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Abstract

Complex cortical malformations associated with mutations in tubulin genes are commonly referred to as
“Tubulinopathies”. To further characterize the mutation frequency and phenotypes associated with tubulin
mutations, we studied a cohort of 60 foetal cases. Twenty-six tubulin mutations were identified, of which TUBA1A
mutations were the most prevalent (19 cases), followed by TUBB2B (6 cases) and TUBB3 (one case). Three subtypes
clearly emerged. The most frequent (n = 13) was microlissencephaly with corpus callosum agenesis, severely
hypoplastic brainstem and cerebellum. The cortical plate was either absent (6/13), with a 2–3 layered pattern (5/13)
or less frequently thickened (2/13), often associated with neuroglial overmigration (4/13). All cases had voluminous
germinal zones and ganglionic eminences. The second subtype was lissencephaly (n = 7), either classical (4/7) or
associated with cerebellar hypoplasia (3/7) with corpus callosum agenesis (6/7). All foetuses with lissencephaly and
cerebellar hypoplasia carried distinct TUBA1A mutations, while those with classical lissencephaly harbored recurrent
mutations in TUBA1A (3 cases) or TUBB2B (1 case). The third group was polymicrogyria-like cortical dysplasia (n = 6),
consisting of asymmetric multifocal or generalized polymicrogyria with inconstant corpus callosum agenesis (4/6)
and hypoplastic brainstem and cerebellum (3/6). Polymicrogyria was either unlayered or 4-layered with neuronal
heterotopias (5/6) and occasional focal neuroglial overmigration (2/6). Three had TUBA1A mutations and 3 TUBB2B
mutations. Foetal TUBA1A tubulinopathies most often consist in microlissencephaly or classical lissencephaly with
corpus callosum agenesis, but polymicrogyria may also occur. Conversely, TUBB2B mutations are responsible for
either polymicrogyria (4/6) or microlissencephaly (2/6).
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Introduction
Disorders of cerebral cortical development are generally
classified according to the developmental stage the lesions
are observed. Recently, an updated classification that takes
into account genetic abnormalities as well as disrupted
process and stage of brain development has been proposed.
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This classification system divides brain malformations into
disorders of neuronal and glial proliferation, neuronal
migration, and post-migrational development [1]. In living
patients, malformations of the cerebral cortex, such as
microcephaly, classic lissencephaly or polymicrogyria, rep-
resent a major cause of neurodevelopmental disability and
epilepsy. In recent years, significant progress has been
made into the understanding of underlying genetic bases
of these conditions ((see for review [1]). However, in severe
cases, death occurs in infancy or early childhood, and in
affected foetuses accurate phenotypic descriptions and
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molecular diagnosis have only rarely been established. In
the last 10 years, major progress has been made in the rec-
ognition of such malformations, especially through the
use of foetal magnetic resonance imaging (MRI) [2,3].
Ventriculomegaly, prominent subarachnoid spaces, corpus
callosum agenesis, and a small head circumference may
indicate abnormal brain development and should lead to
referral of patients to foetal neurology centers. Additional
ultrasound findings suggestive of cortical malformations
include either the presence of antenatally appearing ab-
normal, overdeveloped sulci and gyri, delayed appearance
of landmark sulcation or abnormally thin cortex. Foetal
brain imaging and particularly MRI is a very useful tool
for detecting, and confirming abnormal cortical develop-
ment. MRI and ultrasound investigations have led to
major advances in the classification of these disorders
[4-8]. However, these advances need to be completed by
studies focused on malformation-associated tissue archi-
tecture, and more importantly, definition of genetic causes
and specific developmental pathways involved in the con-
stitution of the lesions.
Recent genetic evidence has pointed out to the critical

effects of tubulins in regulating neuronal migration.
Currently, mutations in tubulin genes encoding different
α- and β-tubulin isotypes (TUBA1A,TUBA8 and TUBB2B,
TUBB3, TUBB5) and very recently γ-tubulin (TUBG1)
have been involved in a large spectrum of developmental
brain disorders affecting living patients, who present with
variable degrees of intellectual deficiency, motor delay,
seizures and microcephaly. MRI demonstrates a wide
spectrum of brain dysgenesis ranging from simplified gyral
pattern to agyria, resembling the classical lissencephaly but
in combination with specific features which are not ob-
served in ARX, LIS1, DCX, or RELN mutations [9-30,31].
Only few foetal case reports are presently available in the

literature, all but one having been reported by our group.
Of these, six carried TUBA1A mutations, one TUBB2B
mutation, and one TUBB3 mutation [12,23,25,32,33].
Although foetal cases collectively represent the most
severe end of the tubulinopathy spectrum, they exhibit
various cortical abnormalities, ranging from multifocal
polymicrogyria to microlissencephaly with almost ab-
sent cortical plate. Histological features undoubtedly
provide insights into the pathophysiology underlying
these complex cortical developmental malformations.
The recognition of the genetic origin of these brain
malformations is essential for an appropriate genetic
counseling in these families, particularly for subsequent
pregnancies. Therefore, by studying a large cohort of 26
foetuses with mutations in tubulin genes, the aim of the
present study is to describe the detailed neuropathology
and the specific features allowing for the diagnosis of
foetal brain tubulinopathies. Our data and conclusions
demonstrate that tubulinopathies are frequently implicated
in foetal complex malformations of the cortical devel-
opment, particularly regarding microlissencephalies. In
this cohort, TUBA1A mutations represent the major
cause of microlissencephaly, although TUBB2B and
TUBB3 mutations may also be found. The additional
major finding is that TUBA1A mutations are responsible
for a wide spectrum of foetal brain malformations ranging
from the most severe; microlissensencephaly to classical
lissencephaly, and in some cases to polymicrogyria. By
contrast, TUBB2B mutations mostly account for general-
ized or multifocal polymicrogyria.

Materials and methods
Patient selection
As part of our ongoing genetic and molecular investi-
gations of patients and families with cortical malfor-
mations, DNA samples of 60 foetuses were referred
to our laboratory for molecular screening after ter-
mination of the pregnancy. Of the 60 patients, 7 were
previously reported by our group and re-evaluated for
the purpose of this review, 5 with TUBA1A mutations,
one with TUBB2B mutations, one with TUBB3 mutations
[17,23,25,31,32,33].
In all cases, brain anomalies had been detected on rou-

tine ultrasound examination during the second trimester
of pregnancy, subsequently confirmed by MRI. These
anomalies included ventricular enlargement, either iso-
lated or associated with agenesis of corpus callosum and/
or cerebellar anomalies. The cerebellum was described as
cystic or with a Dandy–Walker malformation-like appear-
ance. Pregnancies were terminated with the informed con-
sent of the parents and in accordance with the French
law. Data regarding family history and foetal/antenatal
clinical ultrasound (US) examinations were obtained in
all cases.

