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A neuronal function of the tumor suppressor
protein merlin
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Abstract

Mutagenic loss of the NF2 tumor suppressor gene encoded protein merlin is known to provoke the hereditary
neoplasia syndrome, Neurofibromatosis type 2 (NF2). In addition to glial cell-derived tumors in the PNS and CNS,
disease-related lesions also affect the skin and the eyes. Furthermore, 60% of NF2 patients suffer from peripheral
nerve damage, clinically referred to as peripheral neuropathy. Strikingly, NF2-associated neuropathy often occurs in
the absence of nerve damaging tumors, suggesting tumor-independent events. Recent findings indicate an important
role of merlin in neuronal cell types concerning neuromorphogenesis, axon structure maintenance and communication
between axons and Schwann cells. In this review, we compile clinical and experimental evidences for the
underestimated role of the tumor suppressor merlin in the neuronal compartment.
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The hereditary disease Neurofibromatosis type 2
Mutations in the NF2 gene are causative for the autosomal-
dominant disease Neurofibromatosis Type 2 (NF2). This
rare multiple neoplasia syndrome affects about 1 in 25,000
live births [1]. However, recent population studies suggest
that up to 1 in 300 people will develop a tumor with an
underlying sporadic NF2 mutation during their lifetime [2].
The heritable NF2 disease is mainly characterized by the
development of benign Schwann cell-derived tumors, called
schwannomas, due to the mutagenic loss of the tumor
suppressor merlin. The hallmark feature of NF2 is the bi-
lateral occurrence of schwannomas at the eighth cranial
nerve (vestibular schwannoma). These tumors regularly
develop in close vicinity to the ‘Obersteiner-Redlich zone’
[3] – the boundary between CNS and PNS – where the
transition between Schwann cell and oligodendrocyte mye-
lination takes place. Compressive effects of the schwannoma
onto the vestibulo-cochlear nerve may subsequently result
in loss of hearing and balance. In addition to vestibular
schwannomas and schwannomas occurring within the
spinal cord and along peripheral nerves, mutations in the
NF2 gene are responsible for virtually all non-hereditary,
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sporadically occurring schwannomas and 50% of sporadic
meningioma cases [4].
However, NF2 is a clinical syndrome that presents with

a variety of other clinical manifestations. In addition to tu-
mors of various entities, NF2 patients suffer from disease-
related lesions affecting the skin and the eyes (for detailed
review see [5]). Most affected individuals will develop
damage to peripheral nerves (peripheral neuropathy) in
their lifetime, another common clinical feature in NF2. To
date, the pathogenesis of NF2-related neuropathy is not
completely understood. Taken together, due to a variety of
organ systems being affected by NF2 disease, affected indi-
viduals may suffer from severe morbidity in addition to
their tumor burden.
Mutations affecting the NF2 gene may become apparent

through at least three kinds of different genetic alterations.
Firstly, inherited mutations due to germline mutations re-
sult in the loss of one allele; these are accompanied by
somatic alterations in the other allele, which cause the
hereditary Neurofibromatosis Type 2. Secondly, sporadic
schwannomas depend on the acquired somatic mutations
in both alleles of the NF2 gene. Thirdly, as we will discuss
later, NF2-related neuropathy may result from the loss of
just one allele as a consequence of cell type-specific hap-
loinsufficiency in neuronal cell types.
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Open questions
The tumor suppressor protein merlin, responsible for
NF2, is ubiquitously expressed in all tissues during all
periods of development [6]. Homozygous deletion of
merlin in mice leads to embryonic failure, even before
gastrulation [7]. Moreover, conditional ablation of merlin
during embryogenesis results in a global tissue fusion
defect [8], indicating the importance of merlin from the
earliest stage of development. While the role of merlin
in glial cell types has been extensively characterized dur-
ing both development and adulthood, the expression
and function in non-tumor related tissues has only occa-
sionally been subjected to mainstream NF2 research.
Microenvironment considerations have become a large

field of interest in life science; no given cell type can be
comprehensively considered without the context of its en-
vironment. Cells in direct or close vicinity influence their
neighboring cells - effecting tissue homeostasis. Schwann
cells, the origin for NF2-related tumors, are in tight and
direct contact with axons-resulting in extensive inter-
cellular crosstalk and provoking the hypothesis that axons
and/or axon-derived signals, respectively, contribute to
tumorigenic activity of Schwann cells. We propose that an
exclusive focus on Schwann cell biology in NF2 research
risks neglecting not only other high-prevalence symptoms,
which occur in NF2 disease, but also potential microenvi-
ronmental issues that could contribute to NF2 tumorigen-
esis. For instance, peripheral neuropathy has been found
to appear in individuals who bear mutations in just one
merlin allele and lack a significant load of potentially com-
pressive Schwann cell tumors [9]. This led us to the idea
that merlin expressed in neurons might have functions
unrelated to its tumor suppressor role in glial cells [10].

