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Abstract

Introduction: Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through
inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis
of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies
that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals.
Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement
component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury
have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller
Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model
was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5
inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be
deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage.

Results and Conclusions: In this study, we first developed a new in vivo transgenic mouse model of AMAN
using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons
with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1qg antibody (M1) that
blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated
AMAN model and our established MFS model in vivo. Anti-C1g monoclonal antibody treatment attenuated
complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse
models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising Clq
function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful
new target for human therapy.
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Introduction
The autoimmune inflammatory neuropathy Guillain-
Barré syndrome (GBS) causes rapid onset paralysis,
with patients often requiring artificial ventilation, and in
severe cases leads to permanent disability through axon
loss. Treatment with IVIg and plasmapheresis are beneficial
[21], but are non-specific and have unclear mechanisms of
action. To develop and test a new generation of therapeu-
tics it is crucial to create a relevant animal model that can
be used to both understand the pathophysiology and valid-
ate the suitability of potential intervention. GBS is in part
mediated by anti-ganglioside antibodies induced by preced-
ing bacterial infections including Campylobacter jejuni
enteritis [40]. Anti-ganglioside antibodies then target nerve
surface gangliosides, glycolipids found extensively in ner-
vous tissue membranes [20]. In particular, the axonal vari-
ant of GBS (acute motor axonal neuropathy, AMAN) is
strongly associated with circulating anti-GM1 and GDla
ganglioside antibodies [17, 25], which can target and bind
to axonal and nodal membranes, whilst the Miller Fisher
syndrome (MFS) variant is associated with circulating anti-
GQIlb ganglioside antibodies with distinct tissue specificity
for cranial nerves [3]. Clinical and experimental evidence
suggests the pathogenic mechanisms in GBS include com-
plement fixation by these autoantibodies, leading to clas-
sical pathway activation. Complement components have
been identified along patient nerve Schwann cell abaxonal
membrane in demyelinating GBS [10, 30], and C3d and the
terminal membrane attack complex (MAC) pore have been
located on the axolemma along the internode and at the
node of Ranvier in AMAN [8, 9]. Animal modelling indi-
cates that complement deposition at the node of Ranvier
with insertion of the MAC pore will allow the uncontrolled
influx of calcium ions, which in turn disrupts ionic homeo-
stasis and initiates calpain cleavage of structural and chan-
nel proteins including neurofilament and voltage-gated Na*
channels [14, 22, 36]. Terminal complement MAC pore
formation is linked to acute injury and dysfunction, but the
complement cascade also consists of pro-inflammatory
components that can recruit immune cells, which them-
selves may contribute to pathogenesis. Indeed, macro-
phages have been found extensively in autopsy tissue [8, 9]
and while they participate in clearance of debris to pro-
mote recovery, they could also have a role in expanding
nervous tissue damage through complement directed, cell-
mediated attack. Therefore, the complement cascade has
great potential as a target for therapeutic intervention [39].
Inhibition of terminal complement activation products has
been tested recently in animal models [12, 13, 15, 22, 27].
In GBS mouse models we have reported that C5 comple-
ment component inhibition prevented MAC pore forma-
tion and consequent axonal degeneration [12, 13, 15, 22].
Inhibition of C5, however, does not eliminate the produc-
tion of early complement activation products that induce
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immune cell recruitment to the site of injury and which
could cause further damage or delayed recovery. Clq is
the first complement cascade molecule in the classical
pathway, and binds pathogenic autoantibodies to initiate
the cascade. Therefore its inhibition will prevent down-
stream activation of only the classical pathway, leaving the
alternative and mannose-binding lectin pathways intact to
counter bacterial infection [28]. In this report, we specific-
ally examine the role of the classical complement cascade
by using a mouse monoclonal antibody that inhibits the
function of C1q. A similar antibody was shown to effect-
ively reduce inflammatory demyelinating lesions in an in
vivo mouse model of the complement-dependent disease
neuromyelitis optica [28].

For the current study we have applied a mouse model
of the AMAN form of GBS using a newly developed
transgenic mouse that solely expresses complex ganglio-
sides neuronally [41], thus allowing us to specifically tar-
get and injure axons with an anti-GM1 ganglioside
antibody. An additional benefit to this mouse strain is that
circulating anti-ganglioside antibody will not be seques-
tered by other extra-neural plasma membranes which
would reduce the bioavailability of the antibodies for bind-
ing axonal membranes (Cunningham et al,, in press). We
found that the function-blocking antibody against Clq in-
hibits pathogenesis in both models of GBS — the MFS
model used in our previous study, as well as the new
AMAN model described in this report. Our results dem-
onstrate that targeting Clq, the initiating molecule of the
classical complement cascade, led to axonal protection,
improved function and reduced immune cell recruitment,
providing proof of concept for anti-C1q targeted therapies
in GBS.

Materials and methods

Mice

For anti-GQ1b/GD3 antibody mediated injury experi-
ments, Balb/c wild type mice, obtained from Harlan (UK)
were used as previously reported. For the anti-GM1 IgG
antibody mediated AMAN model GalNAcT~-Tg(neuro-
nal) transgenic on a C57Bl/6 background were used. For
anti-ganglioside antibody binding assessment Balb/c wild
type mice, GaINAcT " -Tg(neuronal) transgenic and wild-
type mice both on a C57Bl/6 background were used. All
mice were 4 weeks old (12-15 g). Mice had unlimited
access to food and water, and housed with a light/dark
cycle of 12 h/12 h and constant temperature at 22 °C. Gal-
NAcT " -Tg(neuronal) mice express the full-length cDNA
encoding GalNAcT under the control of the Thyl.2 pro-
moter (restricted to mature neurons) similarly to previ-
ously reported mice under NFL promoter activity [41].
GalNACcT ¢cDNA (1655 bp) (provided by Koichi Furukawa)
was cloned into the pTSC21K vector (provided by Matthias
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Eckhardt/Herman van der Putten) for generating Thyl.2—
GalNACT transgenic mice. Transgenic lines and germ-line
transmitters were identified by PCR and backcrossed seven
generations on a C57BL/6 background. Thyl.2—-GalNAcT
mice were then interbred with GaINAcT~ mice [37] to
create 2 lines of GalINAcT” “-Tg(neuronal) mice. Evidence
for restoration of GalNACT enzyme activity in both lines
was confirmed by glycosyltransferase activity assays as
described previously ([34, 35]; Fig 1a) and evidenced by
complex ganglioside synthesis in neural tissues demon-
strated by thin layer chromatography overlay (Fig 1c)
and immunohistology (Fig 1d) as described previously
[41]. For illustrative images, transgenic mice that add-
itionally express cyan fluorescent protein (CFP) in their
axons [5] were used. Mice of either sex were killed by
CO, inhalation. All experiments using mice were per-
formed in accordance with a licence approved and
granted by the United Kingdom Home Office and con-
formed to University of Glasgow institutional guide-
lines. Experiments complied with relevant guidelines
outlined in the revised Animals (Scientific Procedures)
Act 1986.

Monoclonal antibodies and normal human serum

The IgM anti-GQ1b/GD3 ganglioside monoclonal anti-
body (mAb), CGM3, was derived from mice inoculated
with a GT1a-bearing C. jejuni lipooligosaccharide (GQ1b,
GD3 and GT1a possess a structural mimic in their ter-
minal trisaccharide to which CGM3 binds) [6]. CGM3
was selected for the MFS model as it induces identical
complement-dependent pathogenic effects as human MFS
sera in vitro [2, 18, 29]. The IgG3 anti-GM1 ganglioside
mAb, DG2, was derived from GaINAcT~~ mice inocu-
lated with the GM1 ganglioside mimicking HS19 lipooli-
gosaccharide [1]. CGM3 and DG2 concentration was
measured using quantitative ELISA (Bethyl Laboratories,
Texas, USA). The mouse anti-Clq antibody, M1, and a
non-specific isotype control IgG1 mAb were provided by
Annexon Biosciences (California, USA). Monoclonal anti-
body M1 binds and neutralises C1q and thereby prevents
binding to anti-ganglioside antibody Fc domain and the
activation of the classical complement cascade. This anti-
body is also capable of binding mouse Clq, but since
mouse complement is highly regulated by endogenous in-
hibitors its activation is not involved in injury in our
models, as previously shown [39]. Normal human serum
(NHS) was collected from a single donor, rapidly frozen
and stored in multiple aliquots at —70 °C to preserve com-
plement activity.

