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Lesion of the subiculum reduces the spread of
amyloid beta pathology to interconnected brain
regions in a mouse model of Alzheimer’s disease
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Abstract

Background: The progressive development of Alzheimer’s disease (AD) pathology follows a spatiotemporal pattern
in the human brain. In a transgenic (Tg) mouse model of AD expressing amyloid precursor protein (APP) with the
arctic (E693G) mutation, pathology spreads along anatomically connected structures. Amyloid-β (Aβ) pathology first
appears in the subiculum and is later detected in interconnected brain regions, including the retrosplenial cortex.
We investigated whether the spatiotemporal pattern of Aβ pathology in the Tg APP arctic mice to interconnected
brain structures can be interrupted by destroying neurons using a neurotoxin and thereby disconnecting the neural
circuitry.

Results: We performed partial unilateral ibotenic acid lesions of the subiculum (first structure affected by Aβ
pathology) in young Tg APParc mice, prior to the onset of pathology. We assessed Aβ/C99 pathology in mice aged
up to 6 months after injecting ibotenate into the subiculum. Compared to the brains of intact Tg APP arctic mice,
we observed significantly decreased Aβ/C99 pathology in the ipsilateral dorsal subiculum, CA1 region of the
hippocampus and the retrosplenial cortex; regions connecting to and from the dorsal subiculum. By contrast,
Aβ/C99 pathology was unchanged in the contralateral hippocampus in the mice with lesions.

Conclusion: These results, obtained in an animal model of AD, support the notion that Aβ/C99 pathology is
transmitted between interconnected neurons in AD.
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Background
Recent studies in transgenic (Tg) mice modeling Alzhei-
mer’s disease (AD) indicate that injected aggregates of
amyloid-β (Aβ) [1,2] and tau [3-6] can seed aggregation
of homologous proteins. Subsequently, the misfolded
protein pathology can spread via anatomic connections,
presumably through a prion-like intercellular transfer
[1,7-11]. This mechanism could explain the stereotypic pat-
tern of spreading of amyloid and tauopathy in the AD brain
suggested by Braak and others [12-18]. A Tg AD mouse
model (TgAPParc) over-expressing the human amyloid
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precursor protein (APP) with the arctic mutation (E693G)
develops Aβ-neuropathology in a stereotypic topological
and temporal pattern. The pathology first appears in the
subiculum and gradually spreads to interconnected limbic
brain regions over 3–15 months [7,19]. Previous studies
describe lesions of neuronal pathways preventing APP
delivery and Aβ deposition, leading to the removal of
preexisting Aβ deposits [8,20]. This suggests that the de-
velopment of pathology can be modified by interrupting
the neural circuitry acting as a conduit for the prion-like
transmission of Aβ.
The aim of this study is to test the hypothesis that

disease-associated proteins transfer between anatomical
regions in the brain and promote gradual spreading of
neuropathology in a unique mouse model of AD, recap-
itulating the spatial and temporal development of Aβ
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pathology in vivo. We injected the excitotoxin ibotenic
acid unilaterally into the dorsal subiculum in 6-week old
Tg APParc mice, i.e. an age when the first signs of Aβ
pathology have not yet appeared, to examine if destruc-
tion of neurons not only connecting to but also from
the subiculum alter the spread of Aβ. In mice with sub-
iculum lesions we observed reduced Aβ pathology at
3 months of age, when intracellular Aβ is normally
present in the hippocampus and cortex, and at 6 months
of age when diffuse Aβ deposits are expected to develop
in the dorsal subiculum, alveus and retrosplenial cortex.
This study supports the transmissibility of Aβ pathology
between interconnected brain regions in Tg APParc mice.

Methods
Animals
We established colonies of homozygous TgAPParc and
wild type (WT) mice in the Department of Experimental
Medicine, Lund University, from previously character-
ized mice [7,19]. Tg APParc mice express human APP
(695 isoform) under the mouse Thy1.2 expression cas-
sette. At six weeks of age, Tg mice do not exhibit path-
ology [7,19]. Mice were maintained on an ad libitum
diet with a 12-h light/dark cycle. A total of four to five
female mice per group were analyzed. Lund University
Animal Ethics Committee approved all animal experi-
mental protocols.