Molecular analyses
For genetic and molecular investigations, informed con-
sent was obtained from both parents in all cases. Molecu-
lar screening was performed on genomic DNA extracted
from frozen foetal tissue, according to standardized
protocols. Mutation analysis of the coding regions of
the 6 tubulin genes TUBA1A, TUBA8, TUBB2B, TUBB3,
TUBB5 and TUBG1 was carried out on all patients, as
previously described [15,17,20,23,25,28]. For all patients
found to be mutated in tubulin genes, parental DNA was
analyzed by direct sequencing to assess the de novo occur-
rence of the mutations.

Autopsy procedures
All cases but 3 underwent a complete autopsy performed
by foetopathologists according to standardized protocols,
including X-rays, photographs, and macroscopic and his-
tological examination of all viscera. Foetal biometric data
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were assessed according to the morphometric criteria of
Guihard-Costa et al. [34]. Twenty out of 26 foetuses were
personally re-evaluated by C.F.B. Three were initially ex-
amined by one of the expert neuropathologists (F.R or A.
L) and therefore not re-examined. Concerning the three
remaining patients, parents had refused post-mortem
examination, so that these foetuses were diagnosed and
evaluated on the basis of foetal MRI performed at 30 weeks
of gestation (WG) only.

Neuropathological examination
Brains were fixed in a 10% buffered formalin-zinc solution
for 3 to 6 weeks. Brain growth was evaluated according to
the biometric criteria of Guihard-Costa and Larroche [35].
The hemispheres, brainstem and cerebellum were cut in a
coronal plane, except for some cases in which a medial
sagittal plane was carried out in order to examine in more
detail vermian abnormalities. At least 4 to 5 serial sections
involving one or both hemispheres, 3 to 5 serial axial sec-
tions of brainstem and cerebellum or one sagittal section
of the brainstem and vermis were embedded in paraffin,
cut at either 7 μm (brainstem and cerebellum) or 8 to
10 μm (hemispheres) and stained with hemalun-phloxin,
cresyl violet or cresyl violet-luxol fast blue (Klüver-Barrera
staining).
Figure 1 Schematic representation of the functional domains of TUBA
mutations associated with foetal cases with malformations of cortical
the guanine nucleotide-binding region, intermediate domain, and C-terminal
motors such as kinesins and dyneins. In β-tubulin, they correspond to residue
206–381, 382–451 [37], respectively. Mutations associated with a lissencephaly
with microlissencephaly in green, with polymicrogyria-like cortical dysplasia in
in brackets.
The diagnosis of cortical dysgenesis was made on
routine histology, and included 3 patterns of lesions:
microlissencephaly in 28 cases, lissencephaly in 14 and
either typical or atypical polymicrogyria in 18 cases.

Results
Mutations
Genetic and molecular investigations of foetal cases with
complex malformations of cortical development allowed us
to identify TUBA1A, TUBB2B and TUBB3 mutations in 26
out of the 60 cases (43.3%) referred to our laboratories
(Cochin Hospital and Cochin Institute Laboratories). Of
these, we found 19 TUBA1A, 6 TUBB2B and 1 TUBB3
mutations. All mutations were different missense muta-
tions, and were shown to occur de novo. Of these 26, 19
are newly reported. The 7 foetuses that had been previ-
ously reported were reanalysed for the purpose of the study
(see for detailed results Figure 1 and Tables 1, 2 and 3).

Neuropathological data
Detailed brain examination allowed us to identify a wide
spectrum of cortical malformations that can be divi-
ded into three groups despite some overlaps: microlis-
sencephaly, lissencephaly and micropolygyria-like cortical
dysplasia.
1A, TUBB2B and TUBB3 tubulin subunits and distribution of
development. Illustrated domains are the N-terminal that contains
domains that constitutes the binding surface for MAPs and molecular
s 1–229, 230–371, and 372–450, [36] and in α-tubulin, to residues 1–205,
(classical and with cerebellar hypoplasia) phenotype are indicated in red,
pink. For recurrent variations the number of occurrences is indicated



Table 1 Neuropathology overview of foetuses interrupted for tubulin related microlissencephaly

Case number Gene Gender Nucleotidic
change

Proteic
change

TOP Cortical lamination Neuronoglial
overmigration

Heterotopia Olfactory
bulbs
agenesis

Hippocampus

LIS_TUB_008_ fœtus13 TUBB2B M c.716G > T p.C239F 16 Absent CP (2 layers including
molecular layer)

Focal - N/A N/A

LIS_TUB_004_ fœtus08 TUBA1A M c.978A > C p.K326N 23 Thick 2-layered cortex - + + N

LIS_TUB_006_ fœtus04 TUBA1A M c.856C > T p.L286F 23 Poorly differentiated CP (2–3 layers
poorly individualized)

- - + N

LIS_TUB_080_ fœtus24 TUBA1A F c.1112 T > A p.V371E 23,3 Poorly differentiated CP (2–3 layers
poorly individualized)

- - N/A Non individualized

LIS_TUB_002_ fœtus20 TUBA1A F c.790C > T p.R264H 24 Absent CP (2 layers including
molecular layer)

- Radial columnar
heterotopic neurons

+ N

LIS_TUB_003_ fœtus18 TUBA1A M c.167 C > T p. T56M 24,3 Absent CP (2 layers including
molecular layer)

- + - Non individualized

LIS_TUB_004_ fœtus09 TUBA1A F c.1285G > C p.E429Q 25 4 layered cortex - Radial columnar
heterotopic neurons

- Non individualized

LIS_TUB_005_foetus01 TUBA1A M c.959G > A p.R320H 25 Absent CP Focal Radial columnar
heterotopic neurons

- Non individualized

LIS_TUB_079_ fœtus25 TUBA1A M c.302A > G p.N101S 25 Poorly differentiated CP (2–3 layers
poorly individualized)

- Dispersed heterotopic
neurons

+ Non individualized

LIS_TUB_009_ fœtus19 TUBB2B M c.745G > C p.D294H 27 Absent CP (2 layers including
molecular layer)

Massive - - - Non individualized

LIS_TUB_010_ fœtus17 TUBB3 M c.1162A > G p.M388V 27 Thin CP with 2 layers - Dispersed heterotopic
neurons

+ N

LIS_TUB_006_ fœtus03 TUBA1A F c.908 T > G p.V303G 36 Thick severe 2 layered - - - N

LIS_TUB_081_ fœtus26 TUBA1A M c.959G > A p.R320H 26 Absent CP (2 layers including
molecular layer)

- Dispersed and nodular
heterotopic neurons

N/A N/A
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Case number Enlarged
GZ

Basal Ganglia Corpus
callosum

Cerebellum Pons –Braintem Ophthalmological
signs

Head
circumference

Additional
morphological signs

Reference

Nuclei and corticospinal tract

LIS_TUB_008_ fœtus13 + N/A c.ACC Severe Hypoplasia
and Dysplasia

Severe pons hypoplasia N/A <3rd p N/A This series

LIS_TUB_004_ fœtus08 + Hypoplasic c.ACC Severe Hypoplasia
and Dysplasia

Severe pons hypoplasia - <3rd p Microretrognatism This series

Absent CST

LIS_TUB_006_ fœtus04 + Hypoplasic c.ACC Moderate Hypoplasia Severe pons hypoplasia - <3rd p Hypoplastic external
genital organs