In vivo model

Balb/c mice were injected intraperitoneally (ip.) with
15 mg anti-GQlb/GD3 ganglioside IgM mAb for the
MFS model and GalNAcT” “-Tg(neuronal) mice were
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injected i.p. with 1.5 mg anti-GM1 ganglioside IgG mAb
for the AMAN model. After 16 h, mice were injected
intravenously (i.v.) into the tail vein with 50 mg/kg anti-
Clq neutralising antibody or isotype control mAb to test
the effect of anti-Clq inhibition. Several doses were
trialled and results indicated that 50 mg/kg was the max-
imally effective dose, consistent with previous studies [28].
After a further 30 min interval, 0.5 ml 100 % NHS was de-
livered i.p. The separation of NHS and anti-Clq or control
antibody delivery by time and region was performed to
avoid immediate inhibition of Clq within the peritoneal
cavity. Mice were observed for a further 4-6 h and ana-
lysed for whole-body plethysmography, rotarod and grip
strength performance (see below). At 6 h, mice were
asphyxiated with a rising concentration of CO,, and blood,
diaphragm and soleus muscles collected for serum and
immunohistochemical analysis.

Plethysmography and behavioural analysis

After training, baseline measurements were collected for
all functional and behavioural analysis and were not sig-
nificantly different between groups for any parameter
(see Results). Due to its proximity to the antibody and
NHS delivery site, the diaphragm and associated phrenic
nerve is the major target structure in this in vivo model;
therefore whole-body plethysmography (EMMS, Hants,
UK) was employed as a non-invasive method for measur-
ing respiratory output and related functional deficits.
Interpretation of plethysmography data is complex; even
minimal intervention studies (e.g. venepuncture) can cause
respiratory measurement fluctuation [32]. Nevertheless
these recordings are sensitive and provide useful quantifi-
cation of respiratory failure that could not be achieved by
observation, as previously reported [15]. Mice were accli-
matised to the equipment and baseline levels recorded
before anti-ganglioside antibody injection. Mice were
allowed to settle for 30 min, and 5.5 h after NHS delivery,
flow-derived parameters of breath frequency and tidal vol-
ume were collected from 25 accepted breaths and aver-
aged over this 30 min period. Mice were trained on the
accelerating rotarod (30 — 60 rpm for 5 min) prior to
treatment. Baseline measurements of the length of time to
stay on the rotarod were recorded; subsequently measure-
ments taken 4 h after NHS treatment were calculated as a
percentage of this value and compared between groups.
Grip strength was performed as described previously [19].
Both fore-limb and all four limb measurements were col-
lected to calculate the hind-limb grip strength (fore-limb
subtracted from all four limb), and similarly compared to
baseline measurements. Statistical analysis was performed
using GraphPad Prism 6 software (GraphPad Software
Inc., La Jolla, CA), where significance p < 0.05. Student t-
tests were applied to compare conditions.
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(See figure on previous page.)

Fig. 1 Comparison of ganglioside expression and localisation in wild type and novel GalNACT”~(Tg-neuronal) mice that exclusively express complex
gangliosides in neurons. a Enzyme activity assays showed a restoration of GaINACT activity to ~50 % in 2 different GalNACT~-Tg(neuronal) lines
compared to wild type (n = 3/genotype). The dashed line represents the threshold level of activity for the assay therefore GalNACT~ falls below this
and is essentially zero despite minimal value. b Ganglioside biosynthetic pathway. The GaINACT enzyme is necessary for generation of complex
gangliosides (surrounded by the green box). ¢ Brain extracts from wild type, GalNACT”~ and 2 strains of GaINACT”~-Tg(neuronal) were probed with
anti-GM1 IgG antibody, DG2. This antibody bound all genotype extracts except for GalNACT ™~ which lack complex gangliosides including GM1. GM1
lipid was printed on the left and provided a positive control for anti-GM1 antibody binding. d Axonal binding can be observed in the
Ga//\/AcT/’-Tg(neurona/) mice treated with anti-GM1 antibody (arrows), while it bound to the terminal kranocyte (asterisk) in wild type mice
and was absent in GalNACT /™ tissue. Anti-GQ1b/GD3 antibody bound similarly in both strains along the axons and on the perisynaptic Schwann cell

membranes (arrowheads) that are simple ganglioside GD3 positive. Scale bar= 10 um

Immunoassays

ELISA

To test for anti-ganglioside antibody reactivity in the mouse
sera, ganglioside ELISAs were performed. Immulon-2HB
96 well plates (Thermo Fisher Scientific, MA, USA), were
coated with 100 ul at 2 pg/ml of GM1 (Sigma, Aldrich) or
GQ1b (Matreya) diluted in methanol, or methanol only for
control wells. The average OD reading from control wells
was subtracted from all other wells to correct for back-
ground. Plates were blocked with 2 % bovine serum albu-
min (BSA)/PBS solution for 1 h at 4 °C. Block was
discarded and mouse serum (1/50 in 0.1 % BSA solution)
added overnight at 4 °C. Anti-GM1 and anti-GQ1b mono-
clonal antibodies DG2 and CGM3, respectively, were used
as positive controls and were applied at 50 pg/ml in 0.1 %
BSA. Plates were washed 3x in PBS then secondary anti-
body (goat anti-mouse IgG or IgM-HRP, 1:3000, Sigma
Aldrich) was added in 0.1 % BSA solution for 1 h at 4 °C.
After PBS washes, OPD substrate solution (30 ml dH20,
16 ml 0.2 M Na2HP04, 14 ml 0.IM C6HgO7, 1 OPD tab-
let and 20 pl 30 % H,O, added immediately prior to use)
was added for 20 min at room temperature (R.T.),
followed by stop solution (4 M H,SO,). Plates were read
at 492 nm on a Tecan Sunrise™ automated microplate
reader (Tecan Group Ltd, Méannedorf, Switzerland) using
Magellan™ software.

Anti-C1q antibody assay

Serum levels of anti-Clq antibody were measured by
ELISA. Black 96 well plates (Costar) were coated with 2 pg/
ml of human C1q (Complement Technology) in bicarbon-
ate buffer (pH 9.4) overnight at 4 °C. Next day, the plates
were washed with PBS (pH 7.4) (Thermo Scientific) and
then blocked with PBS buffer containing 3 % BSA. Anti-
Clq antibody standard curve was prepared in the range of
50-0.02 ng/ml in control mouse serum at 1/1,000,000 dilu-
tion in dPBS containing 0.3 % BSA and 0.1 % tween. Study
serum samples were diluted at 1/1,000,000 in the same
buffer. The blocking buffer was removed from the plate.
Standards and samples were added at 50 pl per well and in-
cubated shaking at 300 rpm at R.T. for 1 h. Then, 50 pl of
alkaline-phosphatase conjugated goat anti-mouse antibody

was added to all wells. After an additional hour of incuba-
tion at R.T., plates were washed thrice with dPBS contain-
ing 0.05 % Tween. Plates were then developed using 100 pl
of alkaline phosphatase substrate (Life Technologies). After
incubation for 20 min, plates were read using a lumin-
ometer. Standards were fit using a 4PL logistic fit and un-
knowns converted to concentration. Sample anti-Clq
antibody levels were corrected for dilution and then plotted.

Human C1q assay

Serum levels of human C1q were measured using a sand-
wich ELISA. Black 96 well plates (Costar) were coated with
1 pg/ml of JL1 antibody (Abcam) in bicarbonate buffer
(pH 9.4) overnight at 4 °C. Next day, the plates were
washed with dPBS (pH 7.4) and then blocked with dPBS
buffer containing 3 % BSA. Human Clq (Complement
Technology) standard curve was prepared in the range of
200-0.01 ng/ml in dPBS containing 0.3 % BSA and 0.1 %
tween. Study serum samples were prepared in the same
buffer at 1/10,000 to 1/30,000. The blocking buffer was re-
moved from the plate. Standards and samples were added
at 50 pl per well and incubated shaking at 300 rpm at R.T.
for 1 h. Then, 50 ul of alkaline-phosphatase conjugated
human-Clq-specific antibody was added to all wells (clone
4A4B11 hybridoma from ATCC HB-8327TM). Plates were
incubated overnight with shaking at 4 °C. Next day, plates
were washed thrice with dPBS containing 0.05 % Tween
and then developed using 100 pl of alkaline phosphatase
substrate (Life Technologies). After incubation for 20 min,
plates were read using a luminometer. Standards were fit
using a 4PL logistic fit and unknowns converted to concen-
tration. Sample Clq levels were corrected for dilution and
then plotted.

