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Abstract

repeat-associated non-AUG-initiated (RAN) translation.

retaining C9orf/2 transcripts accumulate in the nucleus.

the basis for novel therapeutic strategies.

Introduction: The most common forms of amyotrophic lateral sclerosis and frontotemporal dementia are caused
by a large GGGGCC repeat expansion in the first intron of the C9orf72 gene. The repeat-containing intron should be
degraded after being spliced out, however GGGGCC repeat-containing RNA species either accumulate in nuclear
foci or are exported to the cytoplasm where they are translated into potentially toxic dipeptide repeat proteins by

Results: In order to determine the mechanisms of repeat-containing intron misprocessing, we have analyzed
C9orf72 transcripts in lymphoblasts from C9orf/2 expansion carriers (n=15) and control individuals (n = 15). We
have identified polyadenylated C9orf72 RNA species retaining the repeat-containing intron and in which
downstream exons are spliced correctly resulting in a C9orf72 mRNA with an enlarged 5-UTR containing the
GGGGCC repeats. Intron-retaining transcripts are produced from both wild-type and mutant alleles. Intron-retaining
C9orf72 transcripts were also detected in brain with a 2.7 fold increase measured in the frontal cortex from
heterozygous expansion carriers (n = 11) compared to controls (n=10). The level of intron-retaining transcripts was
increased 5.9 fold in a case homozygous for the expansion. We also show that a large proportion of intron 1-

Conclusions: Retention of the repeat-containing intron in mature C9orf72 mRNA can potentially explain nuclear
foci formation as well as nuclear export of GGGGCC repeat RNA and suggests that the misprocessing of C9orf/2
transcripts initiates the pathogenic process caused by C9orf72 hexanucleotide repeat expansions as well as provides
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Introduction

Amyotrophic lateral sclerosis (ALS), a devastating de-
generative disease of motor neurons and frontotemporal
dementia (FTD), the second most common form of pre-
senile dementia after Alzheimer’s disease, show consider-
able overlap clinically and genetically. Pathologically,
ALS and FTD patients display abundant cytoplasmic
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inclusions of the DNA and RNA-binding protein, TDP-
43, suggesting that both neurodegenerative conditions
are likely to represent two ends of a single pathological
continuum. The most common forms of familial and
sporadic ALS and FTD, referred to as c9ALS/FTD, are
caused by a non-coding GGGGCC (G4C,) hexanucleo-
tide repeat expansion in the C9orf72 gene on chromo-
some 9p21 [1, 2]. The number of repeats ranges from 2
to 23 in the normal population but is increased to more
than 700-1600 repeats in affected individuals. The pro-
portion of sporadic cases with a G,C, repeat expansion
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depends on geographical origin. For example, in the
United Kingdom, the G4C, repeat expansion accounts
for 20-50 % of familial or 5-10 % of sporadic cases of
ALS [3, 4]. The G4C, repeat expansion is located either
in intron 1, between two 5-untranslated region (5-UTR)
exons, or in the promoter region according to whether
an upstream or a downstream transcription start site is
used.

In addition to possible haploinsufficiency, two, not
mutually exclusive, mechanisms have been proposed to
explain the pathogenesis of c9ALS/FTD: RNA trans-
dominant toxic effects and repeat-associated non-AUG-
initiated (RAN) translation of G4C, RNA repeats into
potentially toxic dipeptide repeat proteins (DPRs) [5-7].
The G4C, repeats are transcribed from both sense and
antisense strands of the C9orf72 gene [5, 8—11]. Sense
and antisense C9orf72 repeat RNA can form nuclear foci
that have been detected in brain and spinal cord tissue
from affected individuals [1, 5, 9-13] and in neurons dif-
ferentiated from induced pluripotent stem cells (iPSCs)
established from c9ALS/FTD patients [12, 14, 15]. Se-
questration of specific RNA-binding proteins by hexanu-
cleotide RNA repeats could impair their RNA processing
activity and contribute to pathogenesis. Proteins binding
to G4C, repeats and co-localizing with foci identified to
date include hnRNP A3 [16], Pur a [17], ADARB2 [12],
hnRNP H [13, 18] and nucleolin [19]. Sense and anti-
sense RNA repeats can also be exported to the cyto-
plasm where they are each translated into the three
possible reading frames by RAN translation resulting in
five DPRs that have been detected in the brain of
c9ALS/FTD patients [5-9]. Arginine-rich DPRs (GR,
PR) causes neurodegeneration in Drosophila [20] or are
toxic in transfected cells [21-24].

