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Abstract

Background: The greatest genetic risk factor for late-onset Alzheimer's disease (AD) is the €4 allele of Apolipoprotein
E (ApoE). ApoE regulates secretion of the potent neuroprotective signaling lipid Sphingosine 1-phosphate (S1P). S1P is
derived by phosphorylation of sphingosine, catalysed by sphingosine kinases 1 and 2 (SphK1 and 2), and SphK
positively regulates glutamate secretion and synaptic strength in hippocampal neurons. S1P and its receptor family
have been subject to intense pharmacological interest in recent years, following approval of the immunomodulatory
drug Fingolimod, an STP mimetic, for relapsing multiple sclerosis.

Results: We quantified STP levels in six brain regions that are differentially affected by AD pathology, in a cohort of 34
post-mortem brains, divided into four groups based on Braak neurofibrillary tangle staging. STP declined with
increasing Braak stage, and this was most pronounced in brain regions most heavily affected by AD pathology.
The S1P/sphingosine ratio was 66% and 64% lower in Braak stage Ill/IV hippocampus (p = 0.010) and inferior temporal
cortex (p=0.014), respectively, compared to controls. In accordance with this change, both SphK1 and SphK2 activity
declined with increasing Braak pathology in the hippocampus (p = 0.032 and 0.047, respectively). STP/sphingosine ratio
was 2.5-fold higher in hippocampus of ApoE2 carriers compared to ApoE4 carriers, and multivariate regression showed

link between APOE genotype and pre-disposition to AD.

AD therapy.

a significant association between APOE genotype and hippocampal S1P/sphingosine (p =0.0495), suggesting a new

Conclusions: This study demonstrates loss of S1P and sphingosine kinase activity early in AD pathogenesis, and prior
to AD diagnosis. Our findings establish a rationale for further exploring S1P receptor pharmacology in the context of
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Background

Alzheimer’s disease (AD) is the most common form of
dementia, currently estimated to afflict 25-30 million
people worldwide, with the number of patients diag-
nosed expected to double by 2030 [1,2]. The neuro-
pathological hallmarks that characterise AD include (i)
synaptic loss, which correlates with cognitive decline;
(ii) aggregates of amyloid-p peptides (AP) generated by
cleavage of the Amyloid Precursor Protein (APP); (iii)
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neurofibrillary tangles (NFTs) comprised of hyperpho-
sphorylated tau protein, and (iv) gliosis and neuroin-
flammation [3-7]. These pathological features result in
neuronal loss and brain atrophy as the disease pro-
gresses [3,7,8]. Results from clinical trials aimed at redu-
cing AP burden indicate that by the time patients are
diagnosed with clinical AD the likelihood of successful
treatment has greatly diminished [3,9]. These results
underscore the importance of further research into the
pathological changes that precede neuronal loss and
cognitive impairment, with the ultimate aim of identify-
ing biomarkers of early disease pathogenesis and new
targets for therapeutic intervention.
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Over 99% of AD cases are the age-related, late onset
form of the disease, for which the greatest genetic risk fac-
tor is the APOE &4 allele. Apolipoprotein E (ApoE) is a
major lipid transport protein of the central nervous sys-
tem (CNS) that also mediates the transport and clearance
of AP, reviewed in [10,11]. Homozygous carriers of the €4
allele have a 12-fold increased risk of developing AD,
compared with non-carriers [12]. Conversely, the €2 allele
of the APOE gene has shown protective effects against
AD [13]. Genetic variants of clusterin/Apolipoprotein ]
[14,15] and the lipid transporter ABCA7 [16] also confer
increased risk for late-onset AD, implicating altered lipid
homeostasis in AD pathogenesis.

Sphingosine 1-phosphate (S1P) is a potent lipid signal-
ling molecule that associates with ApoE in high density
lipoprotein (HDL) complexes in the CNS [17,18]. S1P is
formed by phosphorylation of the membrane lipid
sphingosine, a reaction that is catalysed by sphingosine
kinase 1 (SphK1) or 2 (SphK2). The S1P formed may
then be secreted, and signals with nanomolar potency
through a family of five G-protein coupled receptors,
S1P; _ 5, that are specific for S1P [19,20]. Thus, S1P may
signal in an autocrine fashion, feeding back on the cell
of origin, or a paracrine fashion by affecting other cell
types in the local microenvironment. S1P and its recep-
tor signalling pathways have been implicated in a wide
array of physiological and cellular processes, including in
the CNS. S1P is essential for development of the neural
tube and vascular system during embryogenesis [21]. It
is a potent cytoprotective factor [22] that has been
shown to protect cultured cortical neurons against Af
toxicity [23]. Signalling through pre-synaptic S1P3 recep-
tors, S1P also stimulates glutamate secretion in hippo-
campal neurons, promoting long-term potentiation and
memory consolidation [24,25]. Similarly SphK1 localised
to pre-synaptic terminals is required for neurotransmit-
ter release and charge transfer in response to acetylcho-
line stimulation [26].