[32]

Severe hypoplasia of the CST

LIS_TUB_080_ fœtus24 + - c.ACC Severe Hypoplasia Severe pons hypoplasia with
hypoplasic olivary nuclei

- <3rd p Microretrognatism This series

Severe hypoplasia and
Disorganization of the CST

LIS_TUB_002_ fœtus20 + + c.ACC Moderate Hypoplasia Severe pons hypoplasia with
fragmented olivary nuclei

- <3rd p Microretrognatism

Severe hypoplasia and
Disorganization of the CST

LIS_TUB_003_ fœtus18 + Hypoplasic c.ACC Severe Hypoplasia Severe pons hypoplasia with
hypoplasic olivary nuclei

Optic Nerve
Hypoplasia

<3rd p Microretrognatism This series

Severe hypoplasia and
Disorganization of the CST

LIS_TUB_004_ fœtus09 + Hypoplasic c.ACC Severe Hypoplasia Severe pons hypoplasia with
hypoplasic olivary nuclei

- <3rd p Microretrognatism/
dysmorphy/Exophthalmia/
Hypertelorism

This series

Severe hypoplasia and
Disorganization of the CST

LIS_TUB_005_foetus01 + - p.ACC Severe Hypoplasia
and Dysplasia

Severe hypoplasia
(neuronal overmigration)-spinal
cord anterior horn hypoplasia

N/A <3rd p Microretrognatism/
dysmorphy/Exophthalmia/
Hypertelorism

This series

Absent CST

LIS_TUB_079_ fœtus25 N/A - c.ACC Severe Hypoplasia
and Dysplasia

Severe pons hypoplasia with
hypoplasic olivary nuclei

- <3rd p Microretrognatism/
dysmorphy/Exophthalmia/
Hypertelorism

This series

Severe hypoplasia and
Disorganization of the CST

LIS_TUB_009_ fœtus19 + - c.ACC Severe Hypoplasia Severe hypoplasia with
focal overmigration

N/A <3rd p Absent This series

Absent CST

Table 1 Neuropathology overview of foetuses interrupted for tubulin related microlissencephaly
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LIS_TUB_010_ fœtus17 + Hypoplasic c.ACC Severe Hypoplasia
and Dysplasia

Severe pons hypoplasia Optic Nerve
Hypoplasia

<3rd p Absent [33]

Severe hypoplasia of the CST

LIS_TUB_006_ fœtus03 + Hypoplasic p.ACC Severe Hypoplasia
and Dysplasia

Severe pons hypoplasia - <3rd p Absent [33]

Severe hypoplasia of the CST

LIS_TUB_081_ fœtus26 - c.ACC Severe Hypoplasia
and Dysplasia

Severe pons hypoplasia - <3rd p Facial dysmorphism

Severe hypoplasia of the CST

Abbreviations: TOP termination of the pregnancy, MicroLis microlissencephaly, N/A not available, ACC corpus callosum agenesis, GZ germinal zones, p. percentile; Foetal MRI based analysis of the phenotype; unilat:
unilateral; +: Present; −: Absent; N: Normal; CP: cortical plate; CST: Corticospinal tract.

Table 1 Neuropathology overview of foetuses interrupted for tubulin related microlissencephaly (Continued)
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Table 2 Neuropathological overview of foetuses interrupted for tubulin related lissencephalies

Case number Gene Gender Nucleotidic
change

Proteic
change TOP Cortical lamination Neuronoglial

overmigration Heterotopia
Olfactory
bulbs
agenesis

Hippocampus

LIS_TUB_025 fœtus06 TUBA1A M c.787C > A p.P263T 26 Poorly differentiated CP
(2–3 layers poorly individualized)

- Dispersed heterotopic
neurons

+ N

LIS_TUB_011_ fœtus231 TUBA1A M c.1226 T > C p.V409A 32 N/A N/A N/A N/A N/A

LIS_TUB_022_ fœtus05 TUBA1A M c.712A > G p.I238V 25 Poorly differentiated CP
(2–3 layers poorly individualized)

- Nodular heterotopia - N

LIS_TUB_018_ fœtus10 TUBA1A F c.1265G > A p.R422H 28 N/A N/A N/A N/A N/A

LIS_TUB_017 fœtus021 TUBA1A M c.1205G > A p.R402H 29 N/A N/A N/A N/A N/A

LIS_TUB_013_ fœtus14 TUBB2B F c.302G > A p.G98R 32,8 Thick 4-layered cortex - Heterotopia N/A N

LIS_TUB_021_ fœtus07 TUBA1A M c.1204C > T p.R402C 35 Thick 4-layered cortex - Radial columnar
heterotopic neurons

- N
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Case number Enlarged
GZ

Basal
Ganglia

Corpus
callosum Cerebellum

Pons –Braintem Ophthalmological
signs

Head
circumference

Additional
morphological
signs

Reference
Nuclei and corticospinal tract

LIS_TUB_025
fœtus06

+ Dysmorphic c.ACC Severe Hypoplasia Severe pons hypoplasia - 5th p Absent [32]

Severe hypoplasia and Disorganization of
the CST

LIS_TUB_011_
fœtus231

N/A N/A c.ACC Severe hypoplasia Severe pons hypoplasia N/A 5th p Absent This series

LIS_TUB_022_
fœtus05

+ Dysmorphic c.ACC Moderate Vermian
Hypoplasia

Severe pons hypoplasia N/A 5th p Absent [32]

Unilateral hypoplasia of the CST

LIS_TUB_018_
fœtus10

N/A N/A c.ACC Mild Vermian Hypoplasia Mild pons hypoplasia N/A 5th p Absent This series

LIS_TUB_017
fœtus021

N/A N/A c.ACC Mild Vermian Hypoplasia Mild pons hypoplasia N/A 5th p Absent This series

LIS_TUB_013_
fœtus14

N/A - c.ACC Mild Vermian Hypoplasia Mild pons hypoplasia - 5th p Absent This series

LIS_TUB_021_
fœtus07

- - Thick CC Mild Vermian Hypoplasia Moderate pons hypoplasia N/A 5th p Absent [32]

Mild hypoplasia of the CST

Abbreviations: TOP termination of the pregnancy, LIS lissencephaly, N/A not available, ACC corpus callosum agenesis, GZ germinal zones, p. percentile; 1no foetopathological data available; Foetal MRI based analysis of
the phenotype; unilat: unilateral; +: Present; −: Absent; N: Normal; CP cortical plate; CST: corticospinal tract.