Impairment of nucleocytoplasmic transport appears to
be a key mediator of C9orf/72-linked pathogenesis. For
instance, components of the nuclear pore complex have
been identified as modifiers of pathogenesis in several
model systems [25-28] and the C9orf72 protein itself
binds to components of the nuclear pore complex and
its short isoform has been shown to relocalize from the
nuclear membrane to the plasma membrane in neurons
from expansion carriers [29].

C9orf72 intron 1, where G4C, repeats are located,
should be degraded after being spliced out during the
processing of pre-mRNA into mature mRNA. However,
in ¢c9ALS/FTD, expanded G,C, repeats fail to be de-
graded and form nuclear foci or are RAN translated into
DPRs. The mechanisms of defective nuclear degradation
as well as of nuclear export of C9orf72 G,C, repeat se-
quences are presently unknown but are central to the
pathogenesis of ¢9ALS/FTD. Interestingly, treatment
with antisense oligonucleotides (ASOs) targeting
C9orf72 exons downstream of intron 1, up to exon
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11, promotes degradation of expanded C9orf72 tran-
scripts [11, 12, 15]. As splicing occurs mainly co-
transcriptionally this suggests that intron 1 is still
present in nascent transcripts when downstream
exons have been spliced. This prompted us to
analyze the fate of C9orf72 intron 1 in cells derived
from expansion carriers.

Here we identify polyadenylated C9orf72 RNA species
retaining the repeat-containing intron and in which
downstream exons are spliced correctly resulting in a
C9orf72 mRNA with an enlarged 5-UTR containing the
G4C, repeats. Generation of intron 1-retaining RNA
species potentially explains a number of pathological fea-
tures of cOALS/FTD and opens the way to novel thera-
peutic strategies.

Materials and methods

Lymphoblasts

Lymphoblasts from C9orf72 expansion carriers (n = 15)
were generated using a standard protocol where the
Epstein-Barr virus is used to immortalize B-lymphocytes
or were obtained from the UK MND DNA Bank. Con-
trol lymphoblasts from individuals free from neuro-
logical disease (1 =15) were generated as above or were
from the European Collection of Animal Cell Cultures
(ECACC). Cells have been genotyped for the C9orf72
G4C, hexanucleotide repeat expansion by repeat-primed
PCR [1, 2]. Lymphoblasts were grown in RPMI supple-
mented with 15 % (v/v) FBS, 100 UI/ml penicillin and
100 pg/ml streptomycin.

Brain tissue

Frozen brain tissue from cases with frontotemporal lobar
degeneration (FTLD) or frontotemporal lobar degener-
ation with motor neuron disease (FTLD-MND) (n =11)
and control cases from individuals free from neuro-
logical disease (n=10) were obtained from the MRC
London Neurodegenerative Diseases Brain Bank (Insti-
tute of Psychiatry, Psychology and Neuroscience, King’s
College London, UK), and were collected in accordance
with local and national research ethics guidelines (Add-
itional file 1: Table S1). The C9orf72 status of the cases
used was confirmed by repeat-primed PCR.

