diseases
Serum ANA staining pattern Negative Homogenous + Homogenous +++ Homogenous ++ Speckle +++
Serum anti-AQP4 Positivity Positive Negative Negative Negative Negative
Serum anti-dsDNA (g/1) Negative 163.72 51444 297.88 25.7
CSF anti-dsDNA (g/1) Negative 4946 25361 77.85 13.46
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AQP4 as described previously [53]. In short, 30 pl of
each sample (1:10 dilution in PBS) was applied to
BIOCHIP slides using the TITERPLANE technique
(EUROIMMUN). After incubation for 30 min at room
temperature, the slides were rinsed with PBS-
Tween20. Bound IgG were labeled using 30 pl of
1:100 diluted rabbit anti-mouse IgG-FITC conjugate
(Sigma-Aldrich) for 30 min and washed as described
above. Slides were viewed under an LED-fluorescence
microscope (EUROStar III, EUROIMMUN) and sera
were classified as positive or negative by an assessor
unaware of patients’ diagnoses.

Animals

Sixteen ~6-week old CD1 male mice were purchased
from Charles River Laboratories (Saint-Constant, QC)
and tail-tattooed for identification purposes (AIMS, Inc.,
Hornell, NY, USA). Males were used exclusively to avoid
the confounding effects of estrus cycling on behavioral
performance and for ease of surgery (larger cranium/
ventricles, less likelihood of anesthetics overdose). Ani-
mals were housed four per cage under standard labora-
tory conditions: reversed light cycle (from 19:00 to 9:00),
temperature ~ 22°C, humidity ~62%, ad libitum access
to rodent chow and tap water. Assessment of baseline
behavioral performance commenced at 10 weeks of age
and lasted over a 2-week period. To balance out the
groups before the treatment, dependent variables col-
lected to assess baseline performance were reduced by
principal component analysis (SPSS v. 20, IBM Corp.,
Armonk, NY, USA) into a single factorial score. This
score was used subsequently to rank each mouse and
manually assign it into one of two groups (8 experimen-
tal mice receiving CNS SLE CSF vs. eight control mice
receiving NMO CSF). The lack of significant differences
between selected groups was confirmed using a series of
ANOVA tests showing no significant group differences
in any dependent measures before the treatments. This
group assignment was followed by survival surgery and
2.5-weeks of postoperative behavioral phenotyping.

Survival surgery

Aseptic survival surgery was performed under ketamine/
xylazine anesthetizing cocktail delivered intraperitoneally
(0.1 ml/10 g mouse; ketamine: 100 mg/kg; xylazine:
20 mg/kg) and involved i.c.v. implantation of low-cap
cannula (model C315GS-4; Plastics One Inc., Roanoke,
VA, USA) into the right ventricle (-0.5 mm from
Bregma, lateral 1.0 mm), and subcutaneous implantation
of primed mini-pumps with a release rate of 0.25 pl/h
(model 1002; Alzet, Cupertino, CA, USA). Figure la
exemplifies technical aspects of the cannula and mini-
pump implantation in an adult male mouse. Briefly, each
mini-pump was filled with ~100 pl of undiluted CSF
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from one of four CNS SLE patients and implanted into
eight mice (i.e., two mice/CSF sample). The vinyl tube
(model C312VT; Plastics One Inc.) connecting the mini-
pump to the cannula was pre-loaded with artificial CSF
(aCSF) to allow for 4-day postoperative recovery. aCSF
was prepared using instructions from Alzet and sepa-
rated from patient CSF by a 2-mm oil “spacer”. Eight
control males were treated in an identical manner, with
the exception that the mini-pump was filled with CSF
from a patient with NMO. Irrespective of the CSF
source, each mini-pump was designed to ensure con-
tinuous solution delivery for ~2 weeks in a freely moving
mouse (Fig. 1b). Body weight was measured daily before
and after the surgery. Mice were sacrificed thereafter
and the position of the cannula was verified with Tolui-
dine blue injection into the tubing (Fig. 1c). Antibody
diffusion was verified in a pilot study by mixing CNS
SLE serum with DyLight 488 amine-reactive fluorescent
dye (Thermo Scientific) before the i.c.v. administration.
This dye is an NHS ester-activated derivative of high-
performance DyLight 488 for fluorescent labeling of
antibodies and other proteins. Representative coronal
sections of periventricular regions from dry ice-fixed
brains are shown in Fig. 1d—e.

Behavioral battery

Due to technical restrictions on the maximum number
of surgeries per day and access to behavioral equipment,
a staggered experimental design consisting of three co-
horts was used. The protocol sequence included baseline
performance, post-surgical performance, and “experi-
mental” performance (i.e., during the infusion of patient
CSEF, see Fig. 2). In each phase, mice were exposed to a
battery of behavioral tests reflective of spontaneous
locomotor activity, neurological/sensorimotor function,
emotional reactivity and learning capacity that showed
discriminatory power in studies with lupus-prone mice
[57, 91, 94-98].

The cornerstone of the behavioral phenotyping in-
volved computerized assessment of movements and be-
havioral acts in an enriched home-cage environment
[90]. Each of the eight activity boxes (Integrated behavioral
station, INBEST’) comprised of a computer-controlled
light stimulus, photocell-controlled lickometers, auto-
mated food dispenser, computerized running wheel and
shelter (Med Associates Inc., St. Albans, VT, USA).
Mice were placed in INBEST for 10 h every other day,
permitting continuous collection of measures reflective
of spontaneous activity, exploration, and depressive-like
behaviors, while minimizing confounding effects induced
by inconsistent environmental settings, transportation
stress, and repeated handling. Latencies, frequencies, and
durations of several behaviors were collected by MedPC
IV software (Med Associates Inc.), in parallel with live
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were digitized using an Axioskop 2 Plus microscope with a 5x objective and AxioVision 4.6 software (Carl Zeiss, Inc,, CA, USA)

Fig. 1 Technical details of survival surgery. a All mice underwent unilateral implantation of a sterilized cannula into the right lateral ventricle and
subcutaneous implantation of a primed Alzet mini-pump, connected to a cannula via vinyl catheter tubing. Both groups received artificial CSF
(aCSF) for 4 days to facilitate postoperative recovery. Hereafter, infusion of the solution of interest was initiated [CNS SLE or control CSF samples in
Study 1, purified brain-reactive autoantibodies (BRA) or aCSF in Study 2] and continued for 2 weeks. An oil drop “spacer” was used to prevent mixing
of aCSF in the tubing and the experimental solution in the primed pump. b An animal moving freely following survival surgery. ¢ Histological
verification of coordinates obtained by post-mortem injection of Toluidine blue into the vinyl tubing cut at the neck level. d Verification of antibody
diffusion: control section of the dry ice-fixed contralateral periventricular region after the 2-week i.cv. administration of CNS SLE serum (e) and
the same region in another brain showing diffusion gradient in fluorescence when CNS SLE serum was premixed with DyLight 488. Note: Images
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Fig. 2 Schematic representation of the experimental design. Prior to testing, all mice were tail-tattooed and habituated to the experimenters.
After being assigned to two behaviorally comparable groups, they underwent survival surgery and an identical sequence of tests. The behavioral
battery was designed to evolve from less towards more strenuous tasks to mitigate residual stress effects on subsequent tests. Abbreviations:
Integrated Behavioral Station; SAB — Spontaneous Alternation Behavior; SDT — Step-Down Test; NO —
Novel Object Test; FST — Forced Swim Test; OF — Open Field Test; MWM — Morris Water Maze; OS - Olfactory Sensitivity; OM - Olfactory Memory;

tracking of ambulation by EthoVision XT 8 software
(Noldus Information Technology, Leesburg, VA, USA).