Immunostaining

Diaphragms were removed upon termination of the experi-
ment, snap frozen, and stored at -70 °C. Tissue was
mounted in OCT mounting medium and longitudinal
cryosections collected at 8—15 um on to coated slides. Sec-
tions were stored at —20 °C until use. Immunostaining for
complement deposits and axonal integrity at the nerve
terminal was performed as previously described [15].
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Briefly, nerve terminals, were identified by Alexa Fluor 555
conjugated o-bungarotoxin (a-BTx, 1.3 pg/ml, Molecular
Probes). FITC-labelled rabbit anti-C3c (1:300, Dako, UK),
FITC conjugated anti-mouse IgG/M (1:300, Southern bio-
tech) or anti-human C5b-9 (1:50, Dako) were applied for
1 h at 4 °C. FITC conjugated goat anti-mouse IgG2a (1:300,
Southern biotech) was applied for 1 h at 4 °C to detect
C5b-9. For neurofilament staining, sections were incubated
for 1 h at 4 °C with Alexa Fluor 555 conjugated a-BTx as
above, rinsed, immersed in 100 % ethanol at —20 °C for
20 min, then incubated overnight at 4 °C with rabbit
anti-neurofilament heavy antibody (1:750, 1211, Enzo
Life sciences, UK) followed by FITC conjugated goat
anti-rabbit IgG (1:300; Southern Biotech) for 3 h at
4 °C. All detection antibodies were diluted in phos-
phate buffered saline (PBS).

For illustrative images, whole mount triangularis
sterni (TS) muscle ex vivo preparations were used, as
described previously [15]. Briefly, the muscle was re-
moved and maintained alive in oxygenated (95 % O,/
5 % CO,) Ringer’s solution 116 mM NaCl, 4.5 mM KClI,
1 mM MgCl2, 2 mM CaCl2, 1 mM NaH2PO4, 23 mM
NaHCO3, 11 mM glucose, pH 7.4). Muscle was treated
with Alexa Fluor 555 conjugated a-BTx (2 pg/ml) and
either 100 pg/ml anti-GM1 IgG3 antibody (DG2) or anti-
GQ1b IgM antibody (CGM3) for 2 h at 32 °C, transferred
to 4 °C for 30 min and a final 10 min at R.T. before rinsing
in Ringer’s. Anti-C1q antibody or control mAb was added
to 40 % NHS giving a concentration of 100 pg/ml 10 min
before application to the preparations for 1 h at R.T. Tissue
was then treated with a combinations of C3c and MAC in
Ringer’s medium for 1 h at RT., followed by fixation with
4 % paraformaldehyde in PBS. Application of 0.1 M glycine
for 10 min was performed to quench unreactive aldehyde
groups. Antibodies and a-BTx AF-647 were reapplied in
PBS overnight at 4 °C. For staining intracellular neurofila-
ment, muscle was fixed in 4 % formaldehyde for 20 min
followed by 10 min in 0.1 M glycine and then incubated in
a permeabilizing solution containing 0.5 % Triton-X100 in
PBS for 30 min at R.T. and rabbit anti-neurofilament
(1:200) diluted in permeabilizing solution applied overnight
at R'T. Tissue was rinsed in PBS and incubated in the fol-
lowing fluorescently conjugated antibodies diluted 1:300;
anti-rabbit IgG-FITC and anti-mouse IgG-TRITC and agi-
tated for 3 h at room temperature in the dark. Tissue was
rinsed in PBS and mounted in Citifluor mounting medium
(Citifluor Products, UK). For the assessment of anti-
ganglioside antibody binding only, tissue was washed and
fixed with 4 % paraformaldehyde in PBS immediately after
anti-GM1 IgG3 (DG2) and anti-GQ1b IgM (CGM3) anti-
body incubation. Application of 0.1 M glycine for 10 min
was performed to quench unreactive aldehyde groups.
Tissue was then incubated overnight at 4 °C with anti-
mouse IgG/M-FITC (1:300) in PBS. Tissue was rinsed in
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PBS and mounted in Citifluor mounting medium (Citi-
fluor Products, UK).

For immune cell staining, 15 pm diaphragm sections
were used. Sections were incubated with a-BTx (1.3 ug/
ml) for 1 h at 4 °C. To identify CD11b-positive leukocytes,
sections were incubated with 4 % PFA for 10 min at 4 °C,
washed 3x in PBS then blocked for 30 min in 3 % normal
goat serum in PBS at 4 °C. Rat anti-mouse CD11b
(MCAT711G, Serotec) was applied overnight at 4 °C at a di-
lution of 1:100. For macrophage and neutrophil staining,
sections were fixed in freezing ethanol for 10 min before
the blocking step. Rat anti-mouse F4/80 (MCAP497, Sero-
tec) was applied overnight in blocking solution at a dilution
of 1:300. Neutrophil marker antibody (NIMP-R14 sc-
59338, Santa Cruz Biotechnology) was added at 1:50 over-
night in blocking solution. The following day, slides were
washed for 3 x 5 min in PBS before FITC-conjugated anti-
rat IgG secondary antibodies (Southern Biotech) were ap-
plied for 3 h at 4 °C. Vectashield mounting media with
DAPI was applied and slides were coverslipped and stored
at —20 °C before imaging.

Image capture and analysis

Digital images were captured using both a Zeiss Pascal
confocal laser scanning microscope and a Zeiss Axio
Imager Z1 with ApoTome attachment. For quantitative
analysis of IgM, C3c, MAC and neurofilament, staining
was performed in triplicate for each marker, and quanti-
fied as previously described [23]. For each marker 45 im-
ages were captured per mouse and at least 100 nerve
terminals analysed. A qualitative binary approach was
used to determine axonal integrity in the AMAN mouse
model as follows: by immunostaining, degenerating neu-
rofilament often appears abnormally fragmented, in con-
trast to well defined branching pattern seen in normal
conditions. Accordingly, though the axons may be clearly
disrupted, the immunostaining remained over the a-BTx
post-synaptic marker thereby resulting in an “intact”
axonal integrity result using the analysis software. To
overcome this anomaly, terminals were assessed by eye for
a normal/abnormal neurofilament immunostaining con-
formation and the data presented as a percentage of the
total terminals. All studies were observer blinded and sta-
tistically analysed using GraphPad Prism 6 software, as-
suming a significance level when p<0.05. Outliers of
antibody intensity measurements were removed via
ROUT analysis (Q =1 %). For analysis of non-parametric
immunohistological data, Mann—Whitney test was used
to compare median values per mouse. Box-and-whisker
plots were used to display the spread of all data points
from each animal. For immune cell analysis, sections were
imaged using consistent settings. Images were taken of the
NM]J as identified by a-BTx staining, using a 40x objective.
Fifteen images were taken per animal per slide. The
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number of CD11b or NIMP-R14 positive cells per field of
view (FOV) was counted and averaged per animal. All
parametric data was compared by student ¢-test.

Results

Anti-ganglioside antibody binding in different mouse strains
GalNAc-transferase (GaINACT) is required for the enzym-
atic biosynthesis of complex gangliosides, and in wild type
mice the gene is widely expressed in neuronal, glial and
other tissues. In order to limit ganglioside expression to
mature neurons, we generated transgenic mice that express
GalNACT under the Thyl.2 promoter, and crossed these
mice with mice lacking the endogenous gene through tar-
geted mutation [37]. As predicted, GalNAcT” “-Tg(neur-
onal) mice express complex ganglioside exclusively in
neurons through expression of the GalNAcT enzyme
on the Thyl promoter (Fig 1b and see Methods) [41].
GalNACT enzyme activity in whole-brain homogenates
was greatly reduced in GaINAcT™~ mice when compared
to WT mice (Fig 1a). GalNACT “-Tg(neuronal) lines dis-
played ~50 % activity compared to WT mice, demonstrat-
ing partial rescue of GalNACT enzyme activity (Fig 1a). To
confirm the reintroduction and presence of GM1 in these
strains, ganglioside fractions were extracted from brains
and assessed by anti-GM1 antibody binding. GM1 was
evident in GalNAcT '~ -Tg(neuronal) and wild type sam-
ples, but not in GaINAcT "~ extracts, thereby demonstrat-
ing that GM1 had been functionally reconstituted in the
GalNAcT™” ~-Tg(neuronal) mice (Fig 1c). To determine the
precise tissue localisation of the reconstituted complex gan-
gliosides, whole-mount triangularis sterni nerve-muscle
preparations from wild type and GaINAcT ™ -Tg(neuronal)
mice were incubated with anti-GM1 IgG or anti-GQ1b/
GD3 IgM antibody and the binding patterns between geno-
types were examined (Fig 1d). Anti-GM1 IgG antibody
binding is completely restricted to the axolemma at the
motor nerve terminal (delineated by endogenous axonal
CFP expression) and the nodes of Ranvier (indicated by
arrow) in GaINAcT " -Tg(neuronal) mice. Wild type nerve-
muscle preparations exhibited anti-GM1 antibody binding
that overlay the terminal on the membrane of parajunc-
tional fibroblasts termed kranocytes (indicated by asterisk),
as has been reported previously [7]. Anti-GM1 IgG3 anti-
body binding is absent from GalNACT '~ mice nerve termi-
nals, a finding we have reported previously [7]. These
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results indicate that anti-GM1 IgG antibody binds ex-
clusively to axons, and not to supporting cells in the
GalNAcT " -Tg(neuronal) mice, thereby providing evi-
dence for GalNAcT” ~-Tg(neuronal) mice and anti-GM1
IgG for the development of a pure AMAN model in mice.
Conversely, anti-GQ1b/GD3 IgM antibody binds the
axons and perisynaptic Schwann cells (indicated by arrow-
heads) of both mouse strains owing to the retained
expression of simple ganglioside GD3 at the latter site (see
Fig 1b), and GQ1b on the axon. Therefore, we elected to
use anti-GQ1b/GD3 IgM antibody mediated injury in WT
mice as the MFS model for assessment of Clq comple-
ment inhibition.