RNA isolation

Total RNA was extracted from whole lymphoblasts or
from cytoplasmic and nuclear fractions (see below) using
TRIzol (Life Technologies). Frozen brain tissue samples
were homogenized in matrix lysing-D tubes (MP
Biomedicals) in conjunction with the Fastprep sample
preparation system and total RNA was extracted using
the RNeasy lipid tissue kit (Qiagen). RNA from an FTLD
case homozygous for the C9orf72 G4C, repeat expansion
[30] was obtained from Dr Adrian Isaacs and Dr Pietro
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Fratta (UCL Institute of Neurology, London). Any re-
sidual contaminating genomic DNA was eliminated by
treatment with Turbo DNase (Ambion). Poly(A)" RNA
was selected from total RNA using oligo(dT) conjugated
to magnetic beads (Dynabeads® Oligo(dT),s5, Ambion)
according to the manufacturer’s protocol. RNA concen-
tration was determined with a Nanodrop spectropho-
tometer (Thermo Scientific). RNA integrity number
(RIN) was measured with an Agilent RNA 6000 analyzer
(lymphoblasts, controls: 6.0-7.6, expansion carriers: 5.9—
7.5; brain, controls: 3.9-6.5, expansion carriers: 3.8—5.7).

Nuclear and cytoplasmic fractionation

Nuclear and cytoplasmic fractionation was carried out
using a modification of earlier protocols [31-33]. Lym-
phoblasts were centrifuged at 800 rpm for 5 min and lysed
by slow pipetting in lysis buffer (10 mM Tris—HCI pH 8.4,
140 mM NaCl, 1.5 mM MgCl,, 0.5 % Nonidet P-40,
1 mM dithiothreitol and 100 U/ml RNasin). The suspen-
sion was centrifuged at 1000 g for 3 min at 4 °C and the
supernatant recovered as the cytoplasmic fraction. Nu-
clear pellets were resuspended in lysis buffer with 3.3 %
(w/v) sodium deoxycholate and 6.6 % (v/v) Tween 40. The
samples were vortexed and incubated on ice for 5 min.
Nuclei were re-pelleted by centrifugation at 1000 g for
3 min at 4 °C. Pooled supernatants were centrifuged at
1000 g for 5 min at 4 °C and transferred to fresh tubes.
Nuclei were lysed in thiocyanate buffer (4 M guanidinium
thiocyanate, 20 mM sodium acetate, 0.1 mM dithiothrei-
tol, 0.5 % (w/v) sarkosyl). RNA was extracted from cyto-
plasmic and nuclear fractions using TRIzol, as above.
Final RNA volumes from each fraction were adjusted to
represent cell-equivalent concentrations [34].

RT-PCR

RNA was reverse transcribed using the TagMan RT kit
or the Superscript II kit (Life Technologies) with
oligo(dT) or random hexamers according the manufac-
turer’s protocols. Reverse-transcribed RNA was ampli-
fied by PCR using GoTaq polymerase (Promega) using
primers and conditions detailed in Additional file 1:
Table S2. For PCR across the G4C, repeats, reactions
were supplemented with betaine (Sigma), DMSO and 7-
deaza GTP (New England Biosystems) [1]. No RT con-
trols were used to confirm absence of DNA contamin-
ation. RT-PCR products were separated in 1.5 % (w/v)
agarose gels and stained with ethidium bromide. The
amount of PCR product was estimated by densitometric
analysis of the gels using the VisionWorks’LS analysis
software (UVP).

qRT-PCR
For real-time quantitative PCR, reactions contained 5 pl
SYBR Green (Roche Diagnostics), 1.25 uM of each
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primer and 10 ng of ¢cDNA. Primers (Additional file 1:
Table S2) were designed using Primer-BLAST. Each pri-
mer pair produced a single PCR product and its identity
was confirmed by sequencing. To produce standard
curves for absolute quantification, PCR products were li-
gated into the pGEM-T easy vector and transformed
into JM109 E. coli. Concentrations of plasmid DNA were
determined using a Nanodrop spectrophotometer
(Thermo Scientific) and copy numbers calculated. Serial
dilutions were made to produce standard curves ranging
from 10! to 107 molecules (Additional file 1: Figure S5).
qPCR was performed in 384-well plates on an Applied
Biosystems 7900HT Fast Real-Time PCR System using
the conditions detailed in Additional file 1: Table S2.
Samples were run in duplicate and the average cycle
threshold (Ct) was calculated for target and standards.
These values were used to calculate the number of RNA
molecules in each sample. Statistical analysis was carried
out using the Mann—Whitney U test using the SPSS
software.