Table 2 Neuropathological overview of foetuses interrupted for tubulin related lissencephalies
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Table 3 Neuropathology overview of foetuses interrupted for polymicrogyria like cortical dysplasia

Case number Gene Gender Nucleotidic
change

Proteic
change TOP Cortical lamination Neuronoglial

overmigration Heterotopia
Olfactory
bulbs
agenesis

Hippocampus

LIS_TUB_012_
fœtus22

TUBA1A F c.214 C > T p.P72S 37,8 Unlayered Generalized and Asym PMG
(fronto-central predominant)

- Nodular Heterotopia N/A N

LIS_TUB_043_foetus11 TUBA1A M c.641G > A p.
R214H

23 Unlayered Central and Asym PMG Focal + unilat N/A

LIS_TUB_048_foetus16 TUBB2B M c.742G > A p.
A248T

28,5 Unlayered Central and Asym-multifocal PMG - Dispersed heterotopic neurons + N/A

LIS_TUB_053_foetus21 TUBA1A F c.473C > T p.S158L 24,5 Unlayered Generalized and AsymPMG - Radial columnar heterotopic
neurons

+ Dysmorphic

LIS_TUB_054_foetus15 TUBB2B M c.518C > T p.P173L 25 Unlayered Generalized and AsymPMG (central
regions)

- - N/A N/A

LIS_TUB_056_foetus12 TUBB2B M c.514 T > C p.S172P 27 Unlayered Generalized and Asym PMG
(fronto-central predominant)

Focal Radial columnar heterotopic
neurons

- N
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Case number Enlarged
GZ Basal Ganglia Corpus

callosum Cerebellum Pons –Braintem Nuclei
and Corticospinal tract

Ophthalmological
signs

Head
circumference

Additional
morphological
signs

Reference

LIS_TUB_012_ fœtus22 N/A N/A HypoCC Severe Severe pons hypoplasia N/A 5th p Absent This series

Vermian Hypoplasia Mild hypoplasia of the CST

LIS_TUB_043_foetus11 - N c.ACC Mild Vermian Hypoplasia Mild dysplasic olivary nuclei N/A 10th p Absent This series

Unilateral hypoplasia of the CST

LIS_TUB_048_foetus16 N/A N N Mild Vermian Hypoplasia Normal 5th p Absent This series

LIS_TUB_053_foetus21 + Hypoplasic c.ACC Severe Hypoplasia and Dysplasia Hypoplasia Olivar heterotopia - 5th p Absent This series

Disorganized CST

LIS_TUB_054_foetus15 N/A Dysmorphic c.ACC Moderate hypoplasia Severe pons hypoplasia N/A <3rd p Absent This series

Disorganized CST

LIS_TUB_056_foetus12 - N c.ACC Mild Vermian Dysplasia Normal N/A <3rd p Absent [23]

Disorganized CST

Abbreviations: TOP termination of the pregnancy, PMG polymicrogyria, N/A not available, ACC corpus callosum agenesis, GZ germinal zones, p percentile; foetal MRI based analysis of the phenotype; unilat: unilateral;
+: Present; −: Absent; N: Normal; Asym: asymmetrical; CST: Corticospinal tract.

Table 3 Neuropathology overview of foetuses interrupted for polymicrogyria like cortical dysplasia
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Microlissencephaly
Twelve foetuses (8 males and 4 females, from 16 to 36
WG) displayed a combination of extreme microcephaly,
corpus callosum agenesis and lissencephaly. For the
remaining 13th case, termination of pregnancy was achieved
at 16 WG for absent foetal movements, arthrogryposis
and microcephaly. Of the 12 cases, 8 presented with
non-specific dysmorphic features including retrognathia
and hypertelorism, as well as adducted thumbs, ex-
tremely long fingers, and rocker bottom feet, due to
poor foetal mobility.
In all cases, macroscopical examination confirmed

consistent features of extreme microcephaly (<3rd per-
centile) but with no intrauterine growth retardation. The
brain surface was completely smooth, lacking primary
fissures, olfactory sulci and bulbs (Figures 2a and 3a)
and optic nerves in 2 cases. The brainstem and cerebel-
lum were severely hypoplastic, with a widely opened
fourth ventricle (Figures 2b and 3b). On sagittal sections,
the corpus callosum was absent.
Histological examination revealed severe disturbances

of the cortical cytoarchitecture. The cortical plate was
either thin (5/13) or with a two-three layered orga-
nization made up of a molecular layer, a relatively thin
wavy layer with a higher cellular density and a 3rd less
cellular layer (Figure 2c). In the most severe cases
(6/13), the cortical plate was severely disorganized
with a festooned-like pattern and with neither lamination
nor clear demarcation between white and grey matter
(Figure 3c). These abnormalities radically differ from the
4-layered thick cortex observed in classical lissencephaly.
Only two cases demonstrated a thick cortical plate, with 4
layers in one foetus and two layers in the other one.
Moreover, multiple glomerular structures made up of

a fibrillar core, surrounded by non-differentiated cells
were observed in the deep cortical layers and the under-
lying subplate, along with whirling heterotopic fascicles
within the superficial cortical layer and in the periven-
tricular areas (Additional file 1: Figure S1). Nodular or
radial heterotopias were often found within the white
matter (8/13) (Figure 2e) and to coexist with neuroglial
overmigration foci into the arachnoid space (Figure 3d)
(LIS_TUB_005_foetus 1; LIS_TUB_008_foetus 13). An
extracortical heterotopic layer responsible for a 'cobble-
stone-like' cortical dysplasia was observed in a single
case (LIS_TUB_009_foetus 19; (Figure 3e,f). Hippocampi
were either absent or demonstrated a severely disturbed
cytoarchitecture. In all cases but two, histological examin-
ation confirmed callosal agenesis with no Probst bundles.
Microlissencephaly was also characterized by its un-

usual association with voluminous germinal zones and
ganglionic eminences exclusively observed in cases of
termination of pregnancy during the 2nd trimester
(Figures 2c and 3c) (Additional file 1: Figure S1 and
Additional file 2: Figure S2). The striatum and palli-
dum were severely hypoplastic in the majority of the
cases or were absent. The internal capsule was also
missing, so that the caudate nucleus and putamen ap-
peared to be fused. The thalami were reduced in size
and crudely shaped in all cases.
At the infratentorial level, the corticospinal tracts were

either absent in most cases, and disorganized in the
remaining cases as were the cranial nerve nuclei (ex-
cept LIS_TUB_005_foetus01 and 17), contrasting with
a normal or mildly hypoplastic tectum (LIS_TUB_002_
fœtus20). The pontine nuclei were rudimentary with het-
erotopic neurons most probably destined for the pontine
and olivary nuclei (Figure 3f). Remarkably, the foetus
(LIS_TUB_009_fœtus19) (Figure 3f) also demonstrated
massive neuroglial heterotopia at the level of the brain-
stem reminiscent of Walker Warburg syndrome. All cases
demonstrated global cerebellar hypoplasia with small nod-
ules of heterotopic Purkinje cells in the cerebellar white
matter.. In the most severe cases (LIS_TUB_009_fœtus19)
(Figure 3 g), the cerebellum was exceedingly hypoplastic
with vermian agenesis (Additional file 1: Figure S1 and
Additional file 2: Figure S2) Detailed foetopathological
features are provided in Table 1.
Overall, the main features of tubulin related microlissen-