The tumor suppressor protein merlin
The human NF2 gene on Chromosome 22q12.2 comprises
17 exons that encode for the 595 amino acid protein mer-
lin; also known as schwannomin [11,12]. This actin-binding
protein belongs to the ezrin–radixin–moesin (ERM) family
of proteins that organizes and links membrane proteins to
the cortical cytoskeleton [13]. Merlin mediates contact in-
hibition of proliferation in multiple cell types, including
Schwann cells [14] and is reported to target many signal-
ing components to restrict proliferation [15]. For an ex-
tensive review of merlin effected pathways please see [16].
Moreover, the tumor suppressor merlin activity is sug-
gested to take place in various cellular compartments, in-
cluding the cell nucleus [17,18], at the plasma membrane
[14,19], in endosomes [20] and even in association with
mitotic spindles during mitosis [21]. Although merlin
interacts with a high number of different molecules (for
detailed review see [22]) in different locations of the cell,
we still conclude that part of merlin’s tumor suppressor
activity is at the plasma membrane - mediating contact
inhibition of proliferation by regulating several small
GTPases like Ras or the Rho GTPase family, as well as
the Hippo pathway [23].

Rho GTPases in neuronal cell types
GTPase proteins are molecular switches that regulate many
important processes in the cell, including the organization
of the actin cytoskeleton [24]. By provoking local actin re-
arrangements, the protein family of Rho GTPases is essen-
tial for the development of highly polarized cells like
neurons [25]. Regulators of these small GTPases are there-
fore of special interest in the broad field of neuromorpho-
genesis. Merlin has often been shown to exert its various
functions through Rho GTPases by determining their acti-
vation state [15,26,27]. While GDP-bound molecules are
considered to be inactive, GTP-bound proteins actively
act on their downstream targets. Considering the signifi-
cant importance of small GTPases in neuromorphogen-
esis, merlin, as well as other regulators of small GTPase
activity, are plausible candidates for involvement in the
vastly complex process of neuronal shape determination.
Significantly, mutations in regulators and effectors of Rho
GTPases have been associated with diseases of the ner-
vous system, including mental retardation and motor
neuron diseases [28].

The appearance of merlin isoforms
The human gene NF2 and its close homologue the murine
gene Nf2 are subject to alternative splicing [29]. By far the
most abundant isoforms are isoform 1 (595 aa) and isoform
2 (590 aa), which differ in their last 11 and 16 amino acids,
respectively [6]. While merlin isoform 1 contains exon 17
instead of exon 16, merlin isoform 2 contains the stop
codon bearing exon 16, which results in a C-terminal
truncated protein [6].
The altered C-terminus of isoform 2 is hydrophilic and

positively charged, while the isoform 1 C-terminus is much
less hydrophilic and has no net charge. As a consequence
isoform 1 C-terminus binds strongly to the N-terminal
FERM domain, while the isoform 2 C-terminus shows only
weak binding [30]. Apparently, both C-termini can interact
with each other, proposing the formation of isoform
hetero-dimers [31]. Due to the structural and charge differ-
ences in their very C-terminus, the two main merlin iso-
forms are likely to have different binding partners in cases
where the C-terminus is necessary for protein-protein in-
teractions. So far, only syntenin, an adaptor protein in-
volved in the subcellular trafficking of receptors, has been
shown to specifically interact with the C-terminus of iso-
form 1 [32]. Although merlin has been implicated in recep-
tor trafficking [33], the functional consequence of a specific
merlin isoform 1 interaction has not been described.
To date, it remains controversial as to whether both