Home-cage phenotyping was supplemented with tests
probing neurological function (beam-walking, Rotarod,
and olfactory tests), emotionality (step-down, novel ob-
ject, open field, and forced swim testing), and learning/
memory performance (T-maze alternation and Morris
water maze).

In the beam-walking test, mice were trained to
traverse a narrow beam connecting a brightly-lit start-
ing platform to a dark shelter, as a means to assess fine
motor coordination and balance [31, 38, 104]. Follow-
ing a brief “shaping” procedure, a single run was filmed.
Latency to traverse the beam and number of foot slips
were scored by an unbiased observed who watched a
video clip in slow motion (reviewed in [97]).

A Rotarod (ENV-575 M, Med Associates Inc.) was
used to probe balance, muscle strength and acquisition
of sensorimotor coordination, as described previously
[59, 76]. The Rotarod accelerated from 4 to 40 RPM
over 5 min and the latency and speed at fall were re-
corded automatically.

Olfactory tests were used to assess the ability of mice
to detect (sensitivity test), differentiate (discrimination
test), and remember scents (memory test). Animals were
habituated in an empty, clean cage (45 x 24 x 20 cm)
for 8 min and subsequently exposed to a 3 x 3 cm piece
of filter paper (Whatman Inc., Piscataway, NJ, USA)
scented with 60 ul of an odorant for 2 min. In olfactory
sensitivity tests, varying dilutions of peanut butter were
tested (diluted to 1073, 10™% 107> and 107°® in mineral

oil) to estimate the detection threshold. Lack of odorant
detection was considered when mice spent as much time
investigating the odor as the control stimulus (mineral
oil alone). The olfactory discrimination test examined
the capacity to distinguish different scents using a
habituation-dishabituation paradigm [115] with an inter-
trial interval of 4 min. Each mouse had four successive
exposures to the first odorant (cinnamon, 10> concen-
tration) before being presented with a dissimilar odorant
(paprika, 1073 concentration). An increase in sniffing
duration with the novel scent is generally considered
indicative of intact discriminatory capacity. Lastly, the
olfactory memory test was performed to ascertain the
ability of mice to remember a previously presented
scent. Mice were exposed to an odorant twice, with 30,
60, 90, and 120 min intervals between the two trials.
Odors were randomized, comprising of several com-
mercially available extracts including vanilla, banana,
almond, and coconut (1073 concentration; Club House,
London, ON). A significant decrease in exploration time
upon re-exposure was considered an indication of
“olfactory memory”. Experimenters blind to treatment
code manually scored duration of sniffing using Obser-
ver XT 7.0 (Noldus Information Technology).

The step-down test was performed to measure anxiety-
related behavior relating to the readiness of a mouse to
descend from an elevated platform (15 x 9 x 9 cm) onto a
firm, dark surface in a brightly-lit, unfamiliar room [4, 98].
Latency to step down with all four paws was recorded
manually using a stopwatch with a maximum trial
duration set at 20 min.
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The novel object test, which relies on the approach-
avoidance conflict, was used to investigate exploratory
drive and anxiety-like response to a novel object
[98]. Mice were left to habituate to an arena
(45 x 45 x 20 cm) for 5 min before a small cone made
of stainless steel was positioned in the center for an
additional 5 min. EthoVision XT 8.0 software with a 3-
point detection module was used to quantify activity in
both “empty” and “full” phases, as well as latency to ap-
proach the object, contact frequency, and duration of
snout contacts.

The open field is a classical test of exploratory loco-
motor behavior and emotionality in a spacious environ-
ment [94]. In the current study, each mouse was gently
lowered along the wall of an enclosed circular arena
(diameter = 113 c¢cm) and permitted to explore, uninter-
rupted for 30 min. The topography of locomotion (cen-
ter vs. transition vs. thigmotaxic zones), total distance
moved, and velocity were automatically analyzed using
EthoVision XT 8.0 software.

Increased immobility (floating) of rodents in a situ-
ation with no escape has been proposed to reflect a state
of “behavioral despair” [87]. In the present study, mice
were lowered into a large pool (diameter = 120 cm)
filled with water (temperature ~ 25 °C) and left to swim
for 10 min. EthoVision XT 8.0 software was used to as-
sess activity. Floating was scored using the built-in mo-
bility module, with “immobility” defined as <5% change
in surface area between consecutive samples (rate = 29
samples/s).

Spontaneous alternation behavior (SAB) refers to the
intrinsic tendency of mice to alternate their choice of T-
maze arms on successive trials. Alternation has been
commonly used to assess hippocampal-dependent spatial
learning and memory [23]. The discrete-trial procedure
was employed for both acquisition and reversal trials, as
described previously [10].

Spatial learning and memory were assessed in the
Morris water maze (MWM) over the course of 8 days
(protocol described in detail [58, 76, 95]). Mice were ini-
tially trained in four 2-min “cue trials” with a visible
platform (Day 1). On the following 4 days, the platform
was hidden and four daily “acquisition trials” from dif-
ferent starting locations were performed. To examine
whether a spatial learning strategy was employed, a 2-
min “probe trial” was carried out on Day 6 and was
followed by three additional “extinction trials”. Subse-
quently, a cued platform was placed in the opposite
quadrant and mice were permitted 2 min to locate it.
“Cognitive flexibility” was measured in four “reversal
trials” with a hidden platform on Day 8. Measures in-
cluding latency to find the platform, distance traversed,
swimming speed and time spent in the quadrant of
interest were obtained with EthoVision XT 8.0.
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Statistical analysis

Statistical calculations were performed using SPSS 20
software package with the criterion for statistical sig-
nificance set at p < .05 for all group comparisons.
Dependent measures were analyzed using Student’s t-
test with Treatment (CNS SLE CSF vs. NMO CSF) as a
between-group factor. When measures were taken re-
peatedly (e.g., Intervals, Trials, Concentrations, Days
and/or Phases), they were considered within-group fac-
tors in analysis of variance (ANOVA) with repeated
measures. If significant interactions were detected,
Student’s t-test was used for post-hoc comparisons.
When appropriate, rates of post-surgery data were
taken as a percentage of pre-surgery performance.
Rates were calculated using the 1) last mean data
point, when pre-operative performance was continu-
ously increasing or decreasing, 2) average, when the
pre-surgery behavior was stable or fluctuating. When-
ever two treatment groups were compared at one time
point, Student’s t-test was performed. Graphs indicate
mean values and + SEM with significant differences of
p < .05, p <.01 and p < .001, shown as *, **, and ***, re-
spectively. Graphs represent post-surgery behavioral
performance unless specified.

Study 2: behavioral effects of purified BRAs

An initial attempt to identify pathogenic factors was
made by testing effects of three candidate BRAs [52, 62,
63, 66, 67, 84]. Using an experimental design identical to
Study 1, the behavioral effects of sustained exposure to
anti-NMDA receptor, ARPA, and anti-a-tubulin anti-
bodies were examined.

Animals

A total of 72, ~8-week-old CD1 males were tail-tattooed
and housed four mice/cage under laboratory conditions
described above. Pre-operative behavioral assessment
commenced at 11 weeks of age in batches of eight mice.
Group assignment was performed as in Study 1. The
ranking of factorial scores was followed by manual as-
signment into six groups (n = 12 mice/group) that did
not differ a priori in performance. The groups were
assigned to an antibody-specific group (anti-NMDA re-
ceptor, anti-ribosomal P, or anti-a-tubulin) and corre-
sponding control group (one for each antibody).
Consistent with Study 1, post-surgery monitoring of be-
havioral performance was started immediately and
lasted for ~2.5 weeks.