Sequencing

PCR products were excised from the gels and extracted
using the Qiaquick gel extraction kit (Qiagen) and
cloned into the pGEM-T Easy vector (Promega) using
the TA cloning system. Sequencing of both strands was
performed commercially using SP6 and T7 primers
(MWG Eurofins). For allele analysis, a 451 bp fragment
spanning the intron 1-exon 2 boundary and the
rs10757668 SNP was amplified by PCR using standard
procedures. Amplicons were directly sequenced with the
same primers using Big-Dye Terminator v1.1 and prod-
ucts run on an ABI3130 Genetic Analyzer (Applied
Biosystems).

Results

Intron 1 retention in polyadenylated C90rf72 transcripts
in lymphoblasts from G,;C, expansion carriers

Defective splicing of C9orf72 intron 1 could result in its
retention in an otherwise mature mRNA. To determine
whether polyadenylated RNA contained sequences de-
rived from C9orf72 intron 1, we analyzed poly(A)" RNA
from cultured lymphoblasts established from heterozy-
gous C9orf72 G,C, repeat expansion carriers and control
individuals. Lymphoblasts derived from C9orf72 G4C,
repeat expansion carriers display nuclear foci [11], thus,
abnormal processing of intron 1 occurring in neurons is
likely to be recapitulated in lymphoblasts.

Poly(A)" RNA was purified from lymphoblasts and re-
verse transcribed using an oligo(dT) primer. The lack of
contaminating genomic DNA was demonstrated by PCR
using primers spanning a short intron in the HOXB4
gene [35] (Additional file 1: Figure Sla). The large size
and high GC content of intron 1 prevents its direct
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amplification by PCR. To determine whether intron 1
sequences were present in polyadenylated C9orf72 RNA,
¢DNA was analyzed by PCR using primers spanning the
exon la-intron 1 and intron 1-exon 2 boundaries. PCR
with a forward primer specific for exon la and a reverse
primer annealing to intron 1, 5'of the G,C, repeats, gen-
erated a 278 bp product from both control and expan-
sion carrier cells (Fig. la, left). PCR with a forward
primer annealing to intron 1, 3'of the G,C, repeats, and
a reverse primer specific for exon 5 generated a 1156 bp
product from both control and expansion carrier cells
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(Fig. 1a, right). Such products were not observed in con-
trol reactions with no reverse transcriptase, ruling out
the possibility that they originated from residual con-
taminating genomic DNA (Additional file 1: Figure S2).
Oligo(dT) was used as a primer for reverse transcription
in order to add a further level of specificity; the same re-
sults were obtained when reverse transcription was
primed using random hexamers (Additional file 1: Figure
S3). Thus, mature polyadenylated RNA species derived
from C9orf72 and containing intron 1 sequences are
produced in lymphoblasts from expansion carriers and
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Fig. 1 Intron 1 retention in C9orf72 transcripts in lymphoblasts. C9orf72 transcripts were analyzed in lymphoblasts from C9orf72 G4C, expansion
carriers and control individuals. a RT-PCR analysis of poly(A)" RNA using primers spanning the 5" splice site (left) or the 3’ splice site (right) of
intron 1 demonstrating retention of intron 1in polyadenylated RNA. The position of the primers is indicated on the diagram above the gels.
GAPDH was used as a loading control. b Correctly spliced transcripts detected in controls and expansion carrier cells using primers in exons 1a
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control individuals. In addition to transcripts retaining
intron 1 C9orf72 transcripts in which intron 1 has been
correctly spliced out were also detected in both control
cells and cells from expansion carriers (Fig. 1b).