cephaly associate severe microcephaly lacking primary
fissures, complete corpus callosum agenesis, hypertrophic
germinal zones and ganglionic eminences, hypoplasic and
disorganized striatum and thalami and severe cerebellar
and brainstem hypoplasia.
Most patients with microlissencephaly (10/13) carried

mutations in TUBA1A gene. Seven are novel, identified
in 6 different cases (p.T56M, p.N101S, p.R264H, p.K326N,
p.V371E, p.E429Q) except for one mutation (p.R320H)
identified in two foetuses, and in two previously reported
(p.L286F [32] and p.V303G [33]). Other patients carried
respectively distinct mutations in TUBB2B (p.C239F [23]
and the novel mutation, p.D294H) or TUBB3B gene
(p.M388V) respectively [25]. Of interest, none were found
in other tubulinopathies, either in foetuses or living
patients.

Lissencephaly
Seven patients (5 males and 2 females) were referred for a
prenatal diagnosis of lissencephaly between 25 to 35 WG.
All had reduced biometric brain parameters between 5th

and 10th percentile without microcephaly and none were
dysmorphic. In all cases, ventriculomegaly detected on
ultrasound examination was confirmed on foetal brain
MRI performed between 29 and 30 WG (Figure 4) which
revealed in addition to ventriculomegaly, lissencephaly
associated with corpus callosum agenesis in 6/7 patients
and with moderate to severe vermian hypoplasia in 3/7
patients. Based on the MRI features, 3 had a pattern of



Figure 2 Hallmarks of microlissencephaly in a 25 WG foetus (LIS_TUB_005_foetus01) with TUBA1A mutation Macroscopical data with
abnormally short agyric hemispheres, severe hypoplastic brain stem and cerebellum (white arrow) (a), Smooth brain surface with no
sylvian fissure (b), Smooth brain surface with agenesis of the corpus callosum without Probst bundles (arrow), and voluminous
germinal zones (c), No individualized cortical plate but a thin layer made up of immature cells is present at the surface of the
hemispheres (d), numerous heterotopias either radial (thin arrow) or columnar (thick arrow) in the white matter (e), with focal
neuroglial cell overmigration within the meningeal spaces (f), (Scale bars: a, b: 1 mm, c: 50 μm, d, f: 20 μm, e: 100 μm).
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lissencephaly with cerebellar hypoplasia (LCH), while 4
had features rather compatible with the diagnosis of
classical lissencephaly. Four were available for foetopatho-
logical examination.
On macroscopic examination, the brain surface was

completely smooth with absent Sylvian fissures. Olfactory
sulci and bulbs were present in 2/3 foetuses and optic
nerves were normal in all cases. Two cases showed severe
(LIS_TUB_025 fœtus06) or moderate (LIS_TUB_022_
fœtus05) vermian and brainstem hypoplasia, while in the
two others, the vermis was mildly hypoplastic [32].
Cortical plate abnormalities were of variable severity,



Figure 3 Macroscopical and histological features of microlissencephaly in a 27 WG foetus (LIS_TUB_009_fœtus19) with TUBB2B
mutation. Macroscopical view of the left hemisphere displaying agyria with absent sylvian fissure absent olfactory bulbs (a); absent olfactory
bulbs severely hypoplastic brainstem and cerebellum (b). Coronal section passing through the hemispheres displaying a thin mantle with absent
corpus callosum, internal capsule and basal ganglia, along with enlarged ventricles and voluminous germinal zones (c), diffuse disorganization of
the cortical plate with massive overmigration of cells within the meningeal spaces (d), with at higher magnification a cobblestone pattern with
numerous tortuous vessels (e), thickened meninges containing diffuse overmigration foci at all levels of the brainstem, which is unusually flat,
with absent pontine nuclei (arrow) and olivary nuclei (asterisk) (f), disorganized cerebellar cortex cytoarchitecture due to abnormal migration
of granule cells in the meninges leading to a fusion of folia identical to what observed in “cobblestone” dysplasia (g) (Scale bars: a: 2 mm,
b: 100 μm, c, d: 50 μm, e: 1 mm, f: 10 μm).
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abnormally thick (LIS_TUB_021_fœtus07; LIS_TUB_
013_fœtus14) with reduced white matter in 2 cases, and
thin in the 2 other cases. On microscopic examination, cor-
tical cytoarchitecture displayed severe lesions. In two cases
(LIS_TUB_021_fœtus07 and LIS_TUB_021_ fœtus07), a
4-layered cortex was observed as in LIS1-related lissence-
phaly, consisting of an upper molecular layer, a second
thin cellular layer containing pyramidal neurons usually



Figure 4 MRI of LIS_TUB_011 foetus 23 with lissencephaly with cerebellar hypoplasia at 32 WG with TUBA1A mutation (p.V409A)
showing complete agyria, virtually no sulci on axial (a) and coronal (b,d) T2-weighted sections, complete corpus callosum agenesis
and pontocerebellar hypoplasia on sagittal (c) and coronal (d) sections.
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observed in layer V, a third pale poorly cellular layer and a
fourth thick deep layer made up of neurons which had
failed to migrate. Heterotopic neurons with a radial col-
umnar organization were found in the deepest part of the
cortical mantle. At the infratentorial level, only the vermis
was mildly hypoplastic and malrotated, the cerebellar
hemispheres contained large Purkinje cell heterotopias. In
the medulla, cortico-spinal tracts were flattened, spreading
out ventrally and laterally. Olivary nuclei were absent
with voluminous olivary heterotopias, as observed in LIS1-
related lissencephaly.
The two other cases displayed a 2-layered lissencephaly

with a well-identified upper molecular layer and a second
thin layer containing mainly immature neurons and only
few differentiated pyramidal cells in its deepest part. In
one of the 2 cases, the cortical plate consisted of an upper
molecular layer and a thicker wavy like cellular layer
containing mostly immature neurons [32]. In both cases,
heterotopic neurons and glomerular structures were
associated with numerous abnormal fascicles either inter-
crossed or turned back on themselves located in the deep
white matter and the periventricular area. At the infra-
tentorial level, (LIS_TUB_022_fœtus05, LIS_TUB_025
fœtus06) the ventral part of the brainstem was more
severely affected, with hypoplastic pontine nuclei and cor-
ticospinal tracts. In the medulla, the pyramids were absent
and olivary nuclei hypoplastic with voluminous olivary
heterotopias, reminiscent of LCH.
Neuronoglial overmigration within the leptomenigeal

spaces was never found in these cases. In the youngest
cases, the germinal zone was voluminous and the basal
ganglia, as well as the anterior arm of the internal capsule
contained numerous misoriented small fibre bundles. The
thalami were also hypoplastic and disorganized. Detailed
foetopathological features are provided in Table 2.
The majority of patients with classical lissencephaly (4/7)