Purified antibodies

Commercially available rabbit polyclonal IgG antibodies
to NMDA receptor (anti-NR2A, cat. #07-632; Millipore,
Billerica, MA, USA), ribosomal P (anti-RPLPO, cat.
#NBP1-49979; Novus Biologicals, Oakville, ON), and
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cytoskeletal protein (anti-a-tubulin, cat.#600-401-880;
Rockland Immunochemicals Inc., Limerick, PA, USA)
diluted in aCSF were used as surrogates for intrathecal
binding of CNS SLE relevant antigens. Prior to dilution
in aCSF, antibody solutions were dialyzed as per in-
structions from Rockland Immunochemicals using
Slide-A-Lyzer Dialysis Device (10 K MWCO, cat. #
P169574, Fisher Scientific, Ottawa, ON).

Survival surgery

Sterile implantation of low-cap cannulae and primed
mini-pumps took place under ketamine/xylazine
anesthesia as described above. Each mini-pump was
filled with ~20 pg of the experimental antibody and di-
luted with artificial CSF to achieve an antibody delivery
rate of 1.2 pg/day. The cumulative dose over ~2.5 weeks
of treatment was calculated to be higher than the dose
shown to induce apoptosis of hippocampal neurons in
vivo [24]. Control mice were treated in the same way,
with the exception that the pump was filled with aCSF.
Although an optional design may have employed con-
trol IgG, it was shown earlier that even normal IgG in
the CSF may induce hyperactivity and depressive-like
behavior [82].

Behavioral battery

Fifteen days prior to and 15 days after the surgery ani-
mals underwent an identical sequence of protocols as
in Study 1 (see Fig. 2).

Statistical analysis

Statistical analysis and graphical presentation were per-
formed as described in Study 1 above, with Treatment
(anti-NMDA receptor, ARPA, or anti-a-tubulin vs. Con-
trol) as a between-group factor.

Study 3: effects of CNS SLE CSF and BRAs on cultured
hippocampal neurons

Based on previous studies on the excitotoxic effects of
SLE autoantibodies [30, 92], CNS SLE CSF and com-
mercially available BRA were tested for intracellular
Ca®* responses in murine neuronal cultures. Compared
to our initial study [92], we presently used adult neu-
rons (vs. neural stem cells), a more specific calcium
sensitive probe, human CSF (vs. murine), and a better
control of extracellular calcium (EGTA vs. EDTA).

Primary hippocampal cell culture

Primary hippocampal cell cultures were isolated from
newborn (PO) Intor:Swiss mice pups [120]. Once the
whole brain was isolated, cerebral hemispheres were
peeled back and the meninges surrounding the hippo-
campi were removed. Thereafter, hippocampi were dis-
sected out and placed into 2 ml tubes filled with cold
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sterile PBS (in mM: NaCl, 137, KCl, 2.7, Na,HPO,, 8.1,
KH,PO,, 1.5). Hippocampi from 3 to 5 pups of both
sexes were combined. Isolated hippocampi were washed
with PBS and enzymatically dissociated with freshly dis-
solved trypsin from porcine pancreas (1 mg/ml, Sigma-
Aldrich) at 37 °C for 10 min with occasional shaking.
This was followed by washing and resuspension in plat-
ing medium (Neurobasal medium supplemented with
10% fetal bovine serum and 1% GlutaMAX-], all from
Gibco, Invitrogen, and gentamicin 10 upg/ml, Sigma-
Aldrich). The suspension was triturated with 1 ml and
200 pl pipette tips and residual debris was allowed to
settle down for 1-3 min. Subsequently, the supernatant
single-cell suspension was transferred to a new 2 ml
tube. Cells were counted and 12,000-15,000 cells were
seeded onto 7 mm glass coverslips (#1, Menzel Glasser,
Germany), previously coated with poly-D-lysine (10 pg/
ml, Sigma-Aldrich). Once the cells adhered (~30 min),
the Petri dishes with glass coverslips were filled with
2 ml of growth medium (Neurobasal medium supple-
mented with 2% B27, 1% GlutaMAX-], all from Gibco,
Invitrogen, and gentamicin 10 pg/ml, Sigma-Aldrich).
Neurons were cultivated in a humidified atmosphere of
5% CO2/95% air at 37 °C. Half of the growth medium
was changed every other day and cytosine B-D-
arabinofuranoside hydrochloride (AraC, Sigma-Aldrich)
was added to the growth medium (1 uM on the second
day, 3 uM from the fourth day onwards) to suppress
glial growth. Primary hippocampal neurons were used
in experiments from 7 to 10 days in vitro (DIV).

Intracellular calcium imaging and data analysis

Intracellular calcium concentrations were assessed using
the cell-permeate acetoxymethyl (AM) ester of Fluo-4
(Fluo-4 AM, Molecular Probes, Eugene, OR, USA). Cells
were loaded with 5 pM Fluo-4 AM for 30 min in ex-
ternal solution at 37 °C. Before imaging, cells were
washed three times and kept in external solution for
an additional 10-15 min at room temperature to allow
de-esterification of the dye. Coverslips were then trans-
ferred into the recording chamber supplied with 1 ml of
working solution (2 mM Ca®* or Ca®*-free external solu-
tion), placed on an inverted epifluorescent microscope
(AxioObserver Al, Carl Zeiss, Oberkochen, Germany)
equipped with water, glycerine and oil immersion object-
ive LD LCI Plan-Apochromat 25x/0.8 (Carl Zeiss) and
combined with VisiFluor Calcium Ratio Imaging System.
The excitation light source was a Xenon Short Arc lamp
(Ushio, Japan) combined with a high-speed polychro-
mator system (VisiChrome, Visitron Systems GmbH,
Puchheim, Germany). The excitation light (480 nm)
and the emission light passed through a FITC filter set
(Chroma Technology Inc., VT, USA). Time-lapse images
were obtained using the Evolve 512 EMCCD Digital
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Camera System (Photometrics, Tucson, AZ, USA), every
second for 15-45 min via VisiView high-performance
imaging software (Visitron Systems). Initially, fluores-
cence intensities were recorded for 2—-5 min to deter-
mine the baseline fluorescence (Fy). Thereafter, 500 pul of
diluted CSF from four CNS SLE patients, one control
patient with NMO, or commercially available purified
antibodies in working solution were applied individually to
the imaged cells by customized delivery system, via glass
pipettes (0.8 mm inner diameter, positioned ~350 pm
away and ~1 mm above the cells, at an angle of 45°) con-
nected to High Speed Solution Exchange System (ALA
Scientific Instruments, Farmingdale, NY, USA) with pinch
valves and VC3 electronic valve controller. The volume in
the recording chamber was kept at ~1 ml by suction from
the top of the solution. The response of cells to human
CSF/commercial antibodies was recorded for an additional
5 min, followed by constant perfusion of the working
solution (washing step), and 50 mM K was applied to
the cells at the end of each experiment to observe their
response to depolarization.

The external solution consisted of (in mM): NaCl 140,
KCl 5, CaCl, 2, MgCl, 2, D-glucose 10, and HEPES 10,
pH 7.4, adjusted with NaOH. For the Ca®*-free external
solution, CaCl, was omitted and Na,EGTA (0.1 mM)
was added. For the depolarizing solution, NaCl was
lowered to 95 mM, while KCI was increased to 50 mM.
For the experiments with a Ca**-free solution, 0.3 mM
Na,EGTA was added to the diluted human CSF in
order to buffer free calcium already present in the CSF
[56]. All chemicals (Sigma-Aldrich) were of high purity
grade and were dissolved in deionized water (18.2 MQ).
The osmolality of each solution was ~300 mOsM, mea-
sured by vapor pressure osmometer (Vapro 5520, Wescor
Inc., Logan, UT, USA).