Treatment with anti-C1q neutralising antibody reduced
levels of human C1q in mouse serum

Mouse sera were collected at the end of the in vivo ex-
periments to confirm anti-ganglioside antibody and anti-
Clq antibody levels, and assess the impact on circulating
human Clq levels (Table 1). Anti-ganglioside antibody
was present at comparable levels in all mice from both
MFS and AMAN models, confirming an equal delivery
of antibody in both anti-C1q antibody and isotype control
antibody treated mice. Anti-Clq antibody levels were in
the range of 4000-6000 pg/ml in all treated mice, verify-
ing successful systemic delivery of the Clq neutralising
antibody. Human Clq levels in the sera were undetectable
in mice treated with anti-Clq antibody in both the MFS
(p <0.01) and AMAN models (p <0.001) when compared
to isotype control antibody treated mice. Mouse Clq
levels were also significantly reduced by anti-C1q antibody
treatment, consistent with what is known about the anti-
body’s cross-species binding (data not shown).

Treatment with C1q neutralising antibody protects
against neuropathy in a mouse model of MFS

We previously reported that balb/c wild type mice receiv-
ing an ip. injection of anti-GQlb/GD3 IgM antibody,
followed 16 h later by i.p. administration of normal human
serum (NHS, as a source of human complement) develop
weakness and difficulty in breathing over the subsequent
6 h [15]. This phenotype reflects intra-diaphragmatic nerve
and nerve terminal injury due to the proximity of the dia-
phragm to the site of anti-ganglioside antibody and

Table 1 Serum analysis demonstrates M1 treatment is associated with reduced circulating Clq

MFS model AMAN model

M1 (n=4) control mAb (n=3) M1 (n=5) control mAb (n=5)
AGADb serum levels (ug/ml) 0.26 £ 0.02 021 +£0.04 042 £ 0017 043 £ 0.023
M1 antibody serum levels (ug/ml) 5656 £ 518.7%%* 00+00 4116 + 496.4*** 00£00
Clg serum levels (ug/ml) 0.83 £ 0.5** 2125+36 1.175 £ 0.56** 1508 + 22

All values indicate mean + SEM, **p<0.01, ***p<0.001 compared to control mAb per model, unpaired students t-test
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complement delivery in the peritoneal cavity. In this study,
we replicated this model and found a severe paralytic
phenotype, exactly as seen in our previous study [15]. Re-
spiratory function was assessed by whole body plethysmog-
raphy prior to, and ~5 h after NHS injection. Baseline
measurements of tidal volume (anti-Clq antibody = 0.32 +
0.07 ml, n = 4; control mAb = 0.3 + 0.06 ml, # = 4) were not
significantly different between the treatment groups. Mice
were treated i.v. with either 50 mg/kg anti-Clq antibody or
isotype control antibody 30 min prior to the peritoneal in-
jection of NHS. Mice treated with isotype control anti-
body showed a ~41 % reduction in baseline tidal
volume (59.3 £4.3 %, n =3, p<0.05). This was a signifi-
cant decrease in contrast to mice treated with anti-Clq
antibody (125 +21.9 %, n=4) (Fig 2a), which showed no
significant differences in respiratory output from baseline
measurements. There was no change in respiratory rate
between groups (data not shown). These results demon-
strate that treatment with anti-C1lq antibody prevent the
development of a respiratory function deficit.

We next compared the pathological impact of anti-Clq
antibody treatment. The diaphragms from all mice were
dissected 6 h post-NHS treatment and nerve terminals
assessed for complement deposition and neurofilament
immunoreactivity, the presence of the latter signifying
axonal integrity. Illustrative examples of this staining is
presented in Fig 2b. Fluorescently-labelled a-BTx (ma-
genta) labels the post-synaptic nicotinic ACh receptors
and visualises nerve terminals. Additionally, these mice
endogenously express CFP in the axons (blue). Early stage
complement product C3c (green) and end stage C5b-9b
MAC (orange) proteins were identified with immuno-
staining; staining was present overlying the terminals in
mice treated with isotype control mAb, and deposition
was prevented in mice treated with anti-Clq antibody
(Fig 2b). In mice treated with anti-Clq antibody, where
the neuronal fibre remains intact, neurofilament immuno-
staining (green) shows the axon entry and branching
pattern into the neuromuscular endplate, while anti-
GQ1b/GD3 IgM antibody (orange) follows the axonal
and perisynaptic Schwann cell membrane. The CFP la-
belling and neurofilament labelling are absent over the
a-BTx labelled terminal in mice treated with isotype
control mAb, while the anti-GQ1b/GD3 IgM antibody
remains. Mice from both treatment groups had similar
levels of anti-GQ1b/GD3 IgM antibody in the serum
(Table 1) and antibody visualisation at the nerve ter-
minal (Fig 2b, data not shown).

Mice treated with anti-GQ1b/GD3 IgM antibody plus
NHS and isotype control mAb, had significantly greater
intensity of C3 activation product C3c staining (p < 0.05)
and terminal complement components C5b-9 that form
the MAC pore (p < 0.05) (Fig 2c). The group treated with
anti-Clq antibody, showed virtually no staining for C3c
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or C5b-9 complement components at the nerve termi-
nals, while showing robust neurofilament immunostain-
ing at the nerve terminal. In comparison, there was a
significant loss in axonal integrity in the isotype control
mADb treated mice (p <0.05). These results demonstrate
that anti-Clq mAb can prevent neuropathological injury
in the mouse model of MFS. While these results are
consistent with our previous findings with anti-C5 anti-
body treatment, the lack of C3 activation as evidenced
by a reduction in C3c staining with anti-Clq antibody
treatment, demonstrates that the anti-Clq antibody
blocks classical complement activation upstream of C3
recruitment and/or cleavage, and thus may potentially
also reduce immune cell recruitment and consequently
exacerbated axonal pathology.

Treatment with C1q neutralising antibody protects
against neuropathy in a mouse model of AMAN

Similar to the MFS injury paradigm, a previously unre-
ported mouse model of AMAN was developed by per-
forming ip. injections of anti-GM1 IgG antibody into
GalNAcT ™~ -Tg(neuronal) mice to exclusively target axonal
membrane. Mice treated with anti-GM1 IgG antibody,
NHS and control mAb, developed a ‘wasp-like’ ab-
dominal phenotype with clearly visible difficulty in
breathing during the 6 h prior to termination of the
experiment. Baseline respiratory measurements from
whole-body plethysmography recordings showed no sig-
nificant differences between treatment groups for tidal
volume (anti-Clq antibody = 0.16 + 0.02 ml, n = 5; control
mAb =0.19 +0.02 ml, n=5) or respiratory rate (anti-Clq
antibody = 277.6 + 35 breaths/min, n =5; control mAb =
318.3 + 30.8 breaths/min, n=5). At 16 h following anti-
GM1 antibody delivery, 50 mg/kg anti-Clq neutralising
antibody or control monoclonal antibody was administered
intravenously, followed by ip. injection of NHS 30 min
later. Respiratory function was then monitored by whole-
body plethysmography at 6 h post-NHS. There was a
significant reduction in both tidal volume (19.1 +13.25 %,
n=5) and respiratory rate (45.7+15.87 %, n=>5) com-
pared to baseline in isotype control antibody treated mice
(Fig 3a). In comparison, mice treated with anti-Clq anti-
body had significantly greater tidal volume (80.44 + 7.3 %,
n=>5, p<0.01) and respiratory rate (119.5+17.2 %, n=>5,
p<0.05) compared to isotype control antibody treated
mice; these values did not significantly differ from base-
line. Representative respiratory traces are shown highlight-
ing the changes in breathing rate at baseline and 6 h after
treatment with anti-Clq antibody or isotype control anti-
body (Fig 3a).