or with LCH (3/7) also carried mutations in TUBA1A gene
(6/7). All were different, with one novel (p.V409A) and 5
previously reported (p.R402C [16], p.R402H, p.I238V, p.
P263T, and p.R422H [32]). Only one patient with classical
lissencephaly (LIS_TUB_013_ fœtus14) carried a TUBB2B
mutation (p.G98R).
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Polymicrogyria-like cortical dysplasia
In 6 patients (4 males and 2 females), a polymicrogyric pat-
tern (Figures 5 and 6a,b and Additional file 3: Figure S3)
was diagnosed between 23 and 36 WG. In cases diagnosed
earlier (respectively 23, 24.5 and 25 WG), imaging features
consisted of corpus callosum agenesis and cerebellar
and brainstem hypoplasia, while in the others, abnormal
gyration was identified on MRI (Figure 5 LIS_TUB012_
foetus22). Brain biometric parameters ranged from the 5th

and the 10th percentile in 4 cases, and below the 3rd per-
centile in two cases.
Polymicrogyria represented the less severe end of the

spectrum with a multifocal asymmetrical polymicrogyric
pattern. On macroscopic examination, the spectrum
of gyral abnormalities ranged from asymmetrical abnor-
mal coarse perisylvian gyri with largely opened sylvian fis-
sures to diffuse (4/6) polymicrogyria-like cortical dysplasia
(Figure 6a). In all cases, they appeared to predominate
in fronto-central regions and never resemble the “morocco
leather” pattern classically described in typical polymi-
crogyria. In addition, foetuses exhibiting generalized
polymicrogyria-like cortical dysplasia had more severe
Figure 5 MRI of LIS_TUB_012 foetus 22 with polymicrogyria-like corti
asymmetrical left predominant perisylvian polymicrogyria on coronal
hypoplastic and thin, and the cerebellum and the brainstem appear t
cerebellar hemispheric and/or vermian hypoplasia and
dysplasia, compared with those with fronto-centrally pre-
dominant malformations, which had milder cerebellar
hypoplasia. At last, unilateral olfactory bulb agenesis was
noted in a single case.
On histological examination, focal cortical anomalies

were restricted to the depth of the sylvian fissure in two
cases, and were more extensive in the four other cases,
involving the frontal, temporal and the parieto-occipital
cortices. “Polymicrogyria” was mainly unlayered in all
cases, but sometimes intermixed with a 4-layered pattern.
In two cases, neuroglial overmigration foci were observed,
covering the unlayered polymicrogyria (Additional file 3:
Figure S3). By contrast, no overmigration was observed in
4-layered polymicrogyric areas and/or in the normal lami-
nated cortical regions. Hippocampus cytoarchitecture was
disorganized in one case (Figure 6c). Of note, the glom-
erular structures usually observed in the other types of
foetal tubulinopathies were identified only in one out of
the re-analyzed 4 cases. Abnormal intercrossed fascicles
were found in the subthalamic and sublenticular regions
in all cases (Figure 6d). Heterotopic neurons, either radial
cal dysplasia at 36 WG with TUBA1A mutation (p.P72S) showing
(a,b) and axial (d) T2-weighted sections, the corpus callosum is
o be hypoplastic on sagittal (c) and coronal section (b).



Figure 6 Macroscopical and histological data in a 24.5 WG foetus (LIS_TUB_053_foetus21) with polymicrogyria-like cortical dysplasia
and TUBA1A mutation. Fronto-parietal polymicrogyria with short and vertically oriented sylvian fissure and cerebellar hypoplasia (a), on coronal
sections, enlarged germinal zone with polymicrogyria involving the frontal, perisylvian and temporal areas (arrow) (b), malrotated and hypoplastic
hippocampus (c), scattered nodular heterotopias in the deep white matter (d), roughly shaped dentate nuclei (e), absent olivary nuclei with bilateral,
large olivary heterotopias found in the dorsal part of the medulla (white arrows) (f) (Scale bars: b, 2 mm, c, d: 100 μm, e: 1 mm, f: 200 μm).
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(Figure 6d) or nodular were not seen in combination
in the same region. Callosal agenesis was associated
with Probst bundles in all cases except for one (LIS_
TUB_012_foetus22). Only one case (25 WG) displayed en-
larged germinal zones, but these were less voluminous
than observed in microlissencephaly and lissencephaly
cases, and the caudate nucleus and putamen appeared
to be fused, due to absent the internal capsule. In other
cases, germinal zones and internal capsule were present,
but multiple and short axonal fascicles were observed
within the pallidum and under the putamen.
At the infratentorial level, the brainstem was hypoplastic

and abnormally flat, with poorly developed pontine nuclei,
absent olivary nuclei and large bilateral olivary hetero-
topias in case of polymicrogyria-like cortical dysplasia
(Figure 6f). Corticospinal tracts were aberrantly located.
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In the cerebellum, the dentate nuclei were abnormally
shaped and several large Purkinje cell heterotopias were
present in the white matter (Figure 6e). In less severely
affected cases, the vermis was moderately hypoplastic
without any significant histological changes. In the cere-
bellar hemispheres, several heterotopias were identified
and the dentate nuclei were poorly convoluted and
fragmented. Brainstem examination did not reveal any
significant lesions. Detailed neuropathological features
are provided in Table 3.
Cases with tubulin related polymicrogyria-like cortical

dysplasia carried mainly TUBB2B mutations (3/6), of
which two were novel (p.P173L and p.A248T) and one
was the seminal foetal case (p.S172P) [23]. Other three
cases carried three novel TUBA1A mutations (p.P72S, p.
S158L and p.R214H), and very importantly neuroglial
overmigration was observed in one of the cases harbour-
ing in TUBA1A as well as TUBB2B mutations.

Discussion
We report for the first time a large cohort of foetuses
with various malformations of cortical development due
to mutations in 3 different tubulin genes (TUBA1A,
TUBB2B and TUBB3), underlining the relatively high
frequency of tubulinopathies among the causes of severe
complex cortical malformations ranging from polymicro-
gyria-like cortical dysplasia to microlissencephaly with
corpus callosum agenesis and ponto-cerebellar hypoplasia.
Although tubulinopathies are now easily suspected after
birth by means of neuroimaging studies since their charac-
teristics have been extensively described [9-31], only few
foetal cases have been reported so far and significant
knowledge of the neuropathology of foetal tubulinopathies
is therefore lacking. For these reasons, one of the major
strengths of our study was the availability of neuropatho-
logical analyses in almost all cases and of the retrospective
re-evaluation with the aim of highlighting the key features
allowing for the diagnosis. Besides, neuropathological
studies remain an invaluable tool for the delineation of
novel entities, as well as for their underlying pathophysio-
logical mechanisms.
The different patterns of cerebral involvement and of