S1P and its receptors have been shown to be a good tar-
get for pharmacological intervention in neurology, with
the recent approval of the immunosuppressive sphingo-
sine analogue FTY720/Fingolimod™ as a front-line oral
therapeutic for the treatment of relapsing multiple scler-
osis [27,28]. FTY720 is a synthetic analogue of sphingo-
sine that is rapidly phosphorylated by SphK2 in vivo,
forming the S1P mimetic FT'Y720-phosphate, which is a
highly potent agonist of receptors S1P;, S1P3;, S1P, and
S1P5 [27,29]. FTY720-phosphate binding to S1P; on lym-
phocytes and/or lymph node endothelial cells inhibits
lymphocyte egress from the lymph nodes and thymus into
the blood stream, thereby suppressing the adaptive im-
mune system and autoimmune responses [20,30]. FTY720
also accumulates in the CNS, and its administration in
experimental autoimmune encephalomyelitis, an animal
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model of multiple sclerosis, did not reduce disease symp-
toms in mice that lacked S1P; expression in astrocytes, in-
dicating that the drug acts directly on astrocytes to block
neuroinflammation [31]. Like S1P, FTY720-phosphate
protects cultured neurons against AP toxicity [32], and ad-
ministration of FTY720 protects against hippocampal
neuronal loss in rats given intra-cranial injections of Ap
peptide [33]. FTY720 treatment inhibited AP secretion by
cultured neurons and reduced AB40 levels in the brains of
a transgenic mouse model of amyloidosis, but paradoxic-
ally promoted AB42 accumulation [34].

A single study has demonstrated loss of S1P in cortical
tissue from subjects with advanced AD [35], but there is
currently no information on whether S1P levels and/or
metabolism are affected at earlier stages of AD patho-
genesis. Given the importance of S1P in hippocampal
synaptic integrity, its association with ApoE, and recent
evidence indicating that FTY720 administration can pro-
tect against neuronal atrophy in rats administered intra-
cranial A, this is clearly an important question to re-
solve. In the current work, we used a cohort of donor
brain tissues that were scored post-mortem for NFT
pathology and neuritic plaques according to the staging
scheme of Braak and Braak [6,36], and the NIH-Reagan
criteria [37]. We demonstrate that loss of S1P proceeds
in tandem with the development of NFT pathology,
coupled to a decline in the activity of sphingosine ki-
nases, which catalyse S1P synthesis. In particular, hippo-
campal S1P levels were directly correlated with SphK1
activity, which is known to play an important role in
hippocampal synaptic integrity. Lastly, we demonstrate
that S1P levels in the hippocampus are independent of
AP levels, but appear to be associated with APOE geno-
type as well as Braak NFT stage.

Methods

Human brain tissues

Human brain tissue samples were obtained from the
New South Wales Tissue Resource Centre and the Syd-
ney Brain Bank. Ethics approval for the current study
was from the University of New South Wales Human
Research Ethics Committee (HREA11038). Frozen tissue
samples were taken from the CA1 region of the hippo-
campus, inferior temporal gyrus grey and white matter,
superior frontal gyrus grey and white matter, and cere-
bellum, for each of the 34 subjects. Brain tissue was pul-
verised over dry ice and stored as a powder at —-80°C
until required for analysis. We have recently reported
the age, gender, cause of death, tissue pH, Braak stage,
and APOE genotype of the 34 subjects in this cohort
[38]. This information is included as Additional file 1:
Table S1, together with CERAD scores for neuritic plaque
density [37], and concentrations of AB40 and AP42 in the
hippocampus tissue samples, measured using an ELISA,
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as described below. All subjects in the Braak V/VI group
fulfilled NIH-Reagan criteria for a post-mortem diagnosis
of AD [37].

APP,\e/PS1 g9 mice

Female double transgenic mice expressing chimeric mouse/
human APP with Swedish familial mutations (K595N/
M596L) and mutant human Presenilin-1 (PS1/AE9) were
obtained from Jackson Laboratory [Bar Harbor, USA;
strain name: B6C3-Tg(APPs,,.,PSEN1dE9)85Dbo/Mmjax;
stock no. 004462]. This female transgenic mouse model
was compared to genetic background strain C57BL/6. J20
(APPg,,1nq) mice were also obtained from Jackson Labora-
tory and compared to C57BL/6 controls. Use of these
mice was approved by the University of Wollongong ani-
mal ethics committee (approval AE11/03).

Quantification of AB in brain tissue

AB40 and AP42 were quantified in TBS/NP40-soluble
and guanidinium-HCl-soluble fractions from human or
mouse tissue homogenates as described previously [38],
using Beta Amyloid x-40 and x-42 ELISA kits (Covance).

