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Abstract 

Monitoring tumor evolution and predicting survival using non‑invasive liquid biopsy is an unmet need for glioblas‑
toma patients. The era of proteomics and metabolomics blood analyzes, may help in this context. A case–control 
study was conducted. Patients were included in the GLIOPLAK trial (ClinicalTrials.gov Identifier: NCT02617745), 
a prospective bicentric study conducted between November 2015 and December 2022. Patients underwent 
biopsy alone and received radiotherapy and temozolomide. Blood samples were collected at three different time 
points: before and after concomitant radiochemotherapy, and at the time of tumor progression. Plasma samples 
from patients and controls were analyzed using metabolomics and proteomics, generating 371 omics features. 
Descriptive, differential, and predictive analyses were performed to assess the relationship between plasma omics 
feature levels and patient outcome. Diagnostic performance and longitudinal variations were also analyzed. The 
study included 67 subjects (34 patients and 33 controls). A significant differential expression of metabolites and pro‑
teins between patients and controls was observed. Predictive models using omics features showed high accuracy 
in distinguishing patients from controls. Longitudinal analysis revealed temporal variations in a few omics features 
including CD22, CXCL13, EGF, IL6, GZMH, KLK4, and TNFRSP6B. Survival analysis identified 77 omics features signifi‑
cantly associated with OS, with ERBB2 and ITGAV consistently linked to OS at all timepoints. Pathway analysis revealed 
dynamic oncogenic pathways involved in glioblastoma progression. This study provides insights into the potential 
of plasma omics features as biomarkers for glioblastoma diagnosis, progression and overall survival. Clinical implica‑
tion should now be explored in dedicated prospective trials.

Key points 

• Circulating omic features distinguishes patients with glioblastoma from healthy subjects.
• Plasma proteomic features change over time in patients undergoing radiochemotherapy.
• Certain plasma proteins are correlated with survival.
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Introduction
Glioblastoma is the most common malignant brain 
tumor, representing approximately half of newly-diag-
nosed malignant brain tumors [1]. Despite a multimodal 
approach involving initial tumor resection if feasible, 
radiotherapy combined with temozolomide chemother-
apy [2], supportive care, and more recently, when accessi-
ble, tumor-treating fields [3], the prognosis remains poor, 
with an overall survival of between 16 and 20 months. In 
the case of biopsy alone, the median overall survival drops 
to 9 months in the general population [4]. No significant 
improvement in patient care was found during the past 
decades. Although the diagnosis of glioblastoma is based 
on robust histo-molecular criteria [5], tumor biology is 
complex in its heterogeneity, its evolution under treat-
ment and its interactions with the microenvironment. 
One of the keys to improving patient care and prognosis 
is the ability to longitudinally monitor tumor evolution. 
Circulating biomarkers could even predict treatment 
responses in order to personalize care for patients. In 
this context, the concept of liquid biopsy allows for the 
non-invasive detection of tumor material in the patient’s 
biological fluids, such as blood or cerebrospinal fluid in 
glioblastoma patients [6]. The low sensitivity in detect-
ing tumor-related nucleic acids (DNA, RNA, miRNA, 
etc.) in the plasma of patients with glioblastoma hinders 
its daily-practical use [7–9]. More recently, the simulta-
neous identification of multiple proteins or metabolites, 
namely proteomics and metabolomics, derived from the 
tumor and its microenvironment is a new approach for 
non-invasive tumor characterization [10–13]. Proteog-
enomics and metabolomics pave the way for new thera-
peutic approach in glioblastoma [14]. Concerning plasma 
features, proteomic or metabolomic analyses have shown 
the ability to distinguish patients with glioblastoma from 
other brain conditions [15]. Combined analysis of tran-
scriptomic bulk tumor with post-therapy proteomic fea-
tures in cerebrospinal fluid allows the identification of 
prognostic biomarker in glioblastoma [16]. Although 
promising, these results are limited by the often-complex 
clinical implications of serial cerebrospinal fluid sampling 
in patients. To date, no study has prospectively and lon-
gitudinally examined the evolution of circulating plasma 
proteomics and metabolomics biomarkers in a homoge-
neous population of glioblastoma patients. Given that 
neurosurgical tumor resection could falsely influence 
blood omics release, the selection of a patient population 
with unresected tumor could provide information about 
tumor evolution.

In this context, the objective of the presented work 
was to study the temporal evolution during the first-line 
treatment of circulating blood omics features in a popu-
lation of unresected glioblastoma patients.

Material and methods
Patients and samples
A case–control study was conducted. Patients were 
selected from the GLIOPLAK trial (ClinicalTrials.gov 
Identifier: NCT02617745). GLIOPLAK is a prospective 
and bicentric study conducted between November 2015 
and December 2022. Primary objective was to identify 
circulating biomarkers of temozolomide-induced hema-
tological toxicities in glioblastoma patients receiving 
radiochemotherapy [2]. Comedication and patients’ char-
acteristics were collected in GLIOPLAK trial. Patients in 
the present study had undergone biopsy alone as part of 
the initial surgical procedure. Tumor non-resectability 
was due to tumor characteristics (size, location) and/
or patient characteristics, according to surgeon choice. 
GLIOPLAK included patients aged equal or higher than 
18  years-old of age, suffering from newly-diagnosed 
glioblastoma according to WHO CNS5 2021 classifica-
tion [5]. Patients received concomitant radiotherapy and 
temozolomide followed by a maintenance phase for 6 or 
12 cycles of temozolomide according to local guidelines 
and physician choice.