neuropathological features allowed us to recognize 3 ma-
jors groups of cortical dysgenesis [38]: microlissencephaly
in which the cortical plate is reduced to a two-layered thin
cortex or absent, lissencephaly either classical or variant
(thick four-layered cortex with a cell-sparse zone, normal
pons and cerebellum, or with either a three or a two-
layered cortical plate) and polymicrogyria-like cortical
dysplasia.
Until recently, the different possible pathophysiological

mechanisms underlying microlissencephaly remained
poorly understood. Our study clearly demonstrates that
tubulin mutations may represent a significant cause of
sporadic microlissencephaly with corpus callosum agen-
esis. Approximately half of the foetuses with microlis-
sencephaly referred for molecular diagnosis were found
to carry mutations mainly in TUBA1A gene, and less fre-
quently in TUBB2B and TUBB3 genes. Microlissence-
phaly is a rare entity characterized by severe congenital
microcephaly with absent sulci and gyri leading most of
the time to an early fatal outcome during the foetal or
the neonatal period. Microlissencephaly was initially
considered as belonging to the vast microcephaly spectrum
and was thought to result essentially from abnormal neur-
onal proliferation or survival. Two main microlissence-
phaly syndromes are recognized: type A, previously called
Norman Roberts syndrome [39,40] and type B also named
Barth syndrome. Less than 10 cases with Norman-Roberts
syndrome have been described so far. In all cases,
microlissencephaly is associated with dysmorphic features
consisting of sloping forehead, hypertelorism, broad and
prominent nasal ridge and micrognathia [39,41-43]. In
these cases, the neuropathology has been rarely reported,
describing either a thin cortical plate with heterotopic
neurons [44] or a 4-layered cortex [42]. In both of the
reported cases, the corpus callosum was normal and no
infratentorial anomalies were observed. In a similar way,
few reports of Barth type microlissencephaly are available.
This distinct condition is characterized by the association
of microlissencephaly with a thin cortical mantle, small
thalami, corpus callosum agenesis and of an extreme
cerebellar and brainstem hypoplasia [45-48]. Both micro-
lissencephaly type A and B have been observed in con-
sanguineous families suggesting an autosomal recessive
inheritance. Conversely, sporadic cases have barely been
reported while they represent at least 40% of our foetal co-
hort, and we have been able to provide evidence here that
TUBA1A mutations are a major cause of microlissence-
phaly, accounting for 46.4% of our cases. Moreover, we
report for the first time, one TUBB2B mutation responsible
for microlissencephaly. These results strongly suggest that
tubulin mutations should be systematically searched in a
context of microlissencephaly with corpus callosum
agenesis, particularly when sporadic, starting in order
of frequency by TUBA1A mutation screening, then
TUBB2 and TUBB3. Based on literature review, some
previously reported “severe LCH” fall in fact into the
microlissencephaly group. For instance, the 5 cases previ-
ously reported by Kumar et al. (including one foetal case
at 21WG) and Cushion et al. described the combination
of extreme microcephaly, complete corpus callosum
agenesis with LCH. Of these, one was due to TUBB2B
mutation while the remaining 4 were due to TUBA1A
mutations [12,29]. This group radically differs from the
classical lissencephaly group with cerebellar hypoplasia
characterized by diffuse pachygyria but not necessarily
by severe microcephaly nor complete corpus callosum
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agenesis [12]. Because of the potential implications
for the genetic screening, our data together with these
observations imply that microlissencephaly must be
distinguished from LCH, the former being related to
either TUBA1A, TUBB2B or TUBB3 mutations, while
the latter strongly related to TUBA1A mutations.
Our data about foetal tubulinopathies provide new

insights into the pathophysiology of lissencephalies and
polymicrogyria and strengthen the hypothesis that in the
context of tubulin mutations, these two malformations
belong to the same spectrum. Recently, polymicrogyria-
like cortical dysplasia was proposed to designate the
atypical forms of polymicrogyria observed in tubulinopa-
thies, owing to the presence of radial columnar heteroto-
pia and neuronal overmigration through the pia, features
that are not typical of most forms of polymicrogyria
[29]. Our results reinforce this concept since tubulin-
related polymicrogyria display several unusual features.
Firstly, the classic macroscopic appearance of “morocco
leather” is not present. Secondly, tubulin-related polymi-
crogyria consists in intermixed unlayered and 4-layered
areas, combined with either focal heterotopia or radial
columnar heterotopia. Third, focal neuroglial ectopias
into the meningeal spaces are often observed, indicating
that tubulinopathies result from both abnormal lamin-
ation and overmigration through a defective glia limitans.
These neuronal overmigrations which represent the hall-
mark of type II (cobblestone) lissencephaly [1,49,50] and
were initially described as focal when associated with
TUBB2B mutations are also a significant feature of tubulin
related polymicrogyria and microlissencephaly. In tubuli-
nopathies, neuroglial ectopias may be either focal and
mild or massive, with a thick cellular extracortical
layer that could be erroneously interpreted as a Walker
Warburg syndrome. They are also observed either in a
context of microlissencephaly (3 cases) or polymicrogyria
(2 cases), and associated with either TUBA1A or TUBB2B
mutations, but are absent in classical lissencephaly. The
exact role of tubulins in the establishment of the pia mem-
brane is still poorly understood. It is worth mentioning
that these features (the overmigration in the pial mem-
brane observed in fetuses with tubulin mutations) has
been previously reported in the cortex and cerebellum of
the mouse model of GPR56-related bifronto-parietal poly-
microgyria (BFPP) and also in human fetal cases of BFPP
associated with mutations in GPR56 [51-53]. Gpr56, an
orphan G protein–coupled receptor, localizes to radial
glial foot processes directly adjacent to the pial basement
membrane and is required to maintain structural integrity
of this basement membrane. In vitro investigations have
shown that several GPR56 mutations identified in human
disrupt the intracellular trafficking of the receptor, which
is no longer located in glial-end feet and does not partici-
pate in the molecular scaffolding sustaining the basement
membrane [54]. The radial glia disruption in TUBA1A
and TUBB2B-related malformations of cortical devel-
opment associated with neuroglial overmigration in
meningeal spaces might result from an impaired MT-
dependent intracellular trafficking of transmembrane
receptors and adhesion molecule normally present in
glia-end feet caused by the alteration of microtubule
cytoskeleton, a hypothesis that awaits future investiga-
tion [55,56].
In the previously reported tubulin-related lissence-