Lipid extraction and analysis by Liquid
Chromatography-Tandem Mass Spectrometry (LC-MS/MS)
Lipids were extracted from 10-15 mg of frozen brain tis-
sue, as described [39], including 50 pmoles each of C17
(d18:1/17:0) Ceramide, C17 (d17:1) S1P and C17 (d17:1)
sphingosine as internal standards for mass spectrometry.
Lipid extracts were reconstituted in 400 pl of HPLC mo-
bile phase (1 mM ammonium formate in 80% methanol/
20% MilliQ water, containing 0.2% formic acid) and stored
at —20°C until LC-MS/MS analysis. Ceramide (Cer), S1P
and sphingosine quantification was performed on a Ther-
moFisher Scientific Quantum Access triple quadrupole
mass spectrometer equipped with an Accela UPLC and a
3 x 150 mm Agilent XDB-C8 column (5 pm pore size), as
described previously [39]. Ceramide (d18:1/14:0, d18:1/
16:0, d18:1/17:0, d18:1/18:0, d18:1/20:0, d18:1/22:0, d18:1/
24:0, and d18:1/24:1), S1P (d18:1), sphingosine (d18:1),
C17 S1P, and C17 sphingosine were analysed simultan-
eously in multiple reaction monitoring mode. Instrument
conditions were optimised prior to analysis using com-
mercially available standards. Transitions monitored for
sphingosine, S1P, and ceramides were as described previ-
ously [39]. Transitions for C17 sphingosine and C17 S1P
were m/z 286.1 to 268.0, and 366.1 to 250.1, respectively.
The scan time for each event was 0.4 seconds. S1P and
sphingosine were quantified as ratios to their C17 internal
standard, relative to external calibration curves. Peaks
were integrated using Xcalibur software (ThermoFisher
Scientific). Analytical (HPLC) grade solvents were pur-
chased from Merck. All lipid standards were purchased
from Avanti Polar Lipids (Alabaster, Alabama).
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Protein extraction for enzyme assays and western blots
Tissue extracts (20 mg) were resuspended in 500 pl lysis
buffer containing 20 mM Hepes, pH 7.4, 10 mM KCl,
1 mM dithiothreitol, 3 mM [-glycerophosphate and
complete protease inhibitor cocktail (Roche, Mannheim,
Germany). Extracts were lysed by ultrasonication for 5 min
on ice, then cleared by centrifugation at 1000 g for 10 min.
Supernatant was stored at —80°C. Protein concentrations
were determined with the Bicinchoninic acid (BCA) assay
(Thermo Scientific, Rockford, IL, USA).

Sphingosine kinase assays

SphK1 and SphK2 activity assays were modified from a
previous publication [40] to measure formation of C17
S1P from C17 sphingosine, using LC-MS/MS. SphK1 ac-
tivity was measured in 50 mM Hepes, pH 7.4, 15 mM
MgCl,, 0.5% Triton X-100, 2 mM ATP, 5 mM NaF, 10 uM
fumonison B1, 1 mM 4-deoxypyridoxine, 0.1% BSA; and
Sphk2 activity in 50 mM Hepes, pH 7.4, 15 mM MgCl,,
0.5 M KCl, 2 mM ATP, 5 mM NaF, 10 uM fumonison B1,
1 mM 4-deoxypyridoxine and 0.1% BSA. To each 50 pL
kinase activity assay, 10 pM C17 Sph was added as sub-
strate. Reactions were started with the addition of 5 pug of
protein lysate, and the reaction mix was incubated at 37°C
overnight. Reactions were stopped with 200 uL of metha-
nol containing 100 pmoles d18:0 dihydrosphingosine
1-phosphate (dhS1P) as the internal standard for LC-
MS/MS. Reaction mix was centrifuged to clear insol-
uble debris (16,000 g, 10 min), and supernatants were
transferred to HPLC vials with 300 pl glass inserts for
quantification of C17 S1P by LC-MS/MS, as described
below.

S1P phosphatase assay

Total phosphatase activity was modified from a pub-
lished assay [41], replacing the fluorescently labelled
NBD-S1P used with the more physiologically similar
C17 S1P. Total phosphatase activity was measured in
1 mM EDTA and 0.1% BSA, to which was added 10 uM
C17 S1P as substrate, and 3 pg of protein lysate. Reac-
tion mix (50 pL) was incubated at 37°C for 20 min, and
reactions were stopped with the addition of 200 pL
methanol containing 100 pmoles d18:0 dihydrosphingo-
sine (dhSph) as the internal standard for LC-MS/MS.
The C17 sphingosine formed in the reaction was quanti-
fied by LC-MS/MS, as described below.

Quantification of C17 S1P and C17 sphingosine reaction
products by LC-MS/MS

C17 S1P and C17 Sph were quantified using a Thermo-
Fisher Scientific Quantum Access triple quadrupole mass
spectrometer, operated in positive ion mode, coupled to a
2.1 x 100 mm Agilent Eclipse Plus C8 column (1.8 pm
pore size). Total HPLC time was 7 min per sample at a
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flow rate of 0.2 mL/min, using the following gradient:
0 min, 20:80 A/B; 3.75 min, 13.5:86.5 A/B; 6.5 min,
13.5:86.5 A/B; and 7 min, 20:80 A/B. Solvent A: 0.2% for-
mic acid, 2 mM ammonium formate in MilliQ water;
Solvent B: 0.2% formic acid, 1 mM ammonium formate in
methanol. C17 S1P, C17 Sph, dhS1P (d18:0) and dhSph
(d18:0) were analysed in multiple reaction monitoring
mode, scanning for the following transitions: 71/z 286.1 to
268.0 (C17 Sph), 302.5 to 284.1 (dhSph), 366.1 to 250.1
(C17 S1P), and 382.2 to 284.2 (dhS1P). The scan time
for each event was 0.35 seconds. C17 S1P and C17
sphingosine were quantified as ratios to their respective
internal standard (dhS1P or dhSph), using external cali-
bration curves.