For each patient, blood samples were collected at three 
times along first-line treatment schedule: before (inclu-
sion), after (W6) concomitant radiochemotherapy and at 
the time of disease progression (progression). The base-
line time was collected after biopsy procedure. Blood 
samples were collected in EDTA tubes and plasma was 
collected as previously described procedure [7]. After 
collection, blood was double centrifugated and plasma 
was stored at −  80  °C within the three hours until use. 
Control plasma samples were purchased from  BioIVT©. 
The overview of the study is presented in Fig. 1.

This study is ancillary to the prospective GLIOPLAK 
trial (ClinicalTrial.gov NCT02617745), which has been 
approved by the French National Committee for the 
Protection of Persons (RCB ID 2015-A00377-42). All 
patients provided written informed consent.

Targeted metabolomics
The kit for AbsoluteIDQ®p180 analysis, provided 
by Biocrates Life Science AG (Innsbruck, Austria) 
was used. This kit enables the measurement of 188 
metabolites: amino acids (21), biogenic amines (21), 
hexoses (1), acylcarnitines (40), glycerophospholip-
ids (90) and sphingolipids (15). Sample preparation 
followed the manufacturer’s protocol. In brief, 10 μL 
of plasma were transferred to the upper 96-well plate 
and dried using a nitrogen stream. Subsequently, a 5% 
PITC solution (50 μL) was added to derivatize amino 
acids and biogenic amines. After incubation, the spots 
were dried, and the metabolites were extracted using 
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5  mM ammonium acetate in methanol (300 μL) into 
the lower 96-well plate. Prior to analysis, the metabo-
lites were further diluted using the mobile phase A. 
Quantification was performed using internal stand-
ards and a calibration curve as previously described 
[15, 17]. Liquid chromatography was performed on a 
HPLC system (SCIEX 4000, Dermstadt, Germany). The 
separation process took place at a temperature of 50 °C 
using a 3.0 × 100  mm Agilent Zorbax Eclipse C18 col-
umn with a 4 × 3  mm pre column (Phenomenex). The 
mobile phase A consisted of a mixture of ACN/H2O 
(40/60) containing 10  mM ammonium formate, while 
mobile phase B consisted of IPrOH/ACN (90/10). Both 
solvents were supplemented with 0.1% formic acid. The 
flow rate was set at 100 μL/min. A mobile phase gradi-
ent separation was performed over a duration of 20 min 
according to the following steps: 10% B at 0  min, 56% 
B at 2 min, 75% B at 10 min, 99% B at 12–15 min, and 
10% B at 16–20 min. Acylcarnitines, lipids are analyzed 
using flow injection analysis-tandem mass spectrom-
etry (FIA-MS/MS), while amino acids and biogenic 
amines are subjected to derivatization using phenyli-
sothiocyanate and subsequently analyzed using liquid 
chromatography tandem-mass spectrometry (HPLC–
MS/MS). The analysis used a SCIEX Api4000 QTrap 
mass spectrometer (AB SCIEX, Darmstadt, Germany) 
with electrospray ionization. The injection order was 
randomized before data acquisition.The concentration 
of each metabolite was measured in μM.

Targeted proteomics
The targeted analysis of 183 proteins was performed 
by Olink® Biomarker technology (Olink®, Uppssala, 
Sweden). The Olink Oncology II and Oncology III 
were used to measure proteins, the specific biomarkers 
included in each panel are described on the Olink web-
site (https:// olink. com/ produ cts- servi ces/ target/ oncol 
ogy- panel/). Each manipulation steps were performed 
according to the manufacturer protocol. The protocol is 
divided into three steps: Incubation, extension amplifi-
cation, and detection. The Incubation step is where the 
antibody-pairs with attached DNA tags are added to 
the samples and allowed to bind to their target proteins 
during overnight incubation. The extension and ampli-
fication steps are performed in the following morn-
ing, during which unique DNA reporter sequences are 
generated for each target protein and pre-amplified 
through conventional PCR. The final Detection step 
quantifies the DNA reporters for each biomarker using 
high throughput real-time qPCR on the Olink Signa-
ture Q100 system. The samples were previously rand-
omized on the plates. To account for intra- and internal 
variation, data underwent quality control and nor-
malization using an internal extension and interpolate 
control. Protein measurements are expressed as nor-
malized protein expression (NPX) values which are log-
base-2 transformed values.