Set of blockers and inhibitors were dissolved per the
manufacturer’s instructions and kept in small aliquots
at —20 °C. Unless stated otherwise, drugs were pur-
chased from Tocris Bioscience, UK. Tetrodotoxin
(TTX), a selective inhibitor of Na* channel conductance,
was used in the final concentration of 1 pM to block the
generation of action potentials. The cocktail that was
used for the blockade of voltage-gated calcium channels
(VGCChoer) consisted of nifedipine (NIF, 10 pM), L-
type calcium channel blocker, w-Conotoxin GVIA
(GVIA, 5 uM), a selective blocker of N-type calcium
channels, and w-Agatoxin TK (AGA, 200 nM), a select-
ive blocker of Cay2.1 P/Q-type calcium channels. The
inhibitors of glutamate receptor channels (GluR;,,) used
were 6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX,
20 uM), a potent AMPA/kainate receptor antagonist,
and DL-2-Amino-5-phosphonopentanoic acid (DL-APS5,
100-200 uM, Sigma-Aldrich), potent and selective
NMDA receptor antagonist.
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Statistical analysis

Raw data were analyzed using SigmaPlot (Systat Soft-
ware, San Jose, CA, USA), with the criterion for statis-
tical significance set at p < .05. The amplitudes of
intracellular calcium concentration ([Ca®'];) transients,
induced by diluted CSF samples or commercially avail-
able antibodies, are presented as the mean value of
normalized fluorescence intensity + SEM, with # being
the number of regions of interests (ROIs). On average,
the number of ROIs per frame was 31 + 3
(mean + SEM). In pharmacological experiments, ampli-
tudes from the same ROIs were compared before and
after drug treatment and analyzed on normalized data
using paired t-test. Summary histograms indicate mean
of peak amplitudes + SEM with significant differences
of p < .001 shown as *. The peaks of the fast and slow
component of calcium transients of two effective CSF
samples and two effective autoantibodies were com-
pared using Kruskal-Wallis One-Way ANOVA on
Ranks with post-hoc Dunn’s Method.

Results

CNS SLE CSF infusion induces transient weight loss and
alters home-cage behavior

As expected, a significant drop in postoperative body
weight (taken as a percentage of body weight at surgery)
was observed in both groups, likely due to the stress
induced by general anesthesia and pain. However, mice
receiving CSF from lupus patients exhibited a more pro-
nounced reduction in body weight (Day 4: t;4, = 2.529,
p < .05 Day 5: ty4 = 2.841, p < .05; Day 6: tj4 = 2.724,
p < .05; Fig. 3a). Group differences in weight were tran-
sient in nature, only being detected in the initial days of
CSF infusion. Administration of CNS SLE CSF led to a
prolonged decrease in water (Treatment: F; 14 = 9.909,
p < .01, Fig. 3b) and food consumption (Treatment:
F113 = 28.044, p < .001, Fig. 3c). Changes in ingestive
behavior were accompanied by impaired running wheel
activity, as measured by lower number of rotations
(Treatment: F; 14 = 28.722, p < .001, Fig. 3d), reduced
time spent in the wheel (Treatment: F;;, = 12.672,
p < .01) and increased time in the shelter (Treatment:
F114 = 22.657, p < .001, Fig. 3e). In addition, infusion of
CSF from CNS SLE patients resulted in less overall
ambulation (Treatment: F; 1, = 12.637, p < .01, Fig. 3f),
without affecting movement velocity (Treatment:
F114 = .347, n.s., data not shown).

CNS SLE CSF infusion impairs olfactory discrimination

No significant differences in the latency to traverse a
narrow beam (Treatment: F; 14 = .79, n.s.) or number
of beam slips (Treatment: F; 14 = .27, n.s.) were noted.
Consistent with the results from the beam-walking
task, latency to fall from the Rotarod was comparable
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among mice receiving CNS SLE CSF and those treated
with NMO CSF (Treatment: F; 14 = 2.489, n.s.). Taken
together, these results suggest post-surgical behavioral
performance was not confounded by deficits in bal-
ance, motor coordination, or muscle strength. How-
ever, mice assigned to receive CNS SLE CSF spent
significantly more time investigating cinnamon in
their first trial (Trial x Treatment: F;;, = 8.771,
p < .01, Fig. 4a). However, differences subsided there-
after, as both groups showed comparable habituation
to repeated exposures of cinnamon (Treatment:
F114 = .6, n.s.) and similar exploration of a paprika-

laced filter paper in the dishabituation trial (Treat-
ment: F; 14 = .2, n.s.). When exposed to the same para-
digm following mini-pump implantation and CSF
infusion, no group differences were noted during
cinnamon habituation, although an overall drop in
mean sniffing duration was evident. Importantly, mice
treated with lupus CSF spent significantly less time in-
vestigating the dishabituation odor in comparison to
control animals (t;4 = 2.184, p < .05, Fig. 4b). No sig-
nificant group differences in tests of olfactory sensitiv-
ity and short-term olfactory memory were detected
(data not shown).
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CNS SLE CSF increases immobility in the forced swim task  topography of movement and exploration of the object

without altering exploratory and anxiety-like behaviors

Between-group comparisons in the step-down task re-
vealed comparable latencies to step-down from the ele-
vated platform in both treatment groups (ti4 = .262,
n.s.). Similarly, when exposed to the novel object test,
groups did not differ in overall locomotion, the

(data not shown). They also performed similarly in the
open field in terms of distance moved, velocity and time
spent in the center and thigmotaxic zones (data not
shown). In contrast to dry-land paradigms probing
anxiety-like behavior, administration of CNS SLE CSF
led to a significant reduction in swimming distance
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(Treatment: F; 14 = 4.870, p < .05, Fig. 4c) in the forced
swim test. The overall decrease in swimming coincided
with increased immobility in CNS SLE CSF-treated ani-
mals (2—4 min interval: t;4 = 2.213, p < .05, Fig. 4d).

CNS SLE and NMO CSF infusions differentially alter spatial
learning and memory

Assessment of SAB revealed that both groups showed
comparable alternation rates before surgery (t;4 = .64,
n.s.). However, infusion of control CSF from an NMO
patient led to a significant reduction in spontaneous
alternation rate post-surgery (Treatment: t;3 = 2.213,
p < .05, Fig. 4e). When tested in the MWM, there were
no group differences in the latency to find the cued plat-
form (Treatment: F; 4 = .784, n.s.) or the hidden plat-
form over the next 4 days (Treatment: F;;4 = 1.968,
n.s.). However, control mice displayed longer swim paths
to locate the platform over the same acquisition trials
(Treatment: Fy 14 = 4.932, p < .05, Fig. 4f). Both groups
exhibited similar performance when the platform was re-
moved or moved to the opposite quadrant and made vis-
ible. When the same platform was submerged in reversal
trials, mice receiving CNS SLE CSF displayed a signifi-
cantly stronger perseveration response for the quadrant
where the platform used to be (Treatment: F; 14 = 4.676,
p < .05, Fig. 4g). Taken together, CNS SLE CSF did not
affect initial response acquisition, yet impaired perform-
ance when the task requirements increased in difficulty,
likely due to proactive interference. With respect to the
SAB data, lower alteration rate further suggests that
NMO CSF has detrimental effects on the formation of
spatial learning and memory.