Ibotenic injections
We injected homozygous TgAPParc and WT mice aged
six weeks, under isoflurane anesthesia. Mice received par-
tial unilateral intrasubicular lesions by injecting ibotenic
acid to the dorsal subiculum (0.5 μL) using a Hamilton
syringe (coordinates, AP: -3.52, ML: 2.5, DV 1.35 mm
relative to bregma and dural surface). As a control, homo-
zygous TgAPParc mice received injections of 0.5 μL PBS
at the same coordinates.

Immunohistochemistry and Microscopy
Homozygous TgAPParc and WT mice aged 3 months
were killed by cervical dislocation and the brain rapidly
removed and stored on dry ice and 30 μm thick free-
floating sections were cut on a freezing microtome. Six
month old mice were anesthetized with sodium pento-
barbitone and perfused transcardially with 0.9% saline
followed by 4% paraformaldehyde (PFA) in phosphate
buffer. Brains were removed and post-fixed in PFA for
4 hours before placing them in 30% sucrose until sec-
tioning. 30 μm thick free-floating sections were cut on a
freezing microtome and 3 and 6 month tissue immuno-
stained with a primary antibody recognizing Aβ and C-
terminal fragment of APP (C99), but not full-length APP
[13] (antibody 82E1, IBL, Japan) following formic acid
antigen retrieval, on six month old tissue. Sections were
also immunostained using an antibody recognizing C-
terminal APP, antibody 369 [21]. C99 refers to the Aβ-
containing C-terminal fragment of APP that is generated
after β-secretase cleavage, prior to γ-cleavage, which re-
sults in the formation of Aβ. Antibody 369 detects the
C-terminal part of APP but does not detect Aβ. Sections
were counter stained with haemotoxylin. For the pur-
pose of cell counting, sections were stained using the
cresyl violet stain. Sections were analyzed with a conven-
tional light microscope (Eclipse 80i microscope; Nikon).

Stereology
Total cell number and the number of Aβ/C99 positive
cells (defined as cells containing one or more 82E1 im-
munoreactive puncta) were evaluated in the dorsal
subiculum, CA1 and RSG (see Additional file 1: Figure
S1). The brain regions were outlined in sections
240 μm apart using a 10x objective and then ana-
lyzed using a 63x oil immersion objective. The num-
ber of cells was quantified using computer-assisted
mapping and a cell quantification program (Stereo In-
vestigator, MBF Bioscience, Williston, USA) coupled
to a Zeiss Imager M2 microscope (Carl Zeiss Micro-
imaging, Göttingen, Germany).
The following definitions and settings were used: the

subiculum was defined as the area closest to the CA1
and retrosplenial granular cortex (RSG). Subicular cells
were evaluated using a counting frame of 140 × 90 μm,
and a sampling grid (x = 155, y = 155). To define the
CA1 region, the CA1 pyramidal cell layer was examined
throughout the hippocampus until the pyramidal cell
layer no longer formed a continuous loop [22]. This cor-
responded to −2.92 mm post bregma as described in
Long et al. [23]. Counts were taken at predetermined in-
tervals (x = 101, y = 161), using a counting frame (30 ×
30 μm= 900 μm2). The RSG was defined as the area
closest to the dorsal subiculum. RSG cells were evalu-
ated using a counting frame of 140 × 90 μm, and a sam-
pling grid (x = 155, y = 155).
Analyses of the Aβ/C99 pathology at three and six

months of age was performed using stereology as de-
scribed above where positive cells were counted in both
hemispheres and a difference in the levels in the
ibotenate-injected vs. intact hemisphere was calculated
as a percentage.

Densitometry
To quantify Aβ/C99 levels in the dorsal subiculum in
6-month-old mice exhibiting diffuse Aβ pathology, five im-
ages separated by 240 μm were taken using a 10x objective
and centering the camera over the dorsal subiculum. The
optical density and area measurements were analyzed
using the computer program Image J. Previous studies
have shown that OD measurements reflect changes in
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protein expression [24]. An example of the pathology
analyzed using densitometry is in Additional file 1:
Figure S1C.

Statistical analyses
Data are presented as mean ± standard error of the mean
(S.E.M.). Differences between groups were examined
using Mann–Whitney test or Kruskal-Wallis followed by
a Dunn’s post-hoc test or using Spearman’s correlation
(Prism, GraphPad, La Jolla, CA USA).