Intron 1 retention was quantified by measuring the
levels of C9orf72 transcripts unspliced at the 5’ end or at
the 3’ end by real-time quantitative RT-PCR (qRT-PCR)
in lymphoblasts from expansion carriers (n=15) and
controls (7 =15). No significant differences were de-
tected between the two groups (Fig. 1c). Comparison
with normally spliced transcripts shows that about
25 % of C9orf72 transcripts retain intron 1. This value is
comparable with what has been measured for several
transcripts in granulocytes [36].

Sequencing confirmed that the 5 PCR product con-
tained an exact exon la-intron 1 boundary and that the
3’ product contained an exact intron 1-exon 2 boundary
as well as exon 2-3, 3—4 and 4-5 junctions (Fig. 1d and
Additional file 1: Figure S4). The latter product corre-
sponds to a transcript retaining intron 1 and in which
the other introns have been spliced out correctly, at least
up to intron 4. HOXB4 analysis and RT negative con-
trols effectively rule out the possibility that the products
detected had originated from genomic DNA (Additional
file 1: Figures Sla and S2). Furthermore, the 3' end prod-
uct, that contains exact exon-exon junctions can only
have originated from a reverse transcribed RNA.

Intron 1-retaining transcripts contain the repeat sequence
and are produced from both wild-type and mutant alleles
Detection of exact exon la-intron 1 and intron 1-exon 2
boundaries in cDNA suggests that the template RNA
overlaps the G4C, repeat sequence. To confirm that
polyadenylated C9orf72 RNA contained the repeat se-
quence, we performed a PCR on ¢cDNA using a pair of
primers spanning the repeat region. PCR across repeats
will only amplify the product from the wild-type allele in
expansion carrier cells, as the repeat region from the ex-
panded allele cannot be amplified due to its size and
high GC content. Using this method, two products of
slightly different sizes were detected in cells from nor-
mal individuals and only one product was generated
from expansion carrier cells (Fig. 2a). Such products
were not observed in control reactions in which reverse
transcriptase was omitted, ruling out the possibility that
they originated from residual contaminating intronic
genomic DNA (not shown). Therefore the repeat region
of the two alleles in control cells and of the wild-type al-
lele in expansion carrier cells is present in polyadeny-
lated C9orf72 transcripts.

To determine whether intron 1-retaining transcripts
could be produced from both the wild-type and the mu-
tant allele, we took advantage of the G>A single-
nucleotide polymorphism (SNP) rs10757668 in C9orf72

Page 5 of 12

exon 2 [1]. We first selected two expansion carrier cases
heterozygous for rs10757668 from cases that had been
genotyped previously [3]. An intron 1-exon 2 fragment
overlapping rs10757668 was amplified and sequenced
from genomic DNA, as confirmation of heterozygosity
for rs10757668, and from c¢DNA reversed transcribed
from poly(A)" RNA. Sequence analysis revealed that
intron 1-retaining transcripts contained both the G
and A alleles showing that intron 1 retention oc-
curred in RNA transcribed from the wild-type as well
as the expanded allele (Fig. 2b).

Intron 1-retaining C9orf72 transcripts accumulate in the
nucleus

A feature of intron-retaining transcripts is their failure
to be exported from the nucleus [36, 37]. We therefore
compared the partitioning of C9orf72 transcripts be-
tween the nucleus and the cytoplasm in lymphoblasts
from G4C, repeat expansion carriers and control cases.
Nuclear and cytoplasmic fractions were prepared and
poly(A)" RNA was extracted from each fraction and
reverse transcribed. HOXB4 analysis confirmed the lack
of contaminating genomic DNA in both fractions
(Additional file 1: Figure S1b). The purity of the nuclear
and cytoplasmic fractions was further assessed by ana-
lyzing the polyadenylated nuclear long non-coding RNA,
NEAT1 [38]. NEAT1 was only found in the nuclear frac-
tion, demonstrating that the cytoplasmic fraction was
free of nuclear contamination (Fig. 3a). Poly(A)" C9orf72
transcripts from both fractions were analyzed for defect-
ive splicing of intron 1 at the 5 and 3’ ends or splicing
out of intron 1 (Fig. 3a). Quantification of nuclear and
cytoplasmic contents showed that approximately 85 % of
CYorf72 transcripts retaining intron 1 were found in
the nuclear fraction whereas correctly spliced tran-
scripts were predominantly cytoplasmic (Fig. 3b).
RNA unspliced at the 3’ end and RNA unspliced at
the 5 end were also detected, albeit at low levels, in
the cytoplasmic fraction (Fig. 3b).