Sustained infusion of anti-NMDA receptor antibodies
alters olfactory responsiveness and improves water-maze
performance

Behavioral performance between mice receiving anti-
NR2A antibodies and controls treated with aCSF was
comparable in home-cage setting and in paradigms
reflecting neurological function, locomotion, moti-
vated behaviors, and learning/memory (data not
shown). Task-specific differences, however, were evi-
dent in the olfactory tasks and the MWM. Namely,
mice treated with anti-NR2A antibodies spent signifi-
cantly less time sniffing cinnamon, during the four
habituation exposures, compared to mice that were
administered aCSF only (Treatment: F;,, = 5.217,
p < .05; Fig. 5a). When comparing the exploration of
the dishabituation scent, there was a trend for aCSF-
treated animals to spend more time with paprika
(tp = 1.730, p = 0.098). These results suggest that
anti-NMDA receptor treatment alters responsiveness
to previously-exposed scents, without necessarily af-
fecting habituation or discriminatory capacity.
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Two outliers (one from each treatment group) that
consistently failed to find the platform were excluded
from MWM analyses. Performance in the cued and ac-
quisition phases of the test was comparable between
groups (data not shown). When the task was made more
complex in reversal trials, mice that received the anti-
NR2A antibodies exhibited shorter path lengths to locate
the newly-positioned hidden platform (Treatment: F; 59 -
5.161, p < .05; Fig. 5b). They also swam shorter distances
in an empty pool devoid of a platform during probe and
extinction trials (Treatment: F; 5o _ 4.611, p < .05; Fig. 5¢).
Taken together, sustained anti-NMDA receptor adminis-
tration seemingly improved “cognitive flexibility” when
reaching a relocated, hidden platform.

Sustained infusion of ARPA alters metabolic demands and
search strategy

Like the results obtained with anti-NR2A, infusion of
anti-RPLPO antibodies did not influence overall perform-
ance in most behavioral paradigms tested. Although,
group differences were not observed in general measures
of activity in INBEST (distance moved, velocity, running
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wheel), mice treated with anti-RPLPO antibodies dis-
played alterations in water intake (Day x Treatment:
F, 154 = 2.195, p < .05, Fig. 6a) and sucrose preference
(Treatment: F;,, = 5.647, p < .05; Fig. 6b). In the
MWM, there were no differences in the latency to lo-
cate a cued or hidden platform during acquisition and
reversal trials (Fig. 6¢), but anti-RPLPO-treated mice ex-
hibited poorer spatial bias for the target quadrant when
the platform was removed from the pool in the probe
trial (t;4 = 2.224, p < .05, Fig. 6d). The results suggest
that sustained ARPA infusion into healthy mouse
brains alters metabolic demands and search strategies.
Both treatment groups performed comparably in all
other behavioral paradigms (data not shown).

Sustained infusion of anti-a-tubulin antibodies stimulates
spontaneous behavior and reversal learning

Post-surgery monitoring of home-cage behavior revealed
that infusion of anti-a-tubulin antibodies increased run-
ning wheel activity, as measured by wheel rotations
(Treatment: F;9 = 5.163, p < .05, Fig. 7a) and time
spent in the running wheel (Treatment: F;,9 = 5.518,
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p < .05, Fig. 7b). Coinciding with higher running wheel
duration, mice treated with anti-a-tubulin antibodies
also spent less time in the shelter (Treatment:
F119 = 9431, p < .05, Fig. 7c). Other INBEST measures
related to ingestive behaviors, ambulation, and velocity
were similar in both groups (data not shown). In the
MWM, mice from both groups performed comparably
on cued, acquisition and probe trials (Fig. 7d). However,
when the hidden platform was placed in the opposite
quadrant, anti-a-tubulin antibody administration cor-
related with a shorter escape latency (Treatment:
Fi1o5 = 4.405, p < .05, Fig. 7d). Taken together, the
results are consistent with the notion that sustained
administration of anti-a-tubulin antibodies had a
stimulatory effect on certain aspects of behavioral per-
formance. Mice treated with anti-a-tubulin performed
comparably to animals receiving only aCSF in all other
respects (data not shown).

CSF samples from CNS SLE patients induce diverse
intracellular calcium transients

Analysis consisted of extracting average fluorescence
intensities from ROIs that were drawn around the

neuronal bodies. Hippocampal cultures at 7-10 DIV ex-
hibited typical pyramidal neuronal bodies and many
interconnected branches forming a network (Fig. 8a).
Astrocytes were also present in the cultures, despite
treatment with AraC. However, due to their flat morph-
ology, they were not easily visible in the brightfield
images. Conversely, fluorescent images of Fluo-4 AM
loaded cells showed both neurons and astrocytes (Fig.
8b—c), with astrocytes exhibiting spontaneous calcium
activity that (in some cases) interfered with signals from
neuronal bodies. Hence, such cases were left out from
further analysis. In addition to ROIs that encompassed
neuronal bodies, five ROIs were extracted from the
background, at each time point of the experiment. The
background correction was done by subtracting averaged
background fluorescence from each ROI at every time
point. Under resting conditions, the signal intensity from
the calcium indicator did not exceed 10% of the dynamic
range of acquisition (Fig. 8b). Cells with high resting
intensity were excluded from further analysis. Upon
stimulation (peak of the CNS SLE CSF shown in Fig. 8c),
the intensity of fluorescence increased linearly with the
increase in the intracellular calcium concentration



Kapadia et al. Acta Neuropathologica Communications (2017) 5:70 Page 15 of 24

brightfield Fluo-4 AM resting Fluo-4 AM CSF #4 1:25 255

0
d . e . f . g . h .
CSF #4 1:25 CSF #4 1:25 CSF #4 1:50 CSF #2 1:10 CSF NMO 1:10
2 mM Ca% 2 mM Ca% 2mM Ca% 2 mM Ca% 2 mM Ca%
M\ L —— e .
[ ] [ ] [ ] [ ]
I CsF#41:25 J csF#21:10
Ca* free Ca?* free w
L
I =
-l —-FM L
"o E . B 100 s

Fig. 8 Examples of CSF-induced intracellular calcium transients in cultured hippocampal neurons. a Brightfield (transmitted light) image of cultured
hippocampal neurons. b Fluorescent image of hippocampal neurons loaded with 5 pM Fluo-4 AM, in color-coded intensity scale (0-255, right) before
the application of CSF. ¢ An example of intracellular calcium peak response to CNS SLE CSF #4, 3 s after application. Scale bars for (@a—c) are shown in
lower right corner and cell bodies of neurons and astrocytes are indicated by arrows and asterisks, respectively. d—j Representative traces of intracellular
calcium responses (normalized fluorescence intensity) of hippocampal neurons challenged by CSF from CNS SLE or NMO patients. CSF application is
indicated by a black dot below the trace. CSF origin, dilution, as well as the presence/absence of external calcium is indicated above the traces. In an
external solution with 2 mM Ca®*, 1:25 CNS SLE CSF #4 induced two types of responses, with (d) only fast or with (e) fast and late slow components.

f The same sample at 1:50 dilution was also able to increase the cytosolic calcium concentration in the repeated application, to the same level as the
first response. g 1:10 CNS SLE CSF #2 induced a fast calcium transient in 2 mM Ca”*. h Disease control NMO CSF in 1:10 dilution did not influence
the intracellular calcium concentration in 2 mM Ca”* external solution. i In a Ca”*-free external solution, 1:25 CNS SLE CSF #4 did not induce the
fast transient, and j no calcium response could be detected after application of 1:10 CNS SLE CSF #2. Note: Calibration for (d—j) is shown in the
lower right corner

([Ca*]), allowing us to evaluate the changes in [Ca*"], by
normalizing the change in fluorescent intensity to the rest-
ing level (AF/F) in the dynamic range of the acquisition.
Table 2 summarizes the effects of CSF samples from
four CNS SLE and one NMO patient on cytosolic Ca2?t  Table 2 Four CNS SLE and one NMO CSF sample characterized
homeostasis in cultured hippocampal neurons. Two of by their ability to induce intracellular calcium responses in
the four CSF samples from CNS SLE patients induced cultured hippocampal neurons
transient changes in [Ca2+]i. Ten times diluted CSF from CSF Dilution  NMO  CNS SLE #1  CNS SLE #2 CNS SLE #3  CNS SLE #4

patient #4 increased the [Ca®']; above the dynamical 110 - - + - e+
range of the acquisition, so further tests were done 125 nt. nt - nt. ++
with higher dilutions. At a dilution of 1:25, this sam-  5q nt nt nt. nt i