Western blotting

Samples (10 pg) were loaded onto 4-12% Bis-Tris gels
(Life technologies, Gaithersburg, MD) and proteins sepa-
rated by reducing 1-D polyacrylamide gel electrophoresis
(1-D SDS-PAGE), as described previously [42], then trans-
ferred to a polyvinylidene difluoride (PVDF) membrane
for 90 min at 590 mA in carbonate buffer (0.5 M NaHCOs,
0.15 M Na,COs3, 20% v/v methanol) [43]. Membranes were
blocked with 5% skim milk in Tris-buffered saline (50 mM
Tris, 150 mM NaCl, pH 7.6) containing 0.1% Tween-20
(TBS-T) for 1h at room temperature, then probed with
rabbit monoclonal anti-SphK1 (1:1000, #12071, Cell Sig-
nalling, Beverly, MA), Sgppl (1:500, ab129253, Abcam,
Cambridge, UK), Sgpp2 (1:500, Sc-134030, Santa Cruz
Biotechnology, Dallas, Texas, USA), or [B-actin (1:5000,
ab8227, Abcam) at 4°C overnight. Blots were then probed
with secondary anti-rabbit IgG, horseradish peroxidise-
linked antibody (1:3000, #7074S, Cell Signalling). Antibody-
antigen binding was detected using Western Lightning
Chemiluminescence Reagent Plus (PerkinElmer, Wellesley,
MA) and imaged on a Fuyjifilm Las-4000 CCD camera
(Fujifilm Global, Tokyo, Japan). Protein extract from a sin-
gle frontal cortex tissue sample was included on every gel
as a loading control (LC), to account for any variation in
transfer and exposure times during the western blotting
process. Bands were quantified by densitometry with Fuji
ImageQuant software.

Statistical analysis

Differences between the control and experimental groups
for metabolite levels (S1P, sphingosine, and ceramide),
enzyme activity, and protein levels were tested by one-
way ANOVA followed by Dunnett’s post-test to com-
pare individual groups to the control. Values were log-
transformed for normality prior to testing. One subject
was excluded as an outlier in the SIP ANOVA as their
S1P/sphingosine ratio was more than 20 standard devia-
tions outside the mean of the entire cohort. Univariate
correlations between S1P/sphingosine ratio and enzyme
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activities or AP concentrations were tested by Spearman
correlation analysis. These analyses were performed
with GraphPad PRISM software (San Diego, CA).

Univariate and multivariate linear regression were used
to test associations between the S1P/sphingosine ratio and
Braak Stage, APOE genotype, AP levels, subject age, and
post-mortem interval. The S1P/sphingosine ratio variable
was log-transformed for normality. The same outlier from
the SIP ANOVA was excluded in these analyses. Signifi-
cance was established at p < 0.05. These analyses were car-
ried out with SAS v9.3 (Cary, NC).

Results

S1P levels decline in a regiospecific manner during AD
pathogenesis

LC-MS/MS was used to examine the spatiotemporal
changes to S1P in the course of AD progression. Post-
mortem brains were classified into four groups according
to the Braak NFT staging system [6,36]: Braak stage I/II,
NFT pathology restricted to the entorhinal region (n = 8);
Braak III/IV, pathology in the hippocampus and extending
into associated cortical regions (n = 7); Braak V/VI, exten-
sive cortical pathology and clinical AD (n =10); and age-
matched controls with no NFT pathology (n=9). Tissue
samples were derived from four brain regions that are dif-
ferentially affected by NFT pathology during the course of
AD pathogenesis: hippocampus (CA1l region) > inferior
temporal gyrus > superior frontal gyrus > cerebellum. Both
Grey Matter (GM) and White Matter (WM) were ana-
lysed for the inferior temporal and superior frontal gyri.
S1P content in individual tissue samples was normalized
relative to its non-phosphorylated precursor, sphingosine.
The normalised S1P level declined with increasing Braak
stage, and this change was most pronounced in brain re-
gions where NFT pathology commences earlier in AD
pathogenesis. In the hippocampus, mean normalised S1P
levels declined by 30% in the Braak I/II group, 66% in the
Braak III/IV group (p <0.05), and 53% in the Braak V/VI
group, relative to the control group (Figure 1A). The over-
all ANOVA result was not significant for the hippocampus
(p=0.055), but became significant when adjusted for
APOE genotype, as described in more detail below. In tem-
poral GM, the overall association between normalised S1P
level and Braak stage was highly significant (p =0.0004).
Mean normalised S1P levels declined 28% in the Braak I/1I
group, 64% in the Braak III/IV group (p < 0.05), and 77% in
the Braak V/VI group (p <0.001), relative to the control
group (Figure 1B). S1P also declined as a function of Braak
stage in temporal WM (Figure 1C), with the mean level
reduced by 60% in the Braak V/VI group compared to the
control group (p <0.05). A decline in normalised S1P level
relative to Braak stage, although not statistically signifi-
cant, was also observed in frontal GM (Figure 1D). S1P
levels exhibited no significant change relative to NFT
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Figure 1 S1P levels decline during AD pathogenesis. (A - F) STP levels, expressed as a ratio to total sphingosine, in human hippocampus (A),
inferior temporal GM (B), inferior temporal WM (C), superior frontal GM (D), superior frontal WM (E), and cerebellum (F) tissue samples. Samples
were divided into four groups based on Braak NFT pathology, as detailed in Results text. Horizontal bars indicate the mean. Statistical significance
was determined by a one-way ANOVA, followed by Dunnett’s post test, as described in Methods.
J