Intron 1-retaining C90rf72 transcripts in brain

We next determined whether intron 1-retaining C9orf72
transcripts were present in brain tissue from C9orf72
hexanucleotide expansion carriers. RNA from the frontal
cortex from heterozygous expansion carriers and from
control cases was extracted and analyzed for intron 1 re-
tention. C9orf72 transcripts unspliced at the 5" or 3’ end
of intron 1 were detected in both control and expansion
carriers (Fig. 4a). We also analyzed intron 1 retention in
the frontal cortex from an FTLD case homozygous for
the C9orf72 G,C, repeat expansion in which results
would not confounded by the presence of transcripts
from the wild-type allele [30]. The levels of unspliced
CYorf72 transcripts were markedly higher in the
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Fig. 2 a Intron 1-retaining transcripts contain the G,C, repeat sequence.
cDNA reversed transcribed from polyadenylated C9orf72 RNA from contr

well as the expanded allele. C9™, controls; C9*, expansion carriers

different sizes detected in cells from normal individuals correspond to the two alleles; the single product generated from expansion carrier cells
corresponds to the wild-type allele. b Intron 1-retaining transcripts are produced from both wild-type and mutant alleles. Sequence traces of
C9orf72 overlapping the intron T-exon 2 boundary and the rs10757668 SNP in cDNA (top panels) and genomic DNA (GDNA, bottom panels)
prepared from lymphoblasts from two control individuals and two expansion carriers heterozygous for rs10757668. One of the control cases
(top trace) is heterozygous for rs10757668. The sequence of the reverse strand is shown; the position of rs10757668 is indicated by the grey box.
Intron 1-retaining transcripts contain both the C and T alleles showing that intron 1 retention occurs in RNA transcribed from the wild-type as

PCR using primers spanning the G4C, repeat region was performed on
ol and expansion carrier lymphoblasts. The two products of slightly

homozygous case than in heterozygous cases (Fig. 4a).
The levels of C9orf72 transcripts unspliced at the 5" end
or at the 3’ end were measured by qRT-PCR as for lym-
phoblasts (Fig. 4b). The level of C9orf72 transcripts
unspliced at the 5" end in the frontal cortex from hetero-
zygous expansion carriers (n=11) showed a statistically
significant 2.7 fold increase compared to control cases

(n=10) (Fig. 4b). The level of transcripts unspliced at
the 5’ was increased by 5.9 fold in the homozygous case
analyzed.

Discussion
Here, we have identified previously unrecognized RNA
species derived from polyadenylated C9orf72 RNA that
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are unspliced at the 5 and 3’ end of intron 1 and in
which downstream exons are spliced correctly. As intron
1 is located between two 5-UTR exons, its retention re-
sults in a C9rf72 mRNA with an enlarged 5-UTR.
Interestingly, higher levels of intron 1-retaining C9orf72
RNA species were detected in the frontal cortex of ex-
pansion carriers compared to control individuals. Two
recent papers also reported increased levels of sense and
antisense C9orf72 RNA containing intron 1 in the
frontal cortex from expansion carriers [6, 39]. However,
these reports did not address the molecular nature of
the RNA species containing intron 1 that accumulate in
disease. Intron-containing RNA can have various origins;
for example, it could represent incompletely processed