. . 2+7.
ple 1.nduced‘ two tYPeS of resppnses. .a fast [Ca ]1 Calcium transient detected (+) with the number of symbols corresponding to
transient (Fig. 8d; time-lapse video clip enclosed as  the transient relative amplitude; not detected (-); not tested (n.t)
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Additional file 1: Video S1) and a late, slow component
that was seen in some neurons (Fig. 8e). Testing a higher
dilution (1:50) revealed a dose dependent effect in which
the amplitude of [Ca®*]; transient gradually decreased
with the dilution, from 3.00 + 0.18 (1:25 dilution,
n = 51), to 1.23 + 0.08 (1:50 dilution, n = 51). Moreover,
the effect of CNS SLE CSF #4 was repeatable, as the sec-
ond stimulation, applied 100 s after the first stimulus
(both in 1:50 dilution), induced the [Ca®']; transient of
the same shape and amplitude (Fig. 8f). CSF from CNS
SLE patient #2 was effective in the 1:10 dilution exclu-
sively ([Ca®; amplitude = 1.29 + 0.18, n = 31) and ex-
hibited only one type of response with fast [Ca*);
transient (Fig. 8g). CSF from the NMO patient did not
have any effect on cytosolic calcium (Fig. 8h).

Ca**-free solution abolishes the effect of CNS SLE CSF

To identify the source of calcium ions that contribute to
CNS SLE CSF-induced [Ca®*]; transients, further experi-
ments were conducted in Ca*'-free external solution.
External calcium was proven to be the major source of
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intracellular transients, as Ca’*-free external solution
substantially reduced the effect of 1:25 CNS SLE CSF #4
to 0.32 + 0.04 (n = 26, Fig. 8i) and completely abolished
the effect of CNS SLE CSF #2 (n = 17, Fig. 8j).

Voltage-gated calcium channels and glutamate receptors
are implicated in CNS SLE CSF-induced Ca**transients

To elucidate specific receptor mechanisms, we employed
blockade of the action potential using 1 uM TTX. All
experiments were performed with 1:25 CNS SLE CSF #4
and amplitudes from the same ROIs were compared in
different pharmacological treatments and analyzed on
normalized data. A representative trace of gradually
decreasing amplitude with the addition of drug combi-
nations is shown in Fig. 9a. The application of 5 pM
GVIA, 0.2 uM AGA, and 10 uM NIF (to block the
voltage-gated calcium channels - VGCC ) reduced
the amplitude of the control response from 3.39 + 0.21
to 2.54 + 0.15 (t43 = 9.07, p < .001), suggesting that
voltage-gated receptors take part in CNS SLE CSF-
induced calcium transients (Fig. 9b). Similarly, the
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Fig. 9 Effects of blockers of voltage-gated calcium channels and inhibitors of ionotropic glutamate receptors on CNS SLE CSF #4 - induced calcium
transients. a A representative trace of normalized fluorescence with gradually decreasing amplitudes following differential drug treatments
to block action potentials (TTX), voltage-gated calcium channels (VGCCpock) and AMPA/kainate and NMDA receptors (GluR;np). b Summary
histogram of peak amplitudes confirming that blockade of voltage-gated and ionotropic receptors decreases the amplitude of the control
response. ¢ Representative trace and d summary histogram of CNS SLE CSF #4 - induced calcium transients showing that GluR;,, drugs alone
lower the amplitude of the control response. e NMDA receptor blockade with 200 uM DL-AP5 completely abolished the control response,
suggesting a predominant role for NMDA receptors in CNS SLE CSF-induced calcium transients. The addition of CSF in (a, ¢, e) is indicated
by black dots below the trace. Drugs used are indicated by the gray timelines above the trace and calibration within the trace on the right.
* p < 001, two-tailed paired t-test. Abbreviations: TTX — Tetrodotoxin; VGCCpiock — GVIA + AGA + NIF; GVIA — w-conotoxin GVIA; AGA — w-agatoxin TK;
NIF - Nifedipine; GluR;,, — CNQX + D-APS5; CNQX - 6-Cyano-7-nitroquinoxaline-2,3-dione; D-AP5: D-2-Amino-5-phosphonopentanoic acid;
DL-AP5 - DL-2-Amino-5-phosphonopentanoic acid
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addition of 20 uM CNQX and 100 uM D-AP5 (to inhibit
AMPA / kainate and NMDA receptors - GluR;,,) further
reduced the amplitude to 1.97 + 0.13, and this reduction
in amplitude was significant vs. both control response
(taz = 13.16, p < .001), and VGCCyoer (ts3 = 18.56,
p < .001) implying a role for ionotropic receptors (Fig. 9b).
Next, we examined whether ionotropic or voltage-gated
calcium channels underlie CNS SLE-induced calcium
transients. GluR;,, drugs were solely able to lower the
amplitude of the control response from 3.63 + 0.34 to
1.92 + 0.31 (t;5 = 15.95, p < .001, representative trace
Fig. 9c, summary histogram Fig. 9d). The averaged ampli-
tudes of the two control responses did not differ signifi-
cantly and no difference could be detected between the
inhibition of only ionotropic (GluR;,;) and both ionotro-
pic and voltage-gated receptors (VGCCpjoci + GluRyyy). Fi-
nally, to distinguish between AMPA /kainate and NMDA
receptor involvement, 200 uM DL-AP5 (NMDA receptor
blocker in higher concentration) was applied. This block-
age completely abolished the control response in every
tested ROI (1 = 23, see example in Fig. 9e), suggesting
a predominant role for NMDA receptors in CNS SLE
CSF-induced Ca®* transients.
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Commercially available BRAs fail to mimic CSF-induced
Ca’*transients

To narrow down immunoglobulins accounting for neu-
roactive effects of autoimmune CSF, we assessed Ca”*
transients after administration of commercially available
anti-NR2A, anti-RPLPO, and anti-a-tubulin antibodies.
We also tested a high concentration of albumin since
CNS SLE CSF #4 showed ~500 pg/ml of this protein.
Figure 10 compares averaged responses of effective CSF
samples and BRA followed by wash after 5 min and a
depolarizing test (50 mM K) at the end of experiments.
The averaged shape of 1:10 CNS SLE CSF #2 calcium
response exhibited only a fast transient that peaked 3 s
after CSF application, with an amplitude of 1.28 + 0.18
(n = 31, Fig. 10a). Conversely, the 1:25 CNS SLE CSF #4
— induced calcium response exhibited not only the fast
transient that peaked 3 s after application (2.89 + 0.18),
but also a slower component with an amplitude of
0.53 = 0.09 (measured 3 min after application), as well
as a returning of the signal to a basal level after wash
(n = 51, Fig. 10b). In contrast to diluted CNS SLE CSF
samples, anti-NR2A antibody induced a fast calcium
transient (0.66 + 0.10, n = 38) that peaked at 6 s, showed
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Fig. 10 Comparison of averaged intracellular calcium transients evoked by effective CNS SLE CSF and commercially available antibodies in time.
a Trace illustrating that CNS SLE CSF #2 diluted to 1:10 evoked only a fast transient that peaked 3 s after CSF application. b The calcium response
to 1:25 CNS SLE CSF #4 exhibited a fast transient after 3 s that was followed by a slower component measured 3 min after application and a
return to basal levels after wash. ¢ Anti-NR2A evoked a fast calcium transient that peaked at 6 s and a slow component that peaked after 3 min
and could not be washed. d Anti-RPLPO failed to induce a fast transient but provoked a slow and sustained rise of [Ca®*]; 3 min after application.
The application of CSF/antibodies in (a-d) is indicated by an upward arrow, duration by the gray line above the trace, wash by a thick downward
arrow, and depolarizing 5 s pulse (50 mM K*) by a black strip above the trace. The origin and dilution of CSF samples, as well as the antibodies
and concentration used, are indicated above the gray line
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a slow component (046 + 0.03) 3 min after and
remained even after wash (Fig. 10c). Anti-RPLPO anti-
body provoked only a slow rise of [Ca®*]; with an ampli-
tude of 0.19 + 0.02 (n = 13) 3 min after application, that
also could not be washed (Fig. 10d). Pairwise compari-
sons of the fast calcium transients among treatments
(both CNS SLE CSF and anti-NR2A) differed signifi-
cantly (Kruskal Wallis, H2 = 60.028, p < .001; Dunn’s
post-hoc tests, p < .05). On the other hand, all pairwise
comparisons of the slow components among treatments
(CNS SLE #4, anti-NR2A, anti-RPLPO) revealed a signifi-
cant difference only between the two commercial auto-
antibodies (Kruskal Wallis, H2 = 12.414, p < .05; Dunn’s
post-hoc tests, p < .05). Neither anti-a-tubulin nor albu-
min induced any perturbations in [Ca®*]; levels (data not
shown). Taken together, the results obtained suggest that
the effects of CNS SLE CSF are heterogeneous and com-
plex, and cannot be mimicked by an individual antibody.