phaly cases, the cortical plate was either two-layered
with virtually absent normal laminar organization or
four-layered, coexisting with a band of ectopic neurons
of diverse shape and size organized in columns or clus-
ters, lying in a reduced rim of white matter reminiscent
of LIS1 related lissencephaly. Both patterns strongly differ
from neocortical neuronal arrangement observed in the
DCX related lissencephaly characterized by a “six-layered
cortex” with a band of ectopic neurons of varying shape
and size organized in columns or clusters, lying in a re-
duced rim of white matter [57]. In DCX mutations, layers
I and II of the cortex are well defined, and pyramidal and
polymorphic neurons of layers III, IV, V, and VI are found
more or less in their appropriate location. This contrasts
with the inverted pattern described in LIS1 and some
TUBA1A related lissencephalies where large pyramidal
neurons of layer V and VI, often inverted, are found in
heterotopic positions beneath the superficial molecular
layer I [58]. In some cases, histological examination of
tubulin-related lissencephaly reveals a quasi absence of
lamination, with a two-layered cortex consisting of a layer
I with scarce and misplaced Cajal–Retzius cells and a
single ill-defined band of neurons extending from the
inferior limit of the marginal zone to the periventricular
zone [32,33,59]. This pattern also significantly differs from
foetal ARX related lissencephaly, where the cortical plate
is mainly three-layered and contains exclusively pyramidal
neurons with an absence of interneurons [60]. By contrast,
interneurons are found in the cortex in tubulin related
lissencephaly, although they may be reduced in number,
as in other lissencephalies [32,61,62].
It is noteworthy that irrespective of the cortical anomaly,

other brain malformations are usually present in tubulin
related cortical dysgeneses, consisting of hypoplasic and
dysplastic, often fragmented basal ganglia. At the infraten-
torial level, most tubulin related cortical dysgeneses are
associated hypoplastic pons and medulla with indiscern-
ible pontine and brainstem nuclei and absent corticospinal
tracts. Olivary nuclei are usually absent with large
heterotopia. In the cerebellum, the dentate nuclei are
usually fragmented, Purkinje cells are reduced in
number in the cerebellar cortex, heterotopically located in
the cerebellar white matter and arranged in small
clusters or in streaks intermingled with hypoplastic
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deep cerebellar nuclei. These observations are consistent
with the various phenotypes observed in living patients.
Another striking feature observed in foetal tubulino-

pathies consists in the presence of enlarged ventricular
germinal zones and voluminous ganglionic eminences.
They are observed not only in all tubulin related micro-
lissencephalies, but also in some lissencephalies and
polymicrogyria whatever the mutated gene. These anomal-
ies are observed in foetuses corresponding to pregnancies
terminated during the second trimester. Their pathophy-
siological mechanisms remain still partly unexplained but
it is well admitted that about 80%–90% of all cortical
neurons originate from the germinal ventricular and
subventricular zones and migrate radially to reach their
final place in the cortex [63]. From the 5th post-concep-
tional week, proliferation of neural stem cells in the neuro-
epithelium thickens the cortical wall of the ventricular
zone. Subsequently, with the successive waves of migration
toward the cortical surface, the germinal region breaks
down during the third trimester of the pregnancy, the
ventricular zone and ganglionic eminences disappear pro-
gressively and the brain loses its germinal potential [64]. By
25–27 gestation weeks the human ventricular zone has
reduced in size to a one-cell-thick ependymal layer [65].
Strikingly, the majority of foetuses with brain tubulino-
pathies demonstrate the combination of reduced brain
parameters and/or microcephaly and hypertrophic germi-
nal zones. These findings may reflect the failure of post-
mitotic neuroblasts to initiate their migration toward the
cortex leading to a thickening of the ventricular wall and
resulting in an accumulation of these cells in the germinal
zones and ganglionic eminences with subsequent impaired
cortical lamination. The apparent “normalization” of the
volume observed in foetal cases interrupted at the end of
the gestation might be either due to a delayed migration,
to apoptosis of neurons that failed to exit the germinal
zones or to both mechanisms. This hypothesis of a transi-
ent migration defect and of a delayed migration rather than
an arrest of migration is reminiscent of our recent findings
regarding the consequences of Tubb3 knockdown on radial
migration. Using in utero-electroporation experiments, we
have shown that Tubb3 knockdown leads to delayed radial
migration suggesting that the neuronal arrest is a transient
phenomenon, and that neurons that do not express Tubb3
maintain their migratory potential [66]. Finally, this study
further confirm the potential implication of tubulins in the
regulation of axonal outgrowth, guidance, and differenti-
ation, as reflected by anomalies of the cortico-spinal tracts
and corpus callosum, and the presence of small rounded
glomerular structures, dystrophic axonal tracts with aber-
rant directions abnormal whirling heterotopic fascicles
often observed in the periventricular white matter [32].
To conclude, the present study demonstrates that tubu-

linopathies, and more specifically TUBA1A mutations,
represent one of the major genetic aetiologies of sporadic
microlissencephalies. Though informative cellular charac-
terization and phenotyping remain an issue, this study
made it possible to describe relevant histopathological
findings in details, which in turn provides new insights
into the understanding of MRI anomalies observed in
patients with tubulin-related malformations of cortical
development.
Additional files

Additional file 1: Figure S1. Microscopic findings in 23 WG foetus with
microlissencephaly and TUBA1A mutation (LIS_TUB_004_ fœtus09).
Microlissencephaly associated with abnormally voluminous ganglionic
eminences, corpus callosum agenesis and abnormally shaped
hippocampi (a), fusion of the putamen and caudate nucleus due to the
absence of the anterior limb of internal capsule (b), with Probst bundles
(arrow) (c), presence of heterotopic whirling fascicles in the cortical plate
(arrow) (d), strongly hypoplastic brainstem and cerebellum with a
flattened ventral part of the pons due to hypoplastic pontine nuclei and
fragmented dentate nuclei in the cerebellum (e, shown enlarged in g),
rudimentary olivary nuclei with almost indiscernible pyramids in the
medulla (f). (Scale bars: a: 2 mm, b: 1 mm, c: 200 μm, d: 100 μm, e: 1 mm,
f, g: 200 μm).

Additional file 2: Figure S2. Histological lesions in 25 WG foetus
microlissencephaly and TUBA1A mutation (LIS_TUB_003_ fœtus18).
Microlissencephaly with a 2-layered cortical plate with reduced white
matter restricted to a periventricular rim, and corpus callosum agenesis
without Probst bundles (a, boxed area is shown enlarged in b), “wavy”
pattern of the superficial layer of the cerebral mantle (c), voluminous
ganglionic eminences compared to the overall brain size (d), and neuroglial
cell overmigration within the meninges covering the hemispheres (e),
severe brainstem and cerebellum hypoplasia, due to absence of
corticospinal tracts and pontine nuclei (f). Agenesis of the pyramids and
absent olivary with bilateral heterotopias (g). (Scale bars: a: 1 mm, b: 200 μm,
c, e: 100 μm, d, f: 1 mm, g: 200 μm).

Additional file 3: Figure S3. Histological data in 27 WG foetus with
polymicrogyria and TUBB2B mutation (LIS_TUB_056_foetus12). On
hemispheric coronal sections, histological examination demonstrates a
polymicrogyria associated with white matter heterotopias (a, b), radial
heterotopias at higher magnification (c), neuroglial cell overmigration
associated with polymicrogyria in some limited areas (d) and
disorganized cytoarchitecture of right and left hippocampi (e, f).
(Scale bars: a, b: 1 mm, e, f, g, h: 100 μm).
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