pre-mRNAs stalled during the splicing process, splice-
defective lariat intermediates or aborted transcripts [19,
40]. Here we demonstrate that intron 1-containing
CYorf72 RNA that accumulates in the brain from expan-
sion carriers is, at least in part, a fully processed mRNA
retaining intron 1 within an enlarged 5-UTR. This has
important mechanistic implications for the pathogenic
process, as discussed below. No significant difference
was found in the levels of transcripts unspliced at the 3’
end of intron 1 in brain. This could be explained by the
fact that RNA unspliced at the 5’ end of intron 1 origi-
nates from transcription variants that contains the hexa-
nucleotide repeat sequence, whereas RNA unspliced at
the 3’ end of intron 1 can, in addition, originate from
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confirmed C9orf72 hexanucleotide expansions and from control individuals. @ RNA was analyzed by RT-PCR as in Fig. 1. GAPDH was used as a
loading control. The level of C9orf72 transcripts unspliced at the 5" and 3" ends in an FTLD case homozygous for the C9orf72 G,C,

repeat expansion was markedly higher than in heterozygous cases (C9™/*, far right lane). b Quantitative analysis of intron retention by real-time
PCR. Levels of C9orf72 transcripts spliced or unspliced at the 5" and 3’ end of intron 1 were determined by real-time gRT-PCR in heterozygous
expansion carriers (n=11) and control cases (n = 10). Data are shown as means + SEM. Each data point represents an individual case, ***P < 0.001,

Mann-Whitney U test. C9~, controls; C9¥, expansion carriers. A (+/+) indicates the values for the single homozygous case analyzed

transcription variants not
sequence.

Intron 1 retention is consistent with the degradation
of expanded repeat-containing transcripts induced by
RNase H-sensitive ASOs targeting C9orf72 RNA up to
exon 11 [11, 12, 15]. As splicing out of introns occurs,
in most cases, early during transcription, intron 1 is
likely not to have been spliced out when transcription
has reached exon 11. The presence of the expansion
in a mature mRNA in patient tissue is also consistent
with a recent report showing that the repeat expan-
sion has to be in the context of an mRNA to cause
toxicity in Drosophila [41].

Intron 1-retention was observed in C9orf72 polyadeny-
lated RNA from both the wild-type and the expanded al-
leles and contains the G4C, repeats , and, thus, is part of
a normal process. This is not an unusual situation as

containing the repeat

intron detention (delayed splicing) or retention, either
arising from defective splicing or as a regulatory process,
is a common occurrence within the mammalian tran-
scriptome [36, 37, 42, 43]. Although retention of intron
1 in CYorf72 transcripts appears to be independent of
the presence of an expanded G,C2 repeat sequence, this
process results in the expanded G,C, sequence from the
mutant allele being included in the 5-UTR of a fully
processed mRNA. C9rf72 mRNA with an enlarged 5'-
UTR that includes the G4C, repeats, is similar to FMRI
transcripts associated with fragile X-associated tremor
ataxia syndrome (FXTAS), caused by moderate (<200)
CGG repeat expansions in the 5-UTR of the FMRI gene
[44].

In addition to transcripts retaining the entire intron 1
our analysis does not rule out the presence of shorter
RNA species, for example resulting from the use of
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cryptic polyadenylation sites in intron 1. Use of cryptic
intronic polyadenylation sites has been reported in
Huntington’s disease, caused by a CAG repeat expansion
in exon 1 of the HTT gene, resulting in a truncated,
aggregation prone, protein [45].

No difference in the level of intron retention was de-
tected between lymphoblasts from expansion carriers and
controls. By contrast C9orf72 transcripts unspliced at the
5" end of intron 1 were found to be expressed at higher
levels in the frontal cortex of expansion carriers compared
to control individuals. This was particularly clear in the
brain of a homozygous case albeit material from one case
only was available for analysis. As suggested by Mori et al.
[6] the increased levels observed could reflect stabilization
of expanded intron 1-containing transcripts. Alternatively,
long G4C, sequences could also reduce splice site usage,
hence inhibiting intron 1 splicing. Of note, introns with a
high GC content are prone to be retained [36]. Partial re-
tention of expanded CCTG repeat-containing first intron
of the CCHC-type zinc finger (CNBP, formerly known as
ZNF9) gene has also been reported in myotonic dystrophy
type 2 (DM2) [46]. Long G4C, repeat tracts might also
slow down the rate of transcription of the C9orf72 gene in
expansion carriers, hence promoting intron retention.