Discussion

Given the chronic and complex nature of CNS SLE, the
current study examines in vivo and in vitro effects of
sustained i.c.v. infusion of human CSF samples and pu-
tative autoantibodies on broad behavioral performance
and neuronal calcium signaling. Significant differences
were found in several behavioral domains, but the sus-
tained administration of putative BRAs could not recap-
itulate the broad spectrum of behavioral manifestations
detectable in the spontaneous murine MRL model of
lupus, or in healthy mice treated with undiluted CNS
SLE CSF. Moreover, we showed that CSF from two out
of four lupus patients induced neuronal activation
through Ca** influx, which in one case seemed to be
mediated via the NMDA receptor system. However,
anti-NR2A and anti-RPLPO antibodies could not induce
[Ca®'] responses comparable to the effects of patient
CSF. Although the importance of other BRAs is not ex-
cluded, the present results suggest that the synergistic
effect of multiple BRAs underlies altered neuronal me-
tabolism and behavioral dysfunction in CNS SLE.

The results obtained with CNS SLE CSF are largely
consistent with previous reports detailing CSF neurotox-
icity in human and murine forms of lupus [24, 78, 92].
Whereas these earlier studies focused on cellular effects,
our results suggest that BRA-rich CSF promotes an
assortment of impairments in metabolic demands,
emotional reactivity, olfactory function, and motivated
behaviors. In this regard, the functional profile of ani-
mals receiving autoimmune CSF mimics several aspects
of the so-called “autoimmunity-associated behavioral
syndrome” that lupus-prone MRL-lpr mice develop
[93, 108]. Characteristic behavioral deficits in this sub-
strain include confined exploration in the vicinity of
their “home-base” [96, 98], reduced responsiveness to
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palatable stimulation [9, 91], response perseveration in
spatial learning tasks [10, 46, 96], excessive immobility
when forced to swim [98], and altered olfactory function
[57, 60]. The two latter impairments, operationally
termed “autoimmune depression” by Katzav and col-
leagues, have also been noted in another murine model
of CNS SLE induced through the acute i.c.v. infusion of
ARPA [61-64]. Yet, the results from the current study
do not entirely support such a relationship. In particular,
while the transient decrease in sucrose preference could
be reflective of depressive-like behavior, anti-RPLPO ad-
ministration also produced a reduction in water intake,
thus raising the possibility that these mice also have al-
tered metabolic demands. Instead, the finding of spatial
reference memory deficits in anti-RPLPO-treated mice is
more in line with recent studies demonstrating that pas-
sive transfer of ARPA induces learning impairments in
otherwise healthy animals [14, 61]. The results are intri-
guing given that we could not reproduce similar deficits
using anti-NMDA receptor antibodies, as others have
noted in paradigms of learning and memory [26, 66, 67].
Our findings, however, are consistent with several re-
ports that have been unable to replicate the association
between anti-NR2 antibodies and behavioral impair-
ments in SLE patients [42, 45, 68-70, 86, 106] and
MRL-Ipr mice [77]. Relative improvements in acquiring
the novel escape location following anti-NR2A exposure
suggest that anti-NMDA receptor antibodies may have a
stimulatory role at certain concentrations and under cer-
tain experimental conditions. Such results would be in
line with neuroprotective effects elicited by anti-NR1/
NR2 antibodies in experimental models of stroke, epilepsy
and neuropathic pain [27, 111]. By the same account, anti-
a-tubulin antibodies also seemed to have a stimulatory ef-
fect, one that was more robust and detected on multiple
performance measures. Although the results may be
analogous to the known effects of anti-NMDA receptor
antibodies, they are largely inconsistent with clinical asso-
ciations [84] and experimental evidence with another
cytoskeletal autoantibody [75].

We have previously documented an abrupt cytotoxic
effect of CSF from a deceased CNS SLE patient on a
neural stem cell line [92]. The effect was corroborated
by a microfluorimetrically measured (calcein-sensitive)
rise of intracellular ions that was not dependent on
extracellular calcium, but instead on the inhibitors of
intracellular Ca®* store channels. By employing a more
specific Ca®*-sensitive probe, the results herein confirm
the induction of intracellular ionic misbalance by CNS
SLE CSF with a clear role of Ca®>* signaling in this
process. Contrary to our previous study, the CSF effect
in the present study was fully dependent on extracellular
Ca®*. This discrepancy may be attributable to the different
neuronal cell types employed (primary neurons in culture
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versus a neuronal stem cell line), as well as to the applica-
tion of CSF from different patients. Other groups have
also tested the effects of serum BRA on [Ca*]; homeosta-
sis, including ARPA in primary cortical neurons [79, 102]
and anti-GluN2 antibodies on GluN1/N2a-transfected
HEK 293 cells [36]. In all these studies, BRA induced Ca**
entry into cells through membrane receptors, but only
anti-GluN2 antibodies were shown to induce Ca* entry
by affecting the binding capacity of zinc and not the chan-
nel itself [36]. The latter study used the same BRA con-
centration, as we did in the present study. However,
Matus and colleagues obtained well-defined transients (in
67% neurons) with just 0.1 pg/ml ARPA. In our hands,
100 pg/ml anti-RPLPO caused a modest, albeit sustained
and irreversible [Ca®*]; rise, which was not observed in
previous studies [79, 102]. This difference could be ex-
plained by different sources of antibodies — purified
from patient sera [79, 102] versus commercially available
in the present study.

Notably, the effect of CNS SLE CSF on [Ca®*]; could
be induced with a 1:50 dilution. However, these in vitro
experiments also demonstrate significant heterogeneity,
which is typical of the overall CNS SLE symptomatology
(see Table 1). This could be seen in terms of concentra-
tion-dependent effects (1:50 CSF #4 induced a response
comparable to 1:10 CSF #2) and in terms of the response
shape (e.g., [Ca>"]; spike alone, or followed by a late damp-
ened prolonged transient). The effect was shown to be
predominantly attributed to postsynaptic NMDA recep-
tors, as it could be completely abolished by DL-APS5.
Nevertheless, the effect of VGCC cannot be completely
excluded via Ca®*-dependent presynaptic release or by re-
moving voltage-dependent Mg block from NMDA recep-
tor. One may hypothesize that the effect of CNS SLE CSF
is mediated directly by IgG Fab’2 fragments, unrelated
to complement activation, as shown for DNA/NMDA
receptor-reactive antibodies [30].