Behavioural analysis was performed to test for any im-
pairment in motor activity of the mice. Mice treated
with isotype control mAb endured significantly less time
on the accelerating rotarod compared with anti-Clq



McGonigal et al. Acta Neuropathologica Communications (2016) 4:23 Page 9 of 16

a Tidal volume 6h after treatment
- .
150 - I
| 02 | A .
2 € hARASAAARAAEREBARNEA AR AR
o = £ (VPIrErvuvueuyvuuy vy uuyyvY
£ 100; s |
@
0 *
3 o
b o I
£ 7 -
o £ |
0 (&]

anti-C1q control mAb

mAb
b nAChR C3c CFP axon
anti-C1q
mAb
Control
mAb

nAChR Nfil CFP axon

..

3c MAC Axonal integrity

anti-C1q
mAb

Control
mAb

0 ..

200 200 * 200

*
100 100 100 |

anti-C1g control mAb anti-C1gq control mAb anti-C1g control mAb
mAb mADb mAb

Fig. 2 (See legend on next page.)

Arbitrary
fluorescence

*

-1
-1
o




McGonigal et al. Acta Neuropathologica Communications (2016) 4:23 Page 10 of 16

(See figure on previous page.)

Fig. 2 C1q neutralisation attenuates injury in a mouse MFS model. a A significant reduction in tidal volume is shown in mice treated with isotype
control mAb (n=3) compared to M1 (n=4) antibody (p < 0.05). Representative flow-charts from the plethysmography recordings are shown for
each treatment group at 6 h post-NHS treatment. Bars represent mean =+ SEM. b Top panels: Illustrative images show MAC (orange) and C3c
(green) deposited at nerve terminals (identified by a-BTx, red; CFP-positive axons, blue) from mice treated with control mAb, while this staining is
absent from those treated with anti-C1q antibody. Lower panels: Anti-ganglioside antibody (orange) is present at terminals from both treatment
groups, but neurofilament immunostaining (green) is only present at those terminals from mice treated with anti-C1q antibody. ¢ The early and
end-stage complement products C3c and MAC, respectively, showed significantly greater deposits at control mAb treated mice (p < 0.05, p < 0.05,
respectively) than anti-C1q antibody treated mice (n =3 control mAb, n =4 anti-C1q antibody) nerve terminals. Axonal integrity was a measure of
neurofilament immunostaining overlying the endplate. Axonal integrity was significantly more intact at anti-C1q antibody protected mice nerve
terminals compared to the control mAb group (p < 0.05). Box and whisker plots represent the spread of all data points per condition and significance
was based on Mann-Whitney statistical analysis of the median from each animal per treatment. * p < 0.05, unpaired student t-test (a), Mann-Whitney

test (b). Scale bar =20 um. AGAb = anti-ganglioside antibody, nNAChR = nicotinic acetylcholine receptor

antibody treated mice (anti-Clq antibody=94+6 s vs.
control mAb =38.75+5.2 s; p<0.001, Fig 3b), but grip
strength did not change between groups. Poor perform-
ance on the rotarod is attributed to impaired respiratory
reserve as recorded using whole-body plethysmography,
rather than impairment of grip strength in the limbs
which did not change. This conclusion is corroborated
by the identification of anti-GM1 antibody binding over-
lying nerve terminals of the soleus leg muscle from all
mice in the absence of complement activation products,
indicating undetectable complement mediated injury to
leg nerve terminals (data not shown). Within the time-
frame of our experiment, the complement components
in NHS needed to drive complement activation/MAC
formation directly injure the diaphragm but do not be-
come sufficiently activated in the leg muscles to contrib-
ute to a motor functional deficit.

We assessed complement deposition and neurofilament
immunoreactivity in nerve terminals in the diaphragm from
all mice 6 h post-NHS treatment (Fig 3c), as described
above. Mice from both treatment groups had comparable
anti-GM1 IgG antibody serum concentration (Table 1) and
deposits at the nerve terminals (Fig 3c, data not shown).
GalNAcT™” “-Tg(neuronal) mice treated with anti-GM1 IgG
antibody plus NHS and control mAb, showed significant
staining for the early complement product C3c (p < 0.05)
and terminal complement components C5b-9 (p<0.05)
compared to mice treated with anti-Clq antibody, where
deposits were undetectable (Fig 3c). In this model, neurofil-
ament immunostaining overlying the terminal was not
absent as was often the case in our MFS model, but instead
appeared fragmented compared to the normal distinct ter-
minal branching pattern. As such, the quantitative results
showed no change in axonal integrity between treatment
groups. Instead, we performed qualitative analysis and
observed the number of terminals with normal versus ab-
normal fragmented neurofilament immunostaining as a
measure of axonal integrity. Indeed, axonal integrity was
preserved at the nerve terminals of mice treated with anti-
Clq antibody compared to the disrupted neurofilament
staining in isotype control antibody treated mice (p < 0.01).

MAC signal was also less pronounced in this model than in
the MFS paradigm and could underlie the less severe neu-
rofilament disruption due to a more incomplete lesion at
this time-point. Together, these behavioural and immuno-
histological data indicate that neuropathy is evident in this
mouse model of AMAN and can be rescued by blockade
with an anti-C1q antibody.

Immune cell infiltration is impaired by C1q inhibition in a
model of GBS

Complement pathway products can recruit immune cells
and indeed immune cell infiltration has been observed
in GBS patient nerve pathology. To investigate immune
cell infiltration in an acute model of GBS and any modu-
lation by Clq neutralisation, diaphragm sections from
each model were examined for infiltrating cells around
the nerve terminals using several markers associated
with early and late stage inflammatory cells. In the MFS
model, the general leukocyte marker, CD11b, labelled
significantly more cells surrounding the nerve terminal
in mice treated with isotype control mAb than anti-Clq
antibody (Fig 4a, p <0.05). There was a trend toward a
significant reduction in neutrophil cell number in anti-
Clq antibody treated tissue, but this did not reach sig-
nificance (Fig 4b). The number of CD11b positive cells
(Fig 4c) or neutrophils (Fig 4d) was not significantly dif-
ferent between treatment groups in the AMAN model.
Comparatively, the number of cells was lower in the
AMAN model compared to the MFS model. Macro-
phages were not observed in either model or treatment
groups, as would be expected over this short duration
time course (data not shown). These results demonstrate
early signs of leukocyte and neutrophil infiltration in
both mouse models of GBS, with a trend for a reduction
following treatment with anti-Clq antibody in the MFS
model of GBS.

Discussion and conclusions

This study presents two major developments in the field
of GBS modelling and immunotherapy. Firstly, we report
the establishment of a pure, readily reproducible and
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Fig. 3 Cl1q neutralisation attenuates injury in a novel mouse model of AMAN. a Tidal volume and respiratory rate decreased compared to baseline
measurements in both treatment groups. Tidal volume and respiratory rate reached a significant reduction in mice treated with isotype control mAb
(p <001, p <005, respectively) compared to anti-C1q antibody (n = 5/group). Representative flow-charts from the plethysmography recordings are
shown for each treatment group at baseline and 6 h post-NHS treatment. b Behavioural tests showed isotype control mAb treated mice (n = 5) spent
significantly less time on the accelerating rotarod than did mice treated with anti-C1q antibody (p < 0.001). There was no significant difference in grip
strength between groups. ¢ Top panels: lllustrative images show MAC (orange) and C3c (green) deposited at nerve terminals (NAChR's identified
by a-BTx, red; CFP-positive axons, blue) from mice treated with control mAb, while this staining is absent from those treated with anti-Clq
antibody. Lower panels: Anti-ganglioside antibody (orange) is present at terminals from both treatment groups, but neurofilament immunostaining (green)
is only present at those terminals from mice treated with anti-C1q antibody. d The diaphragm nerve terminals were identified by fluorescently
labelled a-BTx. Nerve terminals were immunohistochemically assessed for complement deposits and axonal integrity. The early and end-stage
complement products C3c and MAC, respectively, showed significantly greater deposits at control mAb treated mice than anti-C1qg antibody
treated mice nerve terminals (p < 0.01). Axonal integrity was a measure of percentage “normal” neurofilament immunostaining overlying the
endplate. Axonal integrity was significantly more intact at anti-C1q antibody protected mice nerve terminals compared to the isotype control
mAb group. Box and whisker plots represent the spread of all data points and significance was based on Mann-Whitney statistical analysis of
the median from each animal per treatment. * p < 0.05; ** p < 0.01; *** p < 0.001, unpaired student t-test (a,b), Mann-Whitney test (c). Scale

bar =20 um. AGAb = anti-ganglioside antibody, nAChR = nicotinic acetylcholine receptor
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temporally precise model of AMAN in mice. Using newly
developed transgenic mice that selectively express com-
plex gangliosides only in their axonal membranes [41], we
are able to exclusively target axons in vivo with anti-GM1
ganglioside antibody and a source of complement, result-
ing in the axonopathic phenotype described herein. The
importance of creating an AMAN model lies in under-
standing the mechanisms underlying the distinct features
of axonal and demyelinating GBS variants, and tailoring
therapeutic approaches accordingly. Secondly, we report
the successful attenuation of clinical and pathological dis-
ease in the acute AMAN and MFS models of GBS by tar-
geting the initiating protein of the complement cascade,
Clq. This is an as yet untargeted stage of the complement
pathway in GBS models and may have advantages over
terminal component complement inhibitors. Improved
and specific pathway-targeted therapies are greatly needed
in GBS, where no new treatments have been approved
since the introduction of intravenous immunoglobulin
and plasma exchange over 20 years ago.