pathogenesis in the frontal WM and cerebellum, the latter
of which is relatively unaffected in AD (Figure 1E and F).
Normalising S1P to tissue mass yielded very similar re-
sults, however the sample-to-sample variability was greater
(Additional file 1: Figure S1A and B). Sphingosine levels ap-
peared to increase modestly (Additional file 1: Figure S1C
and D), suggesting that the balance between sphingosine
phosphorylation and dephosphorylation is affected in AD
pathogenesis.

Ceramide levels are not significantly altered in
hippocampus and temporal GM

Sphingosine is formed by deacylation of the central sphingo-
lipid ceramide. Ceramide levels have been reported to in-
crease in several studies using cortical tissues from AD
subjects [35,44,45]. Ceramide levels in the hippocampus
and temporal GM tissues were quantified, to determine if
altered conversion of sphingosine to S1IP was accompan-
ied by significant changes to the upstream lipid ceramide
(Figure 2). The four most abundant ceramide species
(C16, C18, C24, and C24:1) are shown. There were no
notable changes to ceramide levels in the hippocampus

across the groups. In temporal GM, C16 ceramide
levels increased with increasing Braak stage (p = 0.013),
but total ceramide content was not significantly different
amongst the groups (Additional file 1: Figure S2).

Altered S1P/sphingosine ratio reflects loss of sphingosine
kinase activity

The shift in S1P/sphingosine equilibrium in the hippo-
campus and temporal cortex prompted us to measure the
activity of SphK1 and SphK2, which catalyse sphingosine
phosphorylation; as well as S1P phosphatase activity,
which converts S1P back to sphingosine. SphK1 and 2
activity were assayed by measuring the phosphorylation
of 17-carbon (C17) sphingosine (naturally occurring
sphingosine is 18 carbons in length) by crude tissue ho-
mogenates, in the presence of 0.5% TritonX-100 (which
favours SphK1 and inhibits SphK2) or 0.5 M KCl (which
favours SphK2 activity and inhibits SphK1) [40,46]. SphK1
activity declined with increasing Braak stage in the hippo-
campus (p = 0.032 by One-Way ANOVA), although mean
SphK1 activity rebounded to some extent in the Braak
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Figure 2 Ceramide levels in hippocampus and temporal GM remain relatively constant. Levels of the four most abundant ceramide
species in (A) hippocampus and (B) temporal GM were determined by LC-MS/MS. Ceramide content is expressed relative to tissue mass. Mean
and standard deviation for each of the Braak stage groups are shown. Statistical significance was determined by one-way ANOVA, followed by
Dunnett's post test to compare different Braak groupings to the control group.

V/VI group (Figure 3A). In contrast to the hippocampus,
SphK1 activity did not differ with Braak stage in temporal
GM (Figure 3B). The loss of SphK1 activity in Braak III/IV
hippocampus samples was accompanied by a decline in
levels of the protein, although not statistically significant
(Figure 3C and D). SphK2 activity declined significantly
with increasing Braak stage in both the hippocampus
and temporal GM (p = 0.0009 and 0.0098 by ANOVA,
respectively) (Figure 4A and B). We were unable to confi-
dently identify SphK2 protein by western blotting on our
brain extracts, using primary antibodies from a number of
different suppliers.

Total S1P phosphatase activity was measured as the
capacity for whole tissue homogenates to catalyse the
dephosphorylation of 17-carbon (C17) S1P. S1P phos-
phatase activity was relatively unchanged at the different
Braak stages in the hippocampus (Figure 5A), but was 59%
higher in the temporal GM of Braak V/VI subjects com-
pared to the controls (p < 0.0001) (Figure 5B). Sphingosine
1-Phosphate Phosphatases 1 and 2 (Sgpp1 and 2) specific-
ally catalyse the dephosphorylation of S1P [47,48]. There
was no increase in the protein levels of either enzyme in
the temporal GM of the Braak V/VI group that would

account for the robust increase in S1IP phosphatase activ-
ity (Figure 5C - E).