Our pharmacological dissection experiments suggest
that the CSF effect is mediated mainly via glutamate re-
ceptors. Nevertheless, inhibitors of AMPA and NMDA
receptors, regardless of VGCC block, abolished merely
50% of the [Ca®']; transient amplitude. Using only the
NMDA receptor inhibitor DL-AP5 could completely
abolish the response to CNS SLE CSF, albeit at a rather
high concentration (200 puM, at which the blocker might
have been unselective). Our cell cultures also contained
astrocytes, which may interact with neurons and their
Ca®* signaling via gliotransmission [19, 44]. Given the
importance of concentration—dependent effects [79], a
more elaborate dose-dependent analysis with a larger
CSF volume would be justified in a future study.

It is noteworthy that the in vitro tested commercially
available antibodies against NR2A or RPLPO had a slight
(although sustained) effect on neuronal [Ca®*],. However,
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the concentration used (100 pg/ml) was above the max-
imal IgG titer in the tested undiluted CNS SLE CSF
sample (see Table 2). Contrary to the sustained [Ca*];
phase present in some responses to CNS SLE CSF #4,
the continuous response to BRA was not washable.
This may indicate an immune complex (antigen-anti-
body) reaction, while the response of neurons to diluted
CSF may be less specific, yet well defined. On the other
hand, the IgG fraction isolated from sera of CNS SLE
patients could also induce a similar, well-defined [Ca®
*]; responses in rat neuronal cultures (ms in prepar-
ation), reminiscent of the effect of whole CSF herein. In
addition, the effect of BRA could become apparent
through synergy with glutamate release and action as in
the case of NMDA receptor-reactive antibodies in lupus
[30]. However, the physiological significance of the
autoantibody-induced sustained [Ca®*]; response phase
remains to be elucidated.

The mechanisms underlying the heterogeneity of re-
sponses induced by CNS SLE CSF and the diminished
potency of purified commercially available antibodies to
do the same requires further consideration. Firstly, CSF
samples from CNS SLE patients are likely to contain a
plethora of antibodies with differing reactivates to neur-
onal tissues. Indeed, our own analysis of CNS SLE CSF
(ms in preparation) revealed elevations in several anti-
bodies that were not tested in the current study, but have
been linked to CNS SLE manifestations including anti-
dsDNA [24, 33, 66, 85], anti-cardiolipin [41, 74, 83, 99]
and anti-PR3 antibodies [100]. Therefore, it is plausible
that the relatively pronounced effects elicited by undiluted
CNS SLE CSF samples are mediated by these BRA classes.
Given the abundance of autoantibodies in lupus [116], an
alternative, but equally likely possibility involves the induc-
tion of behavioral manifestations by as of yet undetectable
BRA in the CSF. While some of the autoantibodies in CSF
may ultimately represent epiphenomena, other classes
may have potent effects across a wide range of concentra-
tions, even in negligible amounts. In the current study, we
used a cumulative dose of 20 pg over ~2 weeks, with a
daily delivery rate of 1.2 pg/per day. The final dose was
significantly larger than the amount used by DeGiorgio
and colleagues to induce local neuronal loss with an anti-
NMDA receptor antibody [24], but considerably smaller
than the dose used by Katzav and colleagues to induce be-
havioral changes using ARPA [61-63]. Although beyond
the scope of this report, one may further hypothesize that
different concentrations of a particular antibody, much
like the binding of different antigen targets, can produce
starkly dissimilar effects. Recent findings show that low
concentrations of anti-NMDA receptor antibodies select-
ively amplify NMDA -mediated synaptic signaling, but pro-
mote excitotoxic cell death via mitochondrial dysfunction
at high concentrations [30]. Relatively low concentrations
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may help explain why we noted stimulatory roles for both
anti-NR2A and anti-a-tubulin antibodies in certain para-
digms. Another factor to consider is the source of the anti-
bodies. Whereas the current study used polyclonal
antibodies against singular antigens in isolation, previous
studies involving direct CNS administration have
employed purified human antibodies against multiple anti-
gens and epitopes [24, 61-63]. Binding of regions outside
of major immunoreactive domains in human NMDA re-
ceptor, ribosomal P and a-tubulin proteins could be an-
other factor at play. Therefore, a possible combined effect
of these antibodies against multiple epitopes on other
cross-reactive antigens might be the reason for the patho-
logical effects seen surrounding more non-specific BRAs.
The data may further serve as a potential model to explain
discrete CNS symptoms along a wide spectrum, some that
are caused by a transient effect on neuronal functioning
and others caused by permanent neuronal damage [51].
The interpretation of the present findings is compli-
cated by the observation that CSF from an NMO patient
had no effect on [Ca®*];, but seemingly impaired per-
formance in spatial learning and memory tasks. NMO is
an inflammatory demyelinating disorder of the CNS that
is primarily characterized by the presence of autoanti-
bodies to AQP4 in serum [72] and CSF [109]. The target
antigen is an integral membrane protein that forms the
most abundant water channel in the CNS, but anti-
AQP4 antibodies have been specifically implicated in
BBB dysfunction, altered glutamate homeostasis, and in-
duction of necrotic cell death in the optic nerve and the
spinal cord [54]. Passive transfer of purified patient
NMO IgG fractions, as well as recombinant human anti-
AQP4 IgG, produces key aspects of NMO-like CNS le-
sion pathology, including loss of AQP4 expression, mye-
lin breakdown, axonal injury, extensive inflammatory
cell infiltration, astrocyte depletion, and neuronal cyto-
toxicity in a complement-dependent manner [7, 11, 88].
More recently, intrathecal administration of anti-AQP4
was found to elicit similar, but reversible histopatho-
logical changes independently of complement activation
and immune cell infiltration [34]. One may surmise that
the impaired performance in both the T-maze and water
maze reflects anti-AQP4-induced vision deficits. How-
ever, this possibility seems unlikely given that the mice
perform comparably to CNS SLE CSF-treated animals in
cued platform trials. Given the high expression of AQP4
messenger RNA by neurons in periventricular structures
of the rodent brain [110], a more likely explanation may
involve preferential binding of anti-AQP4 IgG to regions
like the hippocampus that are implicated in the acquisi-
tion, consolidation, storage, and retrieval of spatial infor-
mation in the water-maze and related paradigms [58].
Nevertheless, further study of this selective effect of
NMO CSF on behavioral performance in spatial learning
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tasks is necessary, particularly because NMO CSF had
no effect on intracellular Ca**. This would support the
hypothesis that NMO-specific IgG acts through a mech-
anism distinct from a [Ca®*]; signaling pathway [34, 109]
that is dependent on the activation of complement (not
present in cell cultures) to promote pathology [48, 89].
In summary, the current study supports a neuropatho-
genic role for BRAs in the CSF of some CNS SLE patients.
In addition, it provides a conceptual basis for the iden-
tification of novel diagnostic markers [28] and targets
in pharmacotherapy of CNS SLE. Identification of other
pathogenic autoantibodies and concentration-dependent
effects may also help to shorten the list of candidate BRAs
in lupus and advance our understanding of autoimmune
mechanisms in demyelinating diseases [32], autoimmune
encephalopathies [22], autism spectrum disorder [16, 17],
and schizophrenia [105].

Conclusions

The sustained infusion of autoantibody-rich cerebro-
spinal fluid from CNS SLE patients into the brains of
healthy animals induces alterations in home-cage behav-
ior, olfactory dysfunction, depressive-like behavior and
perseveration in a learning task. The administration of
putative BRAs in a similar manner produces relatively
mild, both inhibitory and stimulatory effects on olfac-
tion, spatial learning/memory, and home-cage behavior.
In vitro studies reveal that some CSF samples induce a
rapid influx of extracellular Ca®* into murine neurons
via the glutamatergic system.

Additional file

Additional file 1: Video S1. Time-lapse video showing calcium transients
in a culture of adult hippocampal neurons exposed to CNS SLE CSF#4
(1:25 dilution) at 0 s time, washed around 5 min, and then challenged
with K* solution at the 8-min mark. (WMV 11519 kb)
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