major merlin isoforms exert a tumor suppressive function.
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No pathogenic mutation that specifically hits one isoform
of NF2 has been described; tumorigenic mutations always
inactivate both isoforms [34,35]. The only data on func-
tional differences of the two merlin isoforms comes from
in vitro studies: Of the two major merlin isoforms, only
isoform 1 was originally thought to have proliferation sup-
pressive potential [36,37]. However, more recent studies
suggest that both isoforms have equal proliferation inhi-
biting functions and so far act similarly in most ana-
lyzed assays [38-40]. Despite structural differences in
the C-terminus, it is reasonable to assume that both iso-
forms have partially overlapping functions whenever the
homologous N-terminus is involved in the regulation of
downstream pathways. Furthermore, in an intact cellular
system, differences between the two major merlin iso-
forms may be due to their potential sites of activity -
which could be determined by specific isoform binding
partners targeting them to distinct cellular and subcellular
localizations [41]. Clearly, greater focus and effort is re-
quired to identify and catalogue merlin isoforms and their
functions. Early studies investigating the spatiotemporal
expression pattern of NF2/Nf2 isoforms suggest that mer-
lin plays a pivotal role in neuronal tissue, especially during
development. High NF2 expression was found in brains of
humans [42,43] as well as rodents [6,44]. Interestingly,
Gutmann et al. reported an increase in isoform 2 expres-
sion during neuronal maturation in the cerebral cortex
and cerebellum. Additionally, compared to embryonic tis-
sue, neuronal tissue was one of the few organs to retain
high expression levels of Nf2 in adult rats [6]. However, a
relevant function of merlin isoform 2, in neurons or other
cell types, remained elusive. Only recently have we been
able to decipher a unique function for merlin isoform 2;
wherein this specific isoform is located and operates in
the axonal compartment of neurons [45].

Expression pattern of merlin in neuronal cells
Although merlin has been studied primarily in glial cells,
due to loss of merlin primarily attracting attention by
causing benign tumors, several lines of evidence now
support additional and functional roles of merlin in neu-
rons. To date, several studies have reported protein ex-
pression of merlin in different types of neuronal cells of
both the PNS and CNS.
Through different imaging techniques such as immu-

nohistochemistry and in-situ-hybridization, merlin has
been detected in sciatic nerve axons [45], in neurons
that belong to autonomic ganglia in the intestinal tract
[46] and in dorsal root ganglion cells of the PNS [45].
In the CNS, merlin appears in motor neurons of the

spinal cord [47], cortical neurons [26,44,47], hippocam-
pal neurons [26,48], neurons of cranial nerve ganglia
[47] and in cerebellar Purkinje cells [26,46,47,49]. Par-
ticularly in Purkinje cells of the cerebellum, merlin could
be functionally associated with neuromorphogenesis and
dendritic arborization through the regulation of the small
GTPase Rac1 [26]. Furthermore, embryonic expression of
merlin in neural stem cells could be demonstrated in
neuroepithelial cells of the neural tube, as well as in the
ventricular and subventricular zone of the developing brain
[8,50]. The analysis of brain tissue and neuronal progenitor
cell (NPC) cultures showed consistently that merlin is pre-
dominantly present in neurons [51].
On the subcellular level, neuronal merlin was found to

be expressed in dendrites [26], in axons [45,52], in the
cytoplasm [47,53] and in neuronal synaptic junctions [51].
Conclusively, there is now consistent and broad evidence
for a neuronal expression of the tumor suppressor merlin
in both rodent and human tissue. However, little is known
yet to explain merlin’s function in each cell type. This dis-
crepancy clearly needs to be addressed in the future.

Polyneuropathy in NF2 patients
Besides the development of multiple gliogenic tumors af-
fecting both the PNS and CNS, many NF2 patients will de-
velop peripheral neuropathy during their lifetime. Affected
individuals can suffer from stocking-like hypoalgesia (re-
duced sensitivity to pain) and hypesthesia (decreased tactile
sensibility) as well as loss of vibration sense (pallhypesthe-
sia). Patients may also present with a distal reflex loss that
can be followed by a slow but progressive distal muscle
atrophy and paresis in later stages of the disease [54]. Usu-
ally, peripheral neuropathy can occur as a rather local
phenomenon (mononeuropathy simplex or multiplex) or
a more generalized event (polyneuropathy).
Indeed, the exact proportion of NF2 sufferers who de-

velop peripheral nerve damage remains obscure, as
prevalence numbers vary largely. In a huge clinical study,
peripheral nerve lesions unrelated to tumor masses were
observed in 6% of patients suffering from NF2 [55]. An-
other investigation, with primary focus on NF2-related
neuropathy, found that clinical signs manifesting as periph-
eral neuropathy occurred in 47% of investigated patients
[56]. Further electrophysiological examination even re-
vealed evidence of neuropathy in 67% of those individuals.
The general observation that many NF2 patients present

with areflexia, which cannot be completely explained
by the actual tumor load, suggests that subclinical or
masked neuropathy is potentially underdiagnosed in NF2
disease [57].