SphK1 but not SphK2 or S1P phosphatase activity was
positively correlated with normalised S1P level in the
hippocampus samples (rs =0.43, p =0.012), strongly sug-
gesting that declining S1P/sphingosine is directly related
to loss of SphK1 activity in the hippocampus. Despite
declining SphK2 activity with increasing NFT patho-
logy, none of SphK1, SphK2, or S1P phosphatase activity
were significantly correlated with S1P/sphingosine in
temporal GM.

A overproduction in mice does not cause a reduction in
normalised S1P

Concentrations of the amyloidogenic 40 and 42 amino
acid AP peptides (ie. AP40 and AP42) in the human
hippocampus tissue samples used in this study are shown
in Additional file 1: Table S1. Mean values for the four
Braak staging groups have been reported previously [38].
Soluble and insoluble APB42 peptide levels increased dra-
matically in the Braak stage V/VI cohort, but did not in-
crease appreciably in earlier stage subjects (Additional file 1:
Table S1). Correlation analysis indicated that there was no
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Figure 4 SphK2 activity declines during AD pathogenesis. SphK2 activity in hippocampus (A) and temporal GM (B) tissue extracts of control
(n=9), Braak stage I/Il (n=28), Braak Ill/IV (n=7), and Braak V/VI (n = 10) brains. SphK2 activity was assayed as described in methods. Results shown
are mean and standard error for combined results from two independent enzyme activity assays. Statistical significance was determined using a
one-way ANOVA and Dunnett’s post test.
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association between soluble or insoluble AB42 peptide
levels and the normalised S1P level in the hippocampus
(p=0.18 and 0.21, respectively).

To test whether AP overproduction causes a reduction
in S1P levels and/or the S1P/sphingosine ratio, S1P and
sphingosine were quantified in cortical tissue from 11
month old APP,./PS1sg9 mice. These mice are charac-
terised by familial mutations in APP and presenilin 1
that give rise to accelerated AB deposition in the brain
[49] (Figure 6A). Levels of S1P and sphingosine were un-
changed between APPg,./PS1xpy and control C57BL6
mice (Figure 6B - D). There was also no reduction in the
brain S1P/sphingosine ratio in 16 month old J20 (APPsy1nq)
transgenic mice, which also accumulate AB plaques [50]
(data not shown).

S1P/sphingosine is significantly associated with APOE
genotype in the hippocampus

We have also previously published the APOE genotype
of subjects for this cohort [38], and show herein that the
normalised S1P level is 2.5-fold higher in the hippocampus
of APOE €2 carriers, compared to &4 carriers (Figure 7A).
The influence of APOE genotype cannot easily be differ-
entiated from the effect of Alzheimer’s pathology in this
sample set. However, after removing subjects with signifi-
cant hippocampal NFT pathology (Braak stages III — VI),

the overall trend was maintained (Figure 7B), raising the
possibility that APOE genotype influences S1P/sphingo-
sine balance before the development of NFT pathology in
the hippocampus. We therefore constructed a multivariate
linear regression model to test how NFT pathology
(i.e. Braak stage) and APOE genotype are associated with
the S1P/sphingosine ratio in the hippocampus (Table 1).
In this model, both Braak stage and APOE genotype were
significantly associated with normalised S1P (p=0.039
and 0.0495 respectively). Hippocampus was the only brain
region in which a relationship between normalised S1P
level and APOE genotype was apparent (data not shown
for other brain regions). Accordingly, modelling interac-
tions between normalised S1P level, APOE genotype,
and Braak stage in the temporal cortex GM indicated
that Braak stage but not APOE genotype is significantly
associated with normalised S1P levels (p =0.002 and

0.995 respectively).

Discussion
In this study, we demonstrate for the first time that levels
of the potent lipid signalling metabolite S1P decline in a
regiospecific manner during the course of AD pathogen-
esis. This loss of S1P tracked with Braak pathology, being
most apparent in brain regions that are affected relatively
early in AD pathogenesis, and absent in the cerebellum,
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Figure 6 A overproduction in mice does not cause a reduction in normalised S1P. Soluble and insoluble AB40 and AB42 (A), STP (B), and
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which is spared in AD. There was a statistically significant
decline in the level of S1P, when normalised to its non-
phosphorylated precursor sphingosine, in the hippocampus,
temporal GM, and temporal WM with increasing NFT
pathology (Figure 1). S1P levels were normalised relative to
sphingosine to offset the high sample-to-sample variability
that is characteristic of human tissue studies and confounds
statistical analyses. This approach is in accordance with
the accepted approach for signalling proteins, whereby
phosphoprotein levels are normalised to the total amount
of the particular protein being measured. The results were
very similar, although variances were larger, when S1P
content was normalised to tissue mass, and the decline in
this measure was statistically significant in temporal GM
of Braak V/VI subjects (Additional file 1: Figure S1). Our
results with the Braak V/VI subjects, all of whom had
been diagnosed with AD, are in agreement with a previous

study demonstrating a significant loss of S1P in frontotem-
poral GM from subjects with clinical AD [35]. However,
our study goes much further, firstly by demonstrating loss
of S1P prior to AD diagnosis, secondly by demonstrating
that it occurs in a regiospecific manner, and thirdly by
attributing loss of S1P to a decline in sphingosine kinase
activity.