Results
The present study explores whether a lesion of the subi-
culum, achieved by injection of the excitotoxin ibotenic
acid, can interrupt the spreading of Aβ pathology in Tg
APParc mice which models the progressive spread of Aβ
pathology over time (Figure 1). We applied the lesion in
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6-week old Tg APParc mice that had not yet developed
the first signs of Aβ pathology, and assessed in different
brain regions connected to and from the lesion site for
Aβ pathology in mice aged 3 and 6 months.
At 3 months of age, we observed Aβ/C99 pathology as a

cellular punctate signal in both the dorsal subiculum and
in CA1 pyramidal neurons of Tg APParc mice (Figure 2A,
Additional file 1: Figure S1A & B). In contrast, in WT ani-
mals, Aβ/C99 immunoreactivity was absent (Figure 2A).
Importantly, in Tg APParc mice with lesions of the subi-
culum (Tg + Ibo), the Aβ pathology was significantly re-
duced in the dorsal subiculum and CA1 ipsilateral to the
lesion compared to Tg APParc mice injected with PBS
(Tg + PBS, *p < 0.05, Figure 2C).
We also assessed the levels of Aβ pathology in 6-

month old mice. In the Tg APParc mice, Aβ pathology
was evident as a diffuse signal in perikarya and neuropil
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Figure 2 Aβ/C99 immunoreactivity in dorsal subiculum, CA1 and RSG of Tg APParc mice that have undergone partial destruction of the 
subiculum. A. Tg APParc mice aged 3 months comparing lesioned and intact hemispheres in the dorsal subiculum and CA1 of Tg mice injected 
with PBS (TG + PBS), Tg mice injected with ibotenic acid (TG + Ibo) and WT mice injected with ibotenic acid (WT + Ibo). We observed decreased Aβ 
pathology in both the dorsal subiculum and CA1 in Tg mice injected with ibotenic acid (Tg + Ibo). B. Aβ/C99 immunoreactivity in dorsal subiculum, 
CA1 and RSG of lesioned Tg APParc mice aged 6 months. Tg mice with ibotenic acid lesions have decreased Aβ/C99 immunoreactivity in the dorsal 
subiculum, CA1 and RSG. C. Quantification of the Aβ/C99 immunoreactivity comparing Aβ/C99 immunoreactivity (Aβ IR) in the lesioned 
hemisphere as a percentage of the contralateral side. Tg mice with ibotenic acid lesions have significantly decreased Aβ/C99 immunoreactivity 
in the damaged hemisphere in the dorsal subiculum and CA1 at ages 3 and 6 months. D. Plots representing cell count in the subiculum 
(percentage of contralateral side) vs. Aβ/C99 immunoreactivity in Tg + Ibo animals for the dorsal subiculum, CA1 and RSG of mice aged 3 
and 6 months. Plots indicate a no correlation,  rs = 0.2, p > 0.05 (3 and 6 months dorsal subiculum, CA1 and RSG). Data expressed as means ± SEM. 
Asterisk denotes statistical significance (*p < 0.05).
in the dorsal subiculum and in the cytoplasm of CA1 pyr-
amidal neurons and the RSG (Additional file 1: Figure
S1C and D). Once again, there was no Aβ pathology de-
tected with the Aβ/C99 antibody (82E1) in WT mice
(Figure 2B). We performed densitometric analyses of
the Aβ pathology at 6 months of age in the dorsal subi-
culum and stereological counts of Aβ/C99-immunore-
active cells in the CA1 and RSG. In Tg APParc mice that
had been given ibotenate injections into the subiculum over
4 months earlier, the levels of Aβ/C99 pathology were sig-
nificantly reduced in the dorsal subiculum and CA1 when
compared to intact Tg APParc mice (*p < 0.05, Figure 2B
and C). Regarding Aβ/C99-immunoreactive cells in the
RSG, there was a non-significant trend for a decrease
in mice with lesions (p = 0.0571, Figure 2B & C). The
relationship between the percentage of cells remaining in
the subiculum following the lesion (cell count% contrala-
teral side) and Aβ/C99 pathology in subiculum, CA1 and
RSG (% Aβ immunoreactivity) in Tg + Ibo mice were plot-
ted (Figure 2D). The plots indicate that there is no signifi-
cant correlation (rs = 0.2, p > 0.05). Due to the small group
size, strong conclusions cannot be drawn from the rela-
tionship between cell count and Aβ/C99 pathology.
The antibody 369 was used to evaluate the contribu-