Electrophysiological methods as a diagnostic tool for
neuromuscular diseases
Electrophysiological measurements are an indispensable
tool for investigating the functional integrity of peripheral
nerves in both the clinical and laboratory environment [58].
In humans, a large number of neuromuscular disorders
and neuropathies diagnostically rely on electrophysiological
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measurements. By measuring nerve properties as conduc-
tion velocity or potential amplitudes of the signal, it is
possible to characterize the origin of peripheral nerve
diseases. The nerve conduction velocity is highly dependent
on rapid signal propagation enabled by myelination.
Therefore, demyelinating processes generally show de-
creased conduction velocities. When significantly reduced,
the compound motor action potential (CMAP) – correlat-
ing with the number of functional axons – is an indicator
for axonal damage. Hence, by means of electrophysio-
logical methods, the etiology of peripheral nerve damage
can be discriminated; such as for hereditary neuropathies,
diabetic neuropathy, chronic inflammatory demyelinating
polyneuropathies (CIDP) or metabolic neuropathies.

Exploring the pathogenesis of NF2-related neuropathy
Originally, schwannomas were held to primarily account
for observable neuropathic symptoms developing in the
course of NF2 [59]. Schwannomas can occur within the
spinal cord, on spinal nerve roots, along peripheral nerves
and around cranial nerves – with the vestibular nerve being
the most frequently involved cranial nerve. The localization
of a given tumor naturally determines the presenting fea-
tures and symptoms of an individual, e.g. affections of a
spinal nerve root by a tumor may cause motoric and sen-
sory problems that are clearly related to its innervation
area. However, for the most part, clinical signs of neur-
opathy appear independently from the site of peripheral
nerve schwannomas. In single NF2 patients, polyneurop-
athy even developed years before other NF2-related symp-
toms, like tumors, became evident [56].
Although benign in nature, schwannomas are thought

to produce pain and other symptoms by compressive ef-
fects, thereby impairing axonal integrity in a given nerve.
However, the clinical appearance of neuropathy can hardly
be explained by the tumor burden alone. Concretely, in
some NF2 patients suffering from polyneuropathy, muscle
weakness occurs without significant spinal or peripheral
nerve tumor burden, suggesting that factors other than
gross tumor growth might be responsible for this disorder
[60]. Besides, surgical resection of gross tumor load along
peripheral nerves often lacks a beneficial outcome for af-
fected individuals in terms of neuropathic symptoms [61].
Furthermore, NF2-associated polyneuropathy typically in-
volves more than two peripheral nerves and predomin-
antly affects extremities in a distal and symmetric fashion
[56,62,63], suggesting a systemic rather than local issue.
Thus, tumorlets - hyperproliferative Schwann cells – are
also unlikely to explain the complete etiology of per-
ipheral neuropathy in these patients [9]. However, a high-
resolution MRI study – aiming to link tumor load with
severity of polyneuropathy in NF2 patients – indicated that
non-compressive fascicular microlesions along peripheral
nerves, correlated with severity of clinical symptoms of
NF2-related neuropathy. Apart from that, compressive
tumor macrolesions were absent in most neuropathy-
affected extremities [61].
Both neuropathological and electrophysiological in-

vestigations initially suggested that NF2-related poly-
neuropathy might develop independently of large solitary
schwannomas [64]. Hagel et al. provided evidence for an
axon-intrinsic pathogenesis of neuropathy in sural nerve
biopsies indicated by pathological reduction of nerve fiber
densities, accompanied by diffuse proliferation of Schwann
cells. Onion bulbs, pathological indicators of repetitive de-/
remyelination, were just seen in a subset of investigated pa-
tients [60]. Furthermore, by determining nerve conduction
properties, two studies were able to show that NF2-related
peripheral neuropathy is commonly of axonal origin
[56,61]. In the majority of cases, the nerve conduction
velocity appeared normal (above the reference levels of
the tested nerves), while CMAP values were markedly
decreased – a diagnostic combination suggestive of axonal
neuropathy.
It was previously hypothesized that NF2 and axonal