We found that a large proportion of intron 1-retaining
Corf72 transcripts accumulated in the nucleus. Nuclear
retention of incompletely spliced transcripts has been
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demonstrated as a regulated process for the control of
gene expression or as part of a surveillance pathway (for
reviews see [47-49]). Consistent with this notion,
intron-containing transcripts resulting from defective
splicing in heat-shocked cells are retained in the nucleus
[37]. Nuclear accumulation of C90rf72 mRNA retaining
intron 1 could be the consequence of disrupted nucleo-
cytoplasmic transport of mRNAs resulting from C9orf72
repeat expansion toxicity [26, 50]. However, this is
unlikely to be the case as correctly spliced transcripts
(e.g. spliced C9orf72) are prevalent in the cytoplasm. Of
note, huntingtin mRNA with expanded CAG repeats
accumulates in the nucleus [51].

mRNAs that fail to be exported to the cytoplasm are
degraded in the nucleus by a surveillance pathway that
has been studied in yeast and reported, but yet to be
fully characterized, in mammals [52, 53]. This pathway
may involve poly(A)-binding proteins (PABPs) and nu-
clear exosomes [54-56]. Intron 1-retaining C9orf72
mRNA may be targeted to such a pathway that would be
unable to destabilize the G-quadruplex structure formed
by the G,C, repeat sequence [19, 57-59] and the repeat
region would be protected from degradation, resulting in
its accumulation in foci (Fig. 5). While the above path-
way may be the pathway to which intron-retaining
CY9orf72 mRNA is targeted, it is important to note that
RNA can be degraded through different pathways.

(6.Ca)

...ﬂl.. o e )= - C90rf72 gene
7z N
Normal splicing Intron 1 retention
I (GaCal ‘
2 )s)a)s o) 7)s) sidan - (A) [ D BB OB O R DOE I sy MO8
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Fig. 5 Model of expanded C9orf72 transcripts processing explaining the main pathological features of c9ALS/FTD. Retention of intron 1 generates
a C9orf72 mRNA with an enlarged 5-UTR containing the G,C, repeat sequence. The majority of intron 1-retaining C9orf72 mRNA accumulates in
the nucleus where it is targeted to a specific degradation pathway unable to process G,C; RNA repeats that subsequently aggregate into foci. A
small proportion of intron 1-retaining C9orf72 mRNA is exported to the cytoplasm for RAN translation into DPRs
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Indeed, as mentioned above, long G4C, repeat sequences
can be degraded following ASO-mediated RNase H
cleavage of C9orf72 RNA [11, 12, 15].

Although the majority of intron 1-retaining C9orf72
transcripts accumulate in the nucleus, intron retention
could also explain export of the expanded G4C, repeat
RNA to the cytoplasm where it would become template
for RAN translation into DPRs. As intron 1-retaining
C9orf72 transcripts have the structure of mature
mRNAs, an, albeit small, proportion is exported to the
cytoplasm through the conventional pathway of nuclear
export of mRNA (Fig. 5). However, this does not exclude
that other G4C, repeat-containing RNA species might
be the main template for RAN translation.

Finally, intron retention in the sense transcript might
explain transcription of repeats from the reverse strand.
G4C, expansions in the C9orf72 gene have been shown to
promote the formation of RNA-DNA hybrids (R-loops)
[19]. Intron retention as well as formation of R-loops
could be linked to the slowing down of transcription of
the sense transcript by the repeat sequence [60]. R-loops
would, in turn, induce antisense transcription [60].

Conclusions

We have identified C90rf72 mRNA species with an en-
larged 5-UTR that includes the G,C, repeat sequence
that can explain a number of features of c9ALS/FTD.
Interfering with intron 1 processing would offer novel
ways of dissecting the cascade of events leading to neur-
onal dysfunction and death and represents an innovative
and promising therapeutic strategy for c9ALS/FTD.
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