GM1 antibodies are strongly associated with the axonal
variant of GBS, AMAN [17, 25]. It is unclear why motor
axons are specifically targeted in AMAN as GM1 is also
present in myelin, and in sensory axons [24]. The bound-
ary of this dichotomisation is the subject of considerable
on-going clinical interest [38]. By developing a mouse in
which complex gangliosides are exclusively expressed in
neurons, it is possible to target this site and study the
mechanisms that purely reflect axonal injury. Conversely,
we are similarly able to study mice in which GM1 expres-
sion is restricted to Schwann cell membranes [41]. Here,
we report that GM1 ganglioside was successfully reconsti-
tuted in brain extracts from GalNAcT ' -Tg(neuronal)
mice compared to GaINAcT ™~ mice. Further, we proved
by topical immunostaining of the triangularis sterni
nerve-muscle preparations that GM1 was only detectable
on axonal membranes, which is critical to developing a
pure AMAN model. This represents an important step

towards evaluating novel therapeutics in AMAN com-
pared to using wild type mice for several reasons. By ex-
pressing GML1 in neurons, we can be certain that the early
pathology we observe is solely due to direct axonal injury.
As GML1 is present on the kranocyte, a parajunctional
fibroblast that caps the motor nerve terminal in rodents
[4] and in Schwann cell membranes, binding and injury to
these sites may confound rigorous interpretation of data,
in comparison with wild type mice. An additional major
limitation to modelling AMAN in wild type mice is the
extensive sequestration of anti-ganglioside antibodies by
other extra-neural plasma membranes that limits the
bioavailability of the antibodies for targeting axonal mem-
branes (Cunningham et al, Brain in press). This seques-
tration of antibody by extra-neural cells may in part
account for the poor axonal staining visualised with the
DG2 anti-GM1 antibodiesin wild-type mice.

In our previously reported acute mouse model of the
MEFS variant of GBS, administration of anti-GQ1b/GD3
ganglioside antibody and a source of complement caused
a respiratory paralytic phenotype in wild type mice [15].
Whilst we have never previously been able to reproducibly
induce a similar phenotype with anti-GM1 antibody in
wild type mice (preferring instead to use anti-GD1la anti-
body in GD3 synthase-/- mice that overexpress GDla
[22]), we have here recapitulated this injury paradigm
using GalNAcT "~ -Tg(neuronal) mice receiving an injec-
tion of anti-GM1 ganglioside antibody to produce an
entirely original AMAN model. The clinical and mor-
phological phenotypes were successfully reproduced in
this model: mice developed weakness, respiratory dys-
function and associated complement deposition and
pathology in diaphragm nerve terminals. The new op-
portunities provided by this novel model are profound
- it is now possible to directly and specifically target
the axolemma at nerve terminals and the nodes of
Ranvier, study associated nodal pathology, and deter-
mine the downstream consequences on function and
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axon fate, currently a major area in GBS clinical research  features and motor deficits that are observed in patients,
[38]. This model can now be adapted and extended over  subsequently allowing the effective stages of therapeutic
time to allow the development of the GBS pathological intervention to be scrutinised.
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Complement activation on axolemmal membranes has
been associated with AMAN in human autopsy studies
and animal modelling [8, 9, 22, 36] and thus presents a
promising target for therapy. Halstead et al. (2008), estab-
lished an MES mouse model and used it to show that in-
hibition of the terminal MAC pore formation using an
anti-C5 monoclonal antibody could abrogate pathophysi-
ology [15]. A similar model, focussed on nodal pathology,
was also investigated by us with a similarly protective out-
come [22]. Using the current in vivo AMAN model with
anti-GM1 antibody we here report that blockade of the
classical complement pathway at the initiating stage using
the anti-Clq monoclonal antibody M1 [28] similarly at-
tenuates dysfunction and pathology. Anti-Clq antibody
directly targets C1q to inhibit classical complement path-
way activation and to prevent MAC pore formation and
calcium influx, the latter step being the target of anti-C5
antibody. Clq neutralisation may be beneficial over C5
inhibition in terms of infectious risk, as the mannose-
binding lectin pathway is still functional and the host
should therefore retain a defence system against bacterial
infections. Additionally, blocking C1q will eliminate the
generation of anaphylotoxins C3a and C5a, which cause
effector cell chemotaxis, binding and degranulation, with
the potential for further downstream injury [42]. The
safety of blocking C1q in human studies with a therapeutic
antibody has yet to be determined. In this hyper-acute
model, we provide the evidence that anti-Clq antibody
can attenuate complement-mediated injury by applying
the anti-Clq antibody prior to addition of an active com-
plement source to the mouse. In future studies in which
the model is prolonged, studying the efficacy of Clq
neutralization after disease onset will be of interest as this
better represents human clinical situations.

Our acute GBS disease models are complement-
mediated and we know that dysfunction correlates with
MAC pore formation [12, 14, 15]. However other steps
within the complement cascade could play a role in injury.
Here we studied effector cell recruitment at the diaphragm
nerve terminals and any effect of early complement com-
ponent blockade. Complement activation has the capacity
to recruit immune cells to injured peripheral nerves [31],
and it is known that neutrophils and macrophages can in-
filtrate the injured nerve within two days of injury [11].
We report an increase in CD11b positive cells and neutro-
phils in our MES model, which was attenuated by anti-
Clq antibody treatment. This finding demonstrates that
blocking Clq can successfully reduce immune cell infiltra-
tion. There was no change in immune cell number in our
AMAN mouse model, suggesting immune cells are not
involved in the pathogenesis reported over this short time
scale as modelled in this paradigm. Lack of immune cell
invasion may be attributed to the lower overall level of
complement activation observed and production of
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subsequent soluble signals. The acute duration of the para-
digm may also limit immune cell recruitment into the ter-
minals or nodes of Ranvier; it will be of interest to assess
their role in extended models in the future. Macrophage
infiltration into the periaxonal space of nerves and sur-
rounding degenerating axons has been observed in aut-
opsy tissue from AMAN patients [8, 9]. A rabbit model of
AMAN suggested this recruitment of macrophages into
the nerve begins at the acute progressive phase (~2 days)
of disease but did not yet correspond with sites of comple-
ment deposition [36]. Instead macrophage invasion was
significantly more frequent at the early recovery phase
(~2 weeks), suggesting that these cells are involved in
clearance of degenerating fibres rather than injury. At
such an acute time-point in our models we did not ob-
serve any macrophage infiltration. Further study in an ex-
tended model will be necessary to determine which
immune cells invade the site and their impact on injury
and recovery. Extending the model to several days will
also be informative for testing the long-term prognosis
and suitability of different therapeutic targets. For example
it is known that Cl1q plays a role in neurite outgrowth and
regeneration [26]; therefore timing of therapy may be
crucial.

Using Fcy receptor expressing NK cells, it has been
shown that anti-Clq antibody does not attenuate antibody-
dependent cytotoxicity [28]. This suggests that any attenu-
ation of injury reported here and in the NMO spinal cord
demyelinating injury model most likely has been through
mediation of the complement pathway [28]. Our model
currently concentrates on one aspect of AMAN pathogen-
esis and its inhibition; namely anti-ganglioside antibody
activation of the classical complement pathway and
subsequent complement-dependent nerve injury and its
attenuation by anti-Clq antibody, respectively. However,
anti-ganglioside antibody can conceivably cause injury
through complement-independent mechanisms. Indeed, it
has recently been reported that nodal and axonal injury
can be mediated through anti-ganglioside antibody im-
mune complex formation and recruitment of macrophages
through their Fcy receptors in a mouse model [16]. It is
likely that more than one mechanism will be active simul-
taneously in human GBS, and it is therefore important to
broadly consider inflammatory pathways whilst imple-
menting therapies.