neuropathies would exist as independent diseases [65,66].
Our group recently deciphered a promising pathomechan-
ism indicating how the loss of merlin could contribute to
the development of NF2-related neuropathy in an axon-
intrinsic manner [45]. Specifically, via the GTPase Rho/
RhoKinase signaling network, merlin’s splice variant iso-
form 2 promotes phosphorylation of neurofilaments that
are neuron-specific intermediate filaments essential for
axon structure and caliber [67]. Using a mouse model
bearing loss of merlin isoform 2, as well as sural nerve bi-
opsies of NF2 patients, we could show that proper merlin
signaling in axons (see Figure 1) is essential for axon
structure maintenance [45]. Strikingly, heterozygous dele-
tion of Nf2 isoform 2 caused haploinsufficiency in vivo.
This is consistent with clinical findings that NF2 germline
mutations are sufficient to cause polyneuropathy; the loss
of the second allele is not required in humans [9].

Merlin in axon-Schwann cell interactions
The implication of merlin in prevention of Schwann cell
tumorigenesis has been extensively studied [10,69]. NF2-
related schwannomas are encapsulated tumors composed
almost entirely of Schwann cells perched on, but not
commingled with, normal nerve bundles [70]. However,
the benign dignity of NF2-associated Schwann cell-derived
tumors is accompanied by sparse response to classical
chemotherapy [71].
Importantly, the role of merlin in Schwann cells is not

just restricted to its tumor suppressive function. It has
been reported to play a critical role in the control of
Schwann cell numbers and is necessary for the correct
organization and regulation of axo-glial heterotypic con-
tacts [72]. Consistently, merlin in Schwann cells has been
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Figure 1 Potential role for merlin isoform 2 in NF2-related neuropathy. Merlin isoform 2 in axons assembles a multi-protein complex with
RhoGDI [68] and RhoGAP that leads to the local activation of the small GTPase RhoA by GTP loading [45]. This results in subsequent neurofilament
phosphorylation through Rho-associated kinase (ROCK). The specific loss of merlin isoform 2 can therefore provoke irregular neurofilament
phosphorylation and impaired axon structure maintenance.

Table 1 Binding or interaction partners of neuronal merlin

Protein Cell type; species Reference

Neurofilaments DRG, sciatic nerve lysates (mouse) [45]

Riβ (PKA subunit) brain lysates (rat) [83]

βII-spectrin Purkinje cells [30,49]

Caspr/paranodin brain extracts (rat) [80]

Paxillin neuroblastoma cells (mouse) [84]

RhoGDI Cell lysate from primary
neurons (mouse)

[45,68]

p190RhoGap Sciatic nerve lysates (mouse) [45]
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reported to promote their alignment along axons and ul-
timately influences myelin segment length [73].
Generally, the behavior of Schwann cells is strictly

under the control of axonal signals, both during devel-
opment and in adulthood [74]. As such, Schwann cell
actions should not be assessed solely by endogenous
Schwann cell signaling pathways, but rather with respect
to the influence of axons and vice versa. Signals from
axons regulate the intimate communication of Schwann
cells with axons of the PNS, provide proliferative and sur-
vival signals, and determine the polarization and differen-
tiation programs to either non-myelinating or myelinating
phenotypes [75,76]. Moreover, axonal damage triggers
rapid Schwann cell de-differentiation and this is ac-
companied by myelin breakdown, Schwann cell detachment
from axons and subsequent proliferation [77]. Typically,
patients with NF2 present with different types of benign
Schwann cell tumors, in which most Schwann cells lose
contact with axons [70,78]. Focusing on the pathogenesis
of polyneuropathy affecting NF2 patients, Sperfeld and
colleagues [56] also suggested that the nerve damaging
disease could possibly occur because Schwann cells can
no longer adhere properly to the axons. This underlines
the importance of the microenvironment of peripheral
nerves, where damage to one cell type invariably leads to
pathophysiological changes in the other [79].
The literature contains several reported observations