He et al. reported a strong inverse correlation between
tissue AP levels, as measured by ELISA, and S1P [35],
but this was not observed in our study. An important
difference is that our study was primarily concerned
with changes that occur prior to clinical or neuropatho-
logical diagnosis of AD, and therefore included tissue
from subjects that showed Braak stage III/IV pathology
but only rare neuritic plaques and low AP concentra-
tions (Additional file 1: Table S1) [37]. Supporting the
mechanistic disconnect between A levels and S1P loss,
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overproduction of AP in the APPy,./PS1age transgenic
mouse model did not drive S1P levels down. These mouse
brains were assessed at an age at which significant amyloid
production and plaque deposition has occurred. Whilst
loss of S1P in our study cannot be directly correlated to
AP levels measured by ELISA, previous publications
have demonstrated that S1P and its synthetic analogue
FTY720-phosphate confer protection against loss of
neuron viability induced with AP [23,32]. On this basis,
we speculate that regiospecific loss of S1IP may sensitize
those brain regions that are affected earlier in AD to AP
toxicity.

S1P is derived in two enzymatic steps from the more
abundant lipid ceramide, whose levels have been reported
as increased in a number of studies using frontal cortex
tissue from AD subjects [35,44,45]. Increased production
of ceramides may contribute to AD pathogenesis, as

Table 1 Multivariate regression estimates and associated
p-values for normalised S1P in the hippocampus

Variable Coefficient (B)'  SE B® 95% Cl p-value
Braak Stage 0.0392
Ctrl vs Braak 1/11 -0443 035 —1.545,-0090  0.0290
Ctrl vs Braak lll/IV —-0.533 039 —1.900,-0283 0.0101
Ctrl vs Braak V/VI -0393 0.34 —-1.400, 0.002 0.0506
APOE Genotype 0.0495
€3/e3 vs €2/€3 0.092 0.39 —-0.605, 1.013 0.6090
€3/e3 vs €3/e4 -0403 029  -1.282,-0074  0.0292
R 037
F 312 0.025

Reference group for Braak Stage is Control; reference group for APOE
Genotype is €3/€3.
'Standardized regression coefficient; *Standard error of the coefficient.

ceramide is a pro-apoptotic signalling molecule [51,52]. A
modest increase in C16 ceramide was observed in tem-
poral GM with increasing Braak stage (Figure 2), but over-
all ceramide levels remained relatively constant in the
hippocampus and temporal GM of our cohort. To the best
of our knowledge, no previous studies have examined cer-
amide levels in post-mortem hippocampal tissue from
subjects with AD, however the lack of major changes to
ceramide levels in temporal GM is consistent with a previ-
ous study [53]. Increased C16 ceramide in temporal GM
may result from loss of SphK2 activity, as has been dem-
onstrated previously [54,55].

SphK1 activity declined with increasing Braak pathology
in the hippocampus but not temporal GM (Figure 3), and
hippocampal SphK1 activity was significantly correlated
with S1P levels, showing a maximal decline in the Braak
III/IV group. Loss of hippocampal SphK1 activity was as-
sociated with a decline in levels of the protein as detected
by western blotting. The rebound in SphK1 activity in the
Braak V/VI cohort may reflect astrogliosis, as SphK1 is
up-regulated in astrocytes, in response to inflammatory
stimuli [56]. SphK1 localises to pre-synaptic terminals in
mouse hippocampal neurons where it mediates glutamate
release [24] and long-term potentiation [25], leading us to
speculate that loss of SphK1 activity in the hippocampus
may reflect, and/or contribute significantly to loss of func-
tional synapses. Cholinergic neurons in the basal forebrain
are the first to be affected by AD pathology, and in this re-
gard it is interesting to note that cholinergic stimulation
of C. elegans motor neurons results in translocation of
SphK1 to pre-synaptic terminals, where it plays a signifi-
cant role in neurotransmitter release [26].

SphK2 activity declined with increasing Braak stage in
both the hippocampus and temporal cortex (Figure 4),
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and the declining S1P/sphingosine ratio during AD
pathogenesis in the temporal GM appears to reflect re-
duced SphK2 activity, as well as a robust gain of S1P
phosphatase activity in the Braak V/VI brains (Figure 5).
SphK2 is believed to be the predominant enzyme re-
sponsible for S1P synthesis in the mouse brain [57,58].
In agreement with this, sphingosine kinase activity in
our human brain tissue samples was much higher in the
presence of high salt, which inhibits SphK1 (Figure 4),
than in the presence of TritonX-100, which inhibits SphK2
(Figure 3). Total sphingosine kinase activity in mouse brain
tissue was reported to be highest in cerebellum and low in
hippocampus, and SphK2 mRNA was significantly higher
in cortex than in hippocampus [57]. It is therefore possible
that SphK1 is relatively more important for S1P generation
in the hippocampus compared to other brain regions. To
the best of our knowledge, the anatomical distribution and
cell specificity of SphK1 expression throughout the brain
has not been reported, although within the mouse hippo-
campus, SphK1 expression was shown to be highest in
mossy fibres [25]. A more extensive investigation of SphK1
and SphK2 expression in the brain, including their relative
expression in different cell types, would greatly help in
resolving the molecular basis for loss of these enzyme
activities during AD pathogenesis. However, the lack of
availability of commercial SphK2 antibodies that are
well validated for western blotting and immunohisto-
chemistry remains a barrier.