The original characterisation of anti-Clq monoclonal
antibody demonstrated an apparent binding affinity of
11 pM, which is comparable to other approved mono-
clonal antibody therapeutics including rituximab to its
antigen CD20 (~8nM) [28, 33]. The results provided
here suggest that Clq is a valid target for GBS, and the
next step will be the generation of a humanized, non-
immunogenic antibody with suitable pharmacokinetics
in humans.



McGonigal et al. Acta Neuropathologica Communications (2016) 4:23

Competing interests

Drs Ted Yednock and Sethu Sankaranarayanan are employees of Annexon
Biosciences. Dr Madeleine Cunningham was funded by Annexon Biosciences
during the course of this study. Professor Hugh Willison is on the Scientific
Advisory Board for Annexon Biosciences.

Authors’ contributions

RM & HW contributed to conception & study design and interpretion of
data. RM carried out all in vivo experiments and drafted the manuscript. MEC
performed immune cell staining and quantification. DY produced the
transgenic GalNACT-/- Tg(neuronal) line. JAB performed and quantified
antibody ELISAs. SS performed and analysed C1q immunoassays. SNF
performed ganglioside TLC. KF contributed the GalNACT activity assay data.
HW, TAY and SS revised the manuscript critically. All authors read and
approved the final manuscript.

Acknowledgements

This work was supported by grants from the Wellcome Trust (092805, RM,,
MEC, DY, JAB, SN.F, HJW.), GBS/CIDP Foundation International (R.M.) and
by postdoctoral funding from Annexon Biosciences, Inc. (RM.,, MEEC, S.S.
H.J.W). KF. was supported by Grant-in-Aid for Scientific Research on Innovative
Areas 23110008 from the Ministry of Education, Culture, Sports, Science, and
Technology of Japan.

We would like to acknowledge EMMS (Hants, UK) for the supply of the
whole-body plethysmography equipment and accompanying eDacq software,
and Haiyan Qiu for technical support in these studies.

Author details

YInstitute of Infection, Immunity & Inflammation, University of Glasgow, 120
University Place, Glasgow G12 8TA, UK. “Annexon Biosciences, 280 Utah Ave,
Suite 110, South San Francisco, CA 94080, USA. 3Co\lege of Life and Health
Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501,
Japan.

Received: 17 February 2016 Accepted: 17 February 2016
Published online: 02 March 2016

References

1. Bowes T, Wagner ER, Boffey J, Nicholl D, Cochrane L, Benboubetra M, Conner J,
Furukawa K, Willison HJ. Tolerance to self gangliosides is the major factor
restricting the antibody response to lipopolysaccharide core oligosaccharides
in Campylobacter jejuni strains associated with Guillain-Barre syndrome.
Infect Immun. 2002;70:5008-18.

2. Bullens RW, O'Hanlon GM, Goodyear CS, Molenaar PC, Conner J, Willison HJ,
Plomp JJ. Anti-GQ1b antibodies and evoked acetylcholine release at mouse
motor endplates. Muscle Nerve. 2000;23:1035-43.

3. Chiba A, Kusunoki S, Obata H, Machinami R, Kanazawa I. Serum anti-GQ1b
I9G antibody is associated with ophthalmoplegia in Miller Fisher syndrome
and Guillain-Barre syndrome: clinical and immunohistochemical studies.
Neurology. 1993;43:1911-7.

4. Court FA, Gillingwater TH, Melrose S, Sherman DL, Greenshields KN, Morton
AJ, Harris JB, Willison HJ, Ribchester RR. Identity, developmental restriction
and reactivity of extralaminar cells capping mammalian neuromuscular
junctions. JCell Sci. 2008;121:3901-11. doi:10.1242/jcs.031047.

5. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M,
Nerbonne JM, Lichtman JW, Sanes JR. Imaging neuronal subsets in
transgenic mice expressing multiple spectral variants of GFP. Neuron.
2000;28:41-51.

6. Goodyear CS, O'Hanlon GM, Plomp JJ, Wagner ER, Morrison |, Veitch J,
Cochrane L, Bullens RW, Molenaar PC, Conner J, Willison HJ. Monoclonal
antibodies raised against Guillain-Barre syndrome-associated Campylobacter
jejuni lipopolysaccharides react with neuronal gangliosides and paralyze
muscle-nerve preparations. J Clin Invest. 1999;104:697-708.

7. Greenshields KN, Halstead SK, Zitman FM, Rinaldi S, Brennan KM, O'Leary C,
Chamberlain LH, Easton A, Roxburgh J, Pediani J, Furukawa K, Furukawa K,
Goodyear CS, Plomp JJ, Willison HJ. The neuropathic potential of anti-GM1
autoantibodies is regulated by the local glycolipid environment in mice.

J Clin Invest. 2009;119:595-610.

8. Griffin JW, Li CY, Macko C, Ho TW, Hsieh ST, Xue P, Wang FA, Cornblath

DR, Mckhann GM, Asbury AK. Early nodal changes in the acute motor

20.

21.

22.

23.

24.

25.

26.

27.

28.

Page 15 of 16

axonal neuropathy pattern of the Guillain-Barre syndrome. J Neurocytol.
1996;25:33-51.

Hafer-Macko C, Hsieh ST, Li CY, Ho TW, Sheikh K, Cornblath DR, Mckhann,
GM, Asbury AK, Griffin JW. Acute motor axonal neuropathy: an antibody-
mediated attack on axolemma. Ann Neurol. 1996;40:635-44. doi:10.1002/
ana410400414.

Hafer-Macko CE, Sheikh KA, Li CY, Ho TW, Cornblath DR, Mckhann GM,
Asbury AK, Griffin JW. Immune attack on the Schwann cell surface in acute
inflammatory demyelinating polyneuropathy. Ann Neurol. 1996;39:625-35.
doi:10.1002/ana.410390512.

Hall S. The response to injury in the peripheral nervous system. JBone Joint
SurgBr. 2005;87:1309-19. doi:10.1302/0301-620X.87810.16700.

Halstead SK, Humphreys PD, Goodfellow JA, Wagner ER, Smith RA, Willison HJ.
Complement inhibition abrogates nerve terminal injury in Miller Fisher
syndrome. Ann Neurol. 2005;58:203-10.

Halstead SK, Humphreys PD, Zitman FM, Hamer J, Plomp JJ, Willison HJ.

C5 inhibitor rEV576 protects against neural injury in an in vitro mouse
model of Miller Fisher syndrome. J Peripher Nerv Syst. 2008;13:228-35.
Halstead SK, O'Hanlon GM, Humphreys PD, Morrison DB, Morgan BP, Todd
AJ, Plom JJ, Willison HJ. Anti-disialoside antibodies kill perisynaptic Schwann
cells and damage motor nerve terminals via membrane attack complex in a
murine model of neuropathy. Brain. 2004;127:2109-23.

Halstead SK, Zitman FM, Humphreys PD, Greenshields K, Verschuuren JJ,
Jacobs BC, Rother RP, Plomp JJ, Willison HJ. Eculizumab prevents anti-
ganglioside antibody-mediated neuropathy in a murine model. Brain.
2008;131:1197-208.

He L, Zhang G, Liu W, Gao T, Sheikh KA. Anti-ganglioside antibodies induce
nodal and axonal injury via fcgamma receptor-mediated inflammation.
JNeurosci. 2015;35:6770-85. doi:10.1523/JNEUROSCI4926-14.2015.

Ho TW, Willison HJ, Nachamkin |, Li CY, Veitch J, Ung H, Wang GR, Liu RC,
Cornblath DR, Asbury AK, Griffin JW, Mckhann GM. Anti-GD1a antibody is
associated with axonal but not demyelinating forms of Guillain-Barre
syndrome. Ann Neurol. 1999;45:168-73.

Jacobs BC, Bullens RW, O'Hanlon GM, Ang CW, Willison HJ, Plomp JJ.
Detection and prevalence of alpha-latrotoxin-like effects of serum from
patients with Guillain-Barre syndrome. Muscle Nerve. 2002,25:549-58.

Kaja S, van de Ven RC, van Dijk JG, Verschuuren JJ, Arahata K, Frants RR,
Ferrari MD, van den Maagdenberg AM, Plomp JJ. Severely impaired
neuromuscular synaptic transmission causes muscle weakness in the
Cacnala-mutant mouse rolling Nagoya. EurJNeurosci. 2007;25:2009-20.
doi:10.1111/}.1460-9568.2007.05438 x.

Ledeen RW. Ganglioside structures and distribution: are they localized at the
nerve ending? JSupramolStruct. 1978;8:1-17. doi:10.1002/j55.400080102.
Lehmann HC, Hughes RA, Kieseier BC, Hartung HP. Recent developments
and future directions in Guillain-Barre syndrome. JPeripherNervSyst. 2012;17
Suppl 3:57-70. doi:10.1111/j.1529-8027.2012.00433 x.