suggesting that neuronally expressed merlin could also
be involved in the tightly regulated crosstalk between axonal
processes and Schwann cells. For instance, N-terminal
merlin can be associated with Caspr/paranodin, an axonal
transmembrane glycoprotein enriched at paranodal junc-
tions and important for the reciprocal axo-glial signaling
[80]. Merlin also interacts with βII-spectrin - another mol-
ecule supporting the axonal cytoskeleton at paranodes
(see Table 1) - essential for myelinated axon domain
organization [30,49,81]. Paranodal junctions, in general,
are specialized molecular domains of myelinated axons
that are thought to promote adhesion between Schwann
cells and axons (for detailed review see [82]). This data
implies that neuronally expressed merlin could be directly
involved in the mechanism determining proper axon-
Schwann cell contact formation.
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Recently, we analyzed the impact of neuronally expressed
merlin on the best-characterized signaling cascade between
axon and Schwann cells, namely the Neuregulin1 - ErbB2/
3 pathway [85]. We were intrigued to find that the Neure-
gulin splice variant Nrg1 type III, expressed on axonal
membranes as a juxtacrine growth factor molecule for
Schwann cells, shows reduced expression following loss of
merlin in vitro and in vivo (see Figure 2). In contrast to
merlin isoform 2, which is specifically implicated in axon
structure maintenance, both major merlin isoforms appear
to have equal potency in affecting Nrg1 type III.
In accordance, human sural nerve biopsies taken from

NF2 patients suffering from polyneuropathy display a
strong and consistent reduction of Nrg1 type III. This is
accompanied by a compensatory up-regulation of ErbB2
expression on Schwann cells; as analyzed in mice bear-
ing neuron-specific merlin knockout as well as NF2 pa-
tient samples. Notably, the expression abnormalities of
both Nrg1 type III and ErbB2 receptor appear to be very
specific to NF2 disease and much more pronounced
than in other axonal types of neuropathies [85].
ErbB2/ErbB3 heterodimers are neuregulin receptors

which are required for SC development [86]. In mature
peripheral nerves, Nrg1 participates in the regeneration
and re-myelination of injured myelinated fibers, pro-
cesses that involve SC de-differentiation, proliferation
and re-differentiation to a myelinating phenotype [87].
Schwann cell

ParanodeInternode
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CD44

merlin

Caspr/paranod

merlin

Figure 2 Interaction of neuronally expressed merlin with axonal prot
has been shown to interact with two axonal proteins in the paranode regi
Furthermore, merlin regulates the expression of Nrg1 type III [85], an axon
behavior. Interestingly, the receptor of Nrg1 type III on Schwann cells, ErBB
expressed in Schwann cells.
Interestingly, ErbB2/3 receptor overexpression has
been linked to the pathogenesis of one type of de-
myelinating neuropathy occurring in the course of
Charcot-Marie-Tooth disease type 1 [88], which raises
the possibility of Schwann cell-autonomous effects on
the development of neuropathies.
Remarkably, the loss of merlin in primary Schwann cells

is associated with elevated levels of ErbB receptors [33].
Furthermore, merlin in Schwann cells interacts with CD44
[14], a membrane glycoprotein that enhances neuregulin-
induced ErbB2 phosphorylation [89]. Concerning the
regulation of ErbB2/3 receptor expression, merlin obvi-
ously has synergistic functions in neurons and Schwann
cells, arguing for a holistic function of merlin in both cel-
lular compartments of peripheral nerves. Consequently,
ErbB2/3 receptor overexpression has been identified as a
potential target for NF2 therapy [90], using the monoclo-
nal antibody Trastuzumab [91] or the tyrosine kinase in-
hibitor Lapatinib [92].
Axons are thought to maintain Schwann cells in a differ-

entiated state during adulthood, to ensure the correct
functioning of the nerve [75,76]. It is therefore reasonable
to assume that misregulation of axon surface proteins–
essential for Schwann cell alignment and differenti-
ation – could contribute to the initial events in tumor
development. Notably, a comparable pathogenesis is likely
to occur in the related tumor syndrome Neurofibromatosis
Axon