tion of the C99 fragment of APP to the pathology fol-
lowing partial lesion to the dorsal subiculum in mice
aged 6 months. This antibody detects APP outside of
the Aβ region (Additional file 2: Figure S3). Immuno-
staining using the antibody 369 did not reflect the same
changes as observed with the antibody 82E1, suggesting
that the C99 fragment does not account for all the changes
observed. It is more likely that Aβ is decreased and not the
APP C-terminal fragments following the partial lesion.
Nevertheless, we will continue to use the term Aβ/C99,
since comparisons with different antibodies can be chal-
lenging and we cannot fully rule out a contribution of
the C99 fragment of APP in the 82E1 labelling.
We then asked the question whether the significant

decreases in Aβ/C99 pathology in the CA1 and RSG in
mice could be due to cell death in distant brain regions
following the injection of ibotenate into the subiculum.
Therefore we performed stereological neuronal cell counts
on cresyl violet stained tissue from mice aged 3 and
6 months and assessed cell loss not only in the dorsal sub-
iculum, but also in the CA1 and RSG (Figure 1, Additional
file 3: Figure S2A - C).
At 3 months of age, the number of surviving neurons

(large cell bodies in cresyl violet stained sections) in the
dorsal subiculum varied greatly between mice. At 6 months,
the number of surviving neuron-like cells in the dorsal
subiculum was significantly reduced on the side of the
lesion compared to the intact hemisphere (*p < 0.05,
Figure 3B). Most importantly, the number of surviving
cells in the CA1 and RSG regions was not lower on the
side of the subiculum lesion compared to the intact hemi-
spheres. This strongly supports the notion that cell loss in
the CA1 and RSG does not explain the reduction in Aβ/
C99 pathology (Figure 3B).

Discussion
We show that a unilateral ibotenate-induced lesion of
the dorsal subiculum in a Tg AD mouse model of pro-
gressive AD-related pathology, results in a decrease in
Aβ immunoreactivity (the N-terminal of Aβ and the C99
fragment) in brain regions projecting to and receiving
projections from this region. Thus in Tg APParc mice
with excitotoxic lesions of the subiculum, we observed
reduced Aβ staining in perikarya and neuropil in the
dorsal subiculum and in the cytoplasm of CA1 pyram-
idal neurons and the RSG. The dorsal subiculum and
CA1 send projections to the RSG [25,26]. The CA1
sends projections to the dorsal subiculum [22] but there
is controversy over the possible projection from the dor-
sal subiculum to the CA1 [27]. We performed stereolog-
ical cell counts, which revealed that, in our experimental
paradigm, the decrease in pathology is not due to cell
loss in the brain regions connected to the subiculum.
Progressive development of neuropathology, following

stereotypic anatomical patterns, has been documented in
various models of neurodegenerative diseases [28]. Re-
garding Aβ pathology, there is substantial experimental
evidence that it can be triggered by intracerebral injections
of, e.g., brain extracts containing Aβ and spread from the
injection site in a prion-like manner [1,2,11,12,29]. Earlier
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studies in animal models of AD have demonstrated that
Aβ can act as a “seed” and transmit Aβ pathology to un-
affected brain regions. Thus, in young Tg AD mice that
do not yet exhibit Aβ pathology, intracortical injections
of Aβ-containing brain homogenates from AD patients
or old transgenic mice can trigger the formation of Aβ
plaques [1,8,14,30]. The pathology-inducing effects of the
injected human AD brain extracts are both concentration-
and time-dependent [1,2,11,29]. Recent work has also
shown that it is sufficient with small amounts of Aβ
present on a surgical instrument used for stereotactic
surgery in AD mice to seed pathology [12]. Remarkably,
even intraperitoneal injections of Aβ aggregates can
seed Aβ pathology in the brain after several months [14].
Taken together, these studies have clearly shown the indu-
cible nature of Aβ to act as a “seed” [1,12,14,16,18,30].
Not all of these earlier studies have described changes in
Aβ pathology in brain regions both up and downstream of
the site of an intracerebral injection of Aβ-containing ex-
tract. Interestingly, knife lesions of the perforant pathway
have been reported to prevent APP delivery and Aβ de-
position in the dentate gyrus of the hippocampus, and
even result in a reduction in preexisting Aβ deposits in in-
terconnected brain regions [8].
We have now extended these observations in a differ-