The loss of SphK2 activity in hippocampus and tem-
poral GM observed in our study sits in contrast to the
findings of Takasugi et al. [59], who reported gain of
SphK2 activity in frontal cortex of AD patients. A likely
explanation for this difference is that Takasugi et al. per-
formed their measurements on Tris-soluble fractions
from frontal cortex tissue, whereas our measurements
were performed with total homogenate including the
membrane fraction. Our results on SphK2 activity are
well supported by our lipid measurements. It remains to
be determined whether loss of SphK2 activity is related
to declining levels of the enzyme, as we were unable to
confidently detect and quantify SphK2 protein by west-
ern blotting.

Multivariate regression hints at an association between
APOE genotype and normalised S1P levels in the hippo-
campus, although our study was not specifically de-
signed to test this association. The possibility of a direct
relationship between APOE genotype and hippocampal
S1P levels should be further investigated with a larger
cohort of donor tissue samples. The possibility that
APOE genotype directly affects brain S1P levels is sup-
ported by previous work demonstrating that S1P is se-
creted from cultured astrocytes into ApoE-containing
HDL particles, and that ApoE overexpression in astro-
cytes promotes S1P secretion [17]. These authors have
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also shown that S1P is associated with the HDL fraction
of cerebrospinal fluid [18]. S1P is an established signal-
ling factor in plasma HDL, whereby the cardioprotective
properties of plasma HDL are mediated at least in part
via S1P signalling through S1P; receptors [60]. It is likely
that S1P associated with HDL particles performs similar
cytoprotective functions in the CNS. It would be inter-
esting in future studies to investigate whether there is
any change to S1P levels in the cerebrospinal fluid (CSF)
of subjects with mild cognitive impairment or AD; and
whether S1P levels in the CSF vary with APOE genotype.
We note, however, that a pronounced reduction in nor-
malised S1P levels was only observed in brain regions
that are heavily affected by AD pathology, and the rela-
tionship between APOE genotype and normalised S1P
levels was only observed in the hippocampus. These
regiospecific alterations may not translate to the CSF.

It is not possible with the current dataset to determine
definitively whether loss of sphingosine kinase activity
and S1P precedes NFT formation, or vice-versa. Al-
though the two measures are well correlated in the
hippocampus and temporal GM, a number of observa-
tions suggest that loss of sphingosine kinase activity is
not simply a consequence of tangle formation: firstly,
S1P/sphingosine ratio and SphK2 activity in temporal
GM declined steadily with increasing Braak stage and
were clearly apparent in the Braak III/IV group, whilst
NFT pathology first appears at Braak stage IV in this
brain region. Unfortunately, the sample sizes available
for our study were not large enough to examine Braak
III and IV groups separately. Secondly, S1P and SphK2
activity in the brain, particularly in grey matter regions,
are likely to be primarily astrocyte-derived [17,57]. There-
fore, declining SphK2 activity probably reflects astrocyte
dysfunction. Nonetheless, feedback from dysfunctional
neurons may drive SphK2 activity down in the astrocytes.
Thirdly, the potential relationship between hippocampal
S1P and APOE genotype suggests a more complex basis
for reduced S1P/sphingosine levels in the hippocampus.

Conclusions

The potent neuroprotective signalling lipid S1P declines
in a regiospecific manner during the course of AD patho-
genesis, correlating well with the development of NFT
pathology in the brain. Declining S1P levels with increas-
ing NFT pathology can be attributed primarily to a loss of
both SphK1 and SphK2 activity in the hippocampus, and
SphK2 activity in inferior temporal cortex. Loss of S1P in
regions such as the hippocampus and temporal cortex
may sensitize these regions to synaptic loss and neuronal
cell death during the ageing process and/or in response to
amyloid accumulation. The S1P signalling system has
been the subject of intense pharmacological investigation
in recent years, following the discovery and subsequent
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EDA approval of FTY720 for treatment of relapsing mul-
tiple sclerosis. Our findings raise the possibility that
pharmacological correction of S1P signalling defects may
be applicable in the treatment of AD. Further studies
aimed at better defining how altered S1P signalling con-
tributes to AD pathogenesis are clearly warranted.

Additional file

Additional file 1: Table S1. Clinical information for human brain tissue
cohort. Figure S1. STP (A and B) and Sphingosine (C and D) levels were
quantified in hippocampus (A and C) and temporal GM (B and D) tissue
extracts. Figure S2. Total ceramide levels were quantified for (A)
Hippocampus and (B) Temporal GM tissue extracts by LC-MS/MS.
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