Ranvier Node Paranode

in II-spectrin

neurofilaments

eins essential for axon-Schwann cell signaling. Merlin in neurons
on of myelinated axons: Caspr/paranodin [80] and βII-spectrin [30].
surface molecule with growth factor-like impact on Schwann cell
2/3 [33] as well as its co-receptor CD44 [14], is regulated by merlin
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Type 1 (NF1); possibly the most common inherited dis-
order caused by a single gene, which is characterized by
the development of multiple neurofibromas. Since hetero-
typic cell–cell contacts control cell proliferation and sup-
press tumorigenesis [93], the loss of Schwann cell contact
to axons is a frequent and important early event in tumor
development for these highly heterotypic benign tumors of
the peripheral nerve sheath. Joseph et al. [94] could add-
itionally show that NF1-related tumors arise from differen-
tiated glial cells instead of undifferentiated neural crest
cells. These results further support the hypothesis that
Schwann cell detachment from axons is an important early
event in tumor development – a mechanism neuronally
expressed merlin could be also involved in concerning
NF2 disease. Taken together, new findings on merlin in the
neuronal compartment suggest pathogenesis of NF2 dis-
ease, wherein the NF2 gene encoded protein has cell type-
dependent functions in order to prevent tumor formation.

Concluding remarks
In a recent study [45] the impressive number of proteins
merlin can interact with was further expanded (for de-
tailed review see [22]). More precisely, merlin has now
been reported to associate with all three classes of cyto-
skeletal elements; namely actin filaments [95], microtubules
[21,96] and intermediate filaments [45]. This connection
underlines merlin’s fascinating role as a versatile cytoskel-
eton associated molecule involved in a vast variety of sig-
naling events. This makes merlin a highly enigmatic and
extraordinary tumor suppressor. However, the contribu-
tion of merlin splice variants may play an additional role
for the interaction with multiple proteins in a large variety
of different cell types.
According to Knudson’s two-hit-hypothesis, merlin acts

as a classical tumor suppressor. Interestingly, inactivating
mutations of merlin seem to have tissue-dependent di-
verse effects. Loss of heterozygosity, the functional loss
of one gene allele in which the other allele was already
inactivated, is known to be crucial for merlin owed tumor
formation in Schwann cells [97,98]. However, deficient
effects due to loss of merlin can already be detected in
neurons where only one mutation is verifiable [9]; thus
explaining why polyneuropathy in NF2 patients is fre-
quently found in the absence of compressive tumors and
may even appear chronologically earlier. In line with this
notion, axons of mice heterozygous for merlin isoform 2
mutations show functional and morphological abnormal-
ities [45]. However, despite the clear relevance of merlin
in neuronal cells of the PNS, a functional role for merlin
in CNS neurons remains elusive.
Grönholm et al. [83] provided a first functional hint for

neuronally expressed merlin in the CNS. It was shown to
be the first known binding partner of Riβ, a regulatory
subunit of protein kinase A (PKA), which is evidently
implicated in learning-related functions [99]. Consistently,
Wassink and colleagues [100] reported that merlin is a
candidate gene for the development of autism spectrum
disorder (ASD), which has been shown to be associated
with dendritic spine abnormalities [101]. Because den-
dritic spine morphology is in turn highly susceptible to
the activation state of small GTPases [102], an impact of
merlin on spine morphology and/or plasticity is very likely
but, as yet, defies characterization. In line with this hy-
pothesis, the loss of merlin in neural progenitor cells re-
sults in severe reduction in hippocampus size [50]; the
implications of which in learning and memory acquisition
are indisputable. However, despite merlin’s theoretical im-
plication in learning and memory acquisition, no study
has ever suggested changes in NF2 patients’ intelligence
or cognitive performance. If such potential effects on
learning and memory were to exist, these could be rather
subtle and/or hidden by the vast environmental noise that
envelops human intelligence.

Outstanding questions

� How can future disease models and considerations
regarding NF2 pathogenesis better emphasize the
importance of the nerve microenvironment?

� Does the loss of neuronal merlin and its influence
on Schwann cell behavior impair peripheral nerve
regeneration following injury?

� Does merlin deficiency in neurons contribute to
NF2-related schwannoma formation?

� Is the downstream signaling of axonal merlin
isoform 2 – involving RhoA and ROCK – relevant
for other hereditary neuropathies whose
mechanisms have yet to be deciphered?

� Are Schwann cell-autonomous effects of merlin due
to loss-of-heterozygosity sufficient to promote
NF2-related neuropathy without any disturbances in
the axonal compartment?

� Are there alterations in cognitive performances in
merlin-deficient animals and patients suffering from
the NF2 disease?

� What are the specific functions of the two major
merlin isoforms? Is there a cell type-specific
expression? With regard to the variety of different
merlin functions, which merlin isoforms can
compensate for each other?
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