ent transgenic AD model, i.e. Tg APParc mice that reca-
pitulates the stereotypic development of AD pathology,
and have used a different approach (excitotoxin-induced
lesion) to destroy projecting neurons, assessing both up
and downstream connecting brain regions. In Tg APParc
mice and other APP transgenic mouse models, Aβ is de-
posited inside neurons prior to the extracellular space
[7,8,19,20,31] and these mice develop diffuse plaques
over time [7,19]. Following lesions of the subiculum, we
observed reductions in both intracellular punctate/cyto-
plasmic Aβ signal (at 3 months of age) and extracellular
Aβ/C99 in the subiculum (at 6 months, Figure 1C). The
changes in the Aβ/C99 signal we observed is therefore
likely due to reduced net transport of Aβ/C99 to and
from the subiculum, possibly due to impaired axonal
transport in remaining cells that are perturbed but not
killed by the excitotoxin. APP and C-terminal fragments
are transported within axons by fast anterograde axonal
transport using kinesin-1 molecular motors and they
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accumulate in terminal fields [32-35]. A small population
of APP is retrogradely transported [13,36]. APP can
undergo further processing and full length APP and C-
terminal fragments have been localized to neuritic vesicles
[21,37]. A possible explanation for the reduction of Aβ
pathology in CA1 and RSG following subiculum lesions in
the Tg APParc mice could be the reduced transport and
or delivery of APP and/or APP fragments (natively folded)
from the subiculum to the CAI and RSG where APP is
further processed and eventually aggregates [8,20,22]. The
reduction of Aβ pathology we observed could also be the
result of reduced transport of misfolded Aβ species that
are released and cause prion-like seeding in intercon-
nected regions [2,38]. If Aβ seeds spread from the subicu-
lum in TgAPParc, further experiments would have to be
performed to determine whether this occurs extracellu-
larly, by diffusion from the subiculum along neuronal
pathways, or intraaxonally. Future experiments could also
explore if secondary effects play a role, e.g., potential
changes in neuronal activity/connectivity influencing Aβ
aggregation by altered expression of murine Aβ levels or
related cofactors. Altered connectivity and therefore acti-
vity can in itself alter Aβ as a report indicates that remov-
ing whiskers in mice alters plaques and intraneuronal Aβ
[39]. Furthermore, the possibility that loss of subicular
cells (a source of human APP) could account for the re-
duction of pathology cannot be ruled out. However, it is
assumed that the Aβ is transferred from the terminals,
after it was first transferred (inter-cellularly) across the
synapse to the cell bodies of the RSG. Removing the ter-
minals (subiculum lesion) reduced transfer and hence the
cell body staining for Aβ.
Conclusions
Braak and colleagues [18,40] developed the hypothesis
that in AD brains neuropathology progressively increases
and spreads throughout the brain following a stereotypic
pattern that appears to follow anatomical connections.
This hypothesis was developed by examining post-mortem
tissue and taking “snapshots” of disease progression.
Our study provides support for the Braak hypothesis
by demonstrating that the spreading of pathology from
one brain region requires that the anatomical connections
are intact [8,10,20,41]. Our study also strengthens the
notion that the development of Aβ neuropathology in
Tg APParc mice follows a spatiotemporal pattern that
is dependent on neural connections. This suggests that
this mouse model is highly relevant for future studies
exploring novel interventions.
Availability of supporting data
The data sets supporting the results of this article are in-
cluded within the article.
Additional files

Additional file 1: Figure S1. Examples of positive Aβ/C99 staining in 3
month and 6 month old Tg APParc mice used for cell counting and
densitometry analyses. A. Representative image of Aβ/C99 stained tissue
of 3 month Tg APParc mice in the dorsal subiculum. B. Representative
image of Aβ/C99 stained tissue of 3 month Tg APParc mice in the CA1.
C. Representative image of Aβ/C99 stained tissue of 6 month Tg APParc
mice in the dorsal subiculum. D. Representative image of Aβ/C99 stained
tissue of 6 month Tg APParc mice in the CA1. E Representative image of
Aβ/C99 stained tissue of 6 month Tg APParc mice in the RSG.

Additional file 2: Figure S3. Example of dorsal subiculum C-terminal
APP labeling in 6 month old Tg APParc following partial ibotenic acid
lesion. A. Representative image of tissue from the lesioned dorsal
subiculum from 6 month old Tg APParc mouse following partial lesion.
B. Representative image of tissue from the intact dorsal subiculum from 6
month old Tg APParc mouse.

Additional file 3: Figure S2. Example of cell counts in the dorsal
subiculum of Tg APParc. A. Representative image of cresyl violet stained
tissue of large dorsal subicular cells counted from Tg APParc mouse. B.
Example of delineation of dorsal subiculum from Tg APParc mouse. C.
Example of cell loss in of dorsal subiculum from a Tg APParc mouse with
an ibotenate lesion.
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