McGonigal R, Rowan EG, Greenshields KN, Halstead SK, Humphreys PD,
Rother RP, Furukawa K, Willison, HJ. Anti-GD1a antibodies activate
complement and calpain to injure distal motor nodes of Ranvier in mice.
Brain. 2010;133:1944-60. doi:10.1093/brain/awq119.

O'Hanlon GM, Plomp JJ, Chakrabarti M, Morrison |, Wagner ER, Goodyear CS,
Yin X, Trapp BD, Conner J, Molenaar PC, Stewart S, Rowan EG, Willison HJ.
Anti-GQ1b ganglioside antibodies mediate complement-dependent
destruction of the motor nerve terminal. Brain. 2001;124:393-906.
Ogawa-Goto K, Funamoto N, Ohta Y, Abe T, Nagashima K. Myelin gangliosides
of human peripheral nervous system: an enrichment of GM1 in the motor
nerve myelin isolated from cauda equina. J Neurochem. 1992;59:1844-9.
Ogawara K, Kuwabara S, Mori M, Hattori T, Koga M, Yuki N. Axonal Guillain-
Barre syndrome: relation to anti-ganglioside antibodies and Campylobacter
jejuni infection in Japan. Ann Neurol. 2000;48:624-31.

Peterson SL, Nguyen HX, Mendez OA, Anderson AJ. Complement protein
Clg modulates neurite outgrowth in vitro and spinal cord axon
regeneration in vivo. JNeurosci. 2015;35:4332-49. doi:10.1523/JNEUROSCI.
4473-12.2015.

Phongsisay V, Susuki K, Matsuno K, Yamahashi T, Okamoto S, Funakoshi K,
Hirata K, Shinoda M, Yuki N. Complement inhibitor prevents disruption of
sodium channel clusters in a rabbit model of Guillain-Barre syndrome.
JNeuroimmunol. 2008;205:101-4. doi:10.1016/jjneuroim.2008.09.016.

Phuan PW, Zhang H, Asavapanumas N, Leviten M, Rosenthal A, Tradtrantip L,
Verkman AS. Clg-targeted monoclonal antibody prevents complement-
dependent cytotoxicity and neuropathology in in vitro and mouse models


http://dx.doi.org/10.1242/jcs.031047
http://dx.doi.org/10.1002/ana.410400414
http://dx.doi.org/10.1002/ana.410400414
http://dx.doi.org/10.1002/ana.410390512
http://dx.doi.org/10.1302/0301-620X.87B10.16700
http://dx.doi.org/10.1523/JNEUROSCI.4926-14.2015
http://dx.doi.org/10.1111/j.1460-9568.2007.05438.x
http://dx.doi.org/10.1002/jss.400080102
http://dx.doi.org/10.1111/j.1529-8027.2012.00433.x
http://dx.doi.org/10.1093/brain/awq119
http://dx.doi.org/10.1523/JNEUROSCI.4473-12.2015
http://dx.doi.org/10.1523/JNEUROSCI.4473-12.2015
http://dx.doi.org/10.1016/j.jneuroim.2008.09.016

McGonigal et al. Acta Neuropathologica Communications (2016) 4:23

29.

30.

31

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

of neuromyelitis optica. Acta Neuropathol. 2013;125:829-40. doi:10.1007/
s00401-013-1128-3.

Plomp JJ, Molenaar PC, O'Hanlon GM, Jacobs BC, Veitch J, Daha MR, van
Doorn PA, van der Meche FG, Vincent A, Morgan BP, Willison HJ. Miller
Fisher anti-GQ1b antibodies: alpha-latrotoxin-like effects on motor end
plates. Ann Neurol. 1999;45:189-99.

Putzu GA, Figarella-Branger D, Bouvier-Labit C, Liprandi A, Bianco N, Pellissier JF.
Immunohistochemical localization of cytokines, C5b-9 and ICAM-1 in peripheral
nerve of Guillain-Barre syndrome. JNeurolSci. 2000;174:16-21.

Ramaglia V, Daha MR, Baas F. The complement system in the peripheral
nerve: friend or foe? Mollmmunol. 2008;45:3865-77. doi:10.1016/j.molimm.
2008.06.018.

Rasid O, Chirita D, lancu AD, Stavaru C, Radu DL. Assessment of routine
procedure effect on breathing parameters in mice by using whole-body
plethysmography. J Am Assoc Lab Anim Sci. 2012,51:469-74.

Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA,
Hanna N, Anderson DR. Depletion of B cells in vivo by a chimeric mouse
human monoclonal antibody to CD20. Blood. 1994;83:435-45.

Ruan S, Lloyd KO. Glycosylation pathways in the biosynthesis of gangliosides
in melanoma and neuroblastoma cells: relative glycosyltransferase levels
determine ganglioside patterns. Cancer Res. 1992,52:5725-31.

Ruan S, Raj BK, Furukawa K, Lloyd KO. Analysis of melanoma cells stably
transfected with beta 1,4GalNAc transferase (GM2/GD2 synthase) cDNA:
relative glycosyltransferase levels play a dominant role in determining
ganglioside expression. ArchBiochemBiophys. 1995;323:11-8.

Susuki K, Rasband MN, Tohyama K, Koibuchi K, Okamoto S, Funakoshi K,
Hirata K, Baba H, Yuki N. Anti-GM1 antibodies cause complement-mediated
disruption of sodium channel clusters in peripheral motor nerve fibers.
JNeurosci. 2007;27:3956-67. doi:10.1523/JNEUROSCI.4401-06.2007.

Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M, Okada M, et al.
Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but
exhibit only subtle defects in their nervous system. Proc Natl Acad Sci U S A.
1996,93:10662-7.

Uncini A, Kuwabara S. Nodopathies of the peripheral nerve: an emerging
concept. JNeuroINeurosurgPsychiatry. 2015;86:1186-95. doi:10.1136/jnnp-
2014-310097.

Willison HJ, Halstead SK, Beveridge E, Zitman FM, Greenshields KN, Morgan
BP, Plomp JJ. The role of complement and complement regulators in
mediating motor nerve terminal injury in murine models of Guillain-Barre
syndrome. JNeuroimmunol. 2008;201-202:172-82.

Willison HJ, Yuki N. Peripheral neuropathies and anti-glycolipid antibodies.
Brain. 2002;125:2591-625.

Yao D, McGonigal R, Barrie JA, Cappell J, Cunningham ME, Meehan GR,
Fewou SN, Edgar JM, Rowan E, Ohmi Y, Furukawa K, Furukawa K, Brophy PJ,
Willison HJ. Neuronal expression of GaINAc transferase is sufficient to
prevent the age-related neurodegenerative phenotype of complex
ganglioside-deficient mice. JNeurosci. 2014;34:880-91. doi:10.1523/
JNEUROSCI.3996-13.2014.

Zipfel PF, Skerka C. Complement regulators and inhibitory proteins.
NatRevimmunol. 2009,9:729-40. doi:10.1038/nri2620.

Page 16 of 16

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

* Thorough peer review

e Inclusion in PubMed and all major indexing services

* Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BioMed Central



http://dx.doi.org/10.1007/s00401-013-1128-3
http://dx.doi.org/10.1007/s00401-013-1128-3
http://dx.doi.org/10.1016/j.molimm.2008.06.018
http://dx.doi.org/10.1016/j.molimm.2008.06.018
http://dx.doi.org/10.1523/JNEUROSCI.4401-06.2007
http://dx.doi.org/10.1136/jnnp-2014-310097
http://dx.doi.org/10.1136/jnnp-2014-310097
http://dx.doi.org/10.1523/JNEUROSCI.3996-13.2014
http://dx.doi.org/10.1523/JNEUROSCI.3996-13.2014
http://dx.doi.org/10.1038/nri2620

	Abstract
	Introduction
	Results and Conclusions

	Introduction
	Materials and methods
	Mice
	Monoclonal antibodies and normal human serum
	In vivo model
	Plethysmography and behavioural analysis
	Immunoassays
	ELISA
	Anti-C1q antibody assay
	Human C1q assay

	Immunostaining
	Image capture and analysis

	Results
	Anti-ganglioside antibody binding in different mouse strains
	Treatment with anti-C1q neutralising antibody reduced levels of human C1q in mouse serum
	Treatment with C1q neutralising antibody protects against neuropathy in a mouse model of MFS
	Treatment with C1q neutralising antibody protects against neuropathy in a mouse model of AMAN
	Immune cell infiltration is impaired by C1q inhibition in a model of GBS

	Discussion and conclusions 
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References