Fig. 1 Overview of the study protocol. Plasma samples and clinical data were collected from 33 control samples and 34 unresected glioblastoma 
patients before, during treatment, and at disease progression. Plasma samples were analyzed using metabolomics and proteomics, generating 
371 omics features. This data was then used to compare controls with diseased samples and build predictive models to assess the relationship 
between plasma omics feature levels and disease status, patient outcome, and progression‑free survival

https://olink.com/products-services/target/oncology-panel/
https://olink.com/products-services/target/oncology-panel/
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Data analysis
Descriptive and differential analysis
Quantitative variables were summarized by median, and 
range. Qualitative data are presented as absolute fre-
quency, relative frequency, confidence interval of 95%, 
and percentage of missing data. These data are compared 
using the Chi2 test or a Fisher exact test in the case of 
failure to meet the Chi2 application rules. Quantitative 
data were presented as histograms, median, range, mean, 
standard deviation and percentage of missing data. The 
normality of those parameters was evaluated with fre-
quency histograms and the Shapiro test. Correlation 
analysis was performed using the Spearman method. 
Quantitative data were compared using the Student T or 
Mann-Withney tests as appropriate. One way ANOVA 
was used for the time-related groups comparison. Cor-
rection for multiple testing using false discovery rate 
(FDR) through the Benjamini–Hochberg method was 
performed when appropriate. All data analyses were per-
formed using R Software.

Cox regression and survival analysis
Overall survival (OS) was defined as the time from the 
completion of radiotherapy until death from any cause. 
Progression-free survival (PFS) was defined as the dura-
tion from the completion of radiotherapy until the date 
of tumor progression. A univariate Cox model was built 
for every protein and metabolite at each time point. 
Results are presented with a hazard ratio (HR) and 95% 
confidence interval (95% CI). To perform a comparative 
analysis, the median concentrations and expressions of 
metabolites and proteins of the control group were con-
sidered a threshold for the glioblastoma samples. For 
each metabolite and protein, this threshold separated the 
cohort into a “High” and a “Low” group. Survival analysis 
was performed based on this threshold derived groups. 
The association with overall survival was assessed in a 
univariate analysis by using Cox regression model. All 
tests were two-sided, and a p-value of 0.05 or less was 
considered statistically significant. The metabolites 
and proteins differentially expressed between Patients 
and Controls were compared to those previously pub-
lished. Data published between 2000 and 2023 have been 
retrieved from PubMed using the following MESH: “glio-
blastoma”, “Proteomics”, “Metabolomics”, “Lipidomics”.

Predictive analysis
We performed a predictive glioblastoma diagnosis anal-
ysis using two machine learning algorithms. Metabo-
lomics and proteomics datasets were concatenated 
into one data matrix. Values below the detection limit 
(LOD) have been replaced by their respective LOD. 

Subsequently, we developed classification models to dis-
tinguish patient samples from controls. These models 
were constructed using the ’caret’ R package. Initially, 
we split the data from the disease at inclusion and con-
trols, allocating 70% for training and the remaining 30% 
for testing. This partition was accomplished via the cre-
ateDataPartition() function in ’caret’, leading to distinct 
training and testing sample sets. The disease and control 
samples were uniformly integrated, ensuring the training 
set was exclusively used for model construction while the 
testing set served for evaluation purposes. Before model 
construction, we addressed missing data from quality 
control issues, employing the preProcess() function in 
’caret’ and leveraging the “knnImpute” method. Utilizing 
the train() function in ’caret’, we built prediction mod-
els for disease based on the designated training sets. We 
adopted the random forest methodology as our classifica-
tion algorithm, incorporating a fivefold cross-validation 
scheme alongside inherent parameter tuning. To dis-
cern the influence of each omics feature (be it protein or 
metabolite) on the model, we applied the varImp() func-
tion from the ’caret’ package. Subsequent model perfor-
mance was assessed using the predict() function on the 
testing set, ensuring no overlap with training data. The 
evaluation process involved ROC analysis, facilitating an 
assessment of model sensitivity and specificity, ultimately 
encapsulated as AUC scores. For binary classification 
tasks, we used the ’pROC’ R package. Enrichment analy-
sis has been performed using the Enrichr R package.

Results
Cohort description
Sixty-seven subjects were included in the study: 34 sub-
jects as patients and 33 as controls. In the glioblastoma 
population (n = 34), median age at diagnosis was 63 years 
(age interquartile: 56–66) and sex ratio was 1.3. No sig-
nificant age or sex differences were identified between 
patient and control group, Table  1. A summary of the 
clinical data is listed in Table 1 and detailed data are pre-
sented in Additional file 1: Tables S1 and S2. Regarding 
comedication 67.7% of the glioblastoma population were 
exposed to corticosteroid at baseline (median dose 35 mg 
daily [dose range: 0–40]). No significant changes in cor-
ticoid exposure were observed between the three times 
(p-value = 0.13). Among biological parameters, the most 
relevant and clinically pertinent changes were observed 
for platelet counts and albuminemia: a decrease of 34.9% 
and 9.1% between baseline and progression, respective 
p-value < 0.001 and 0.004, Table  2. Lymphocytes sig-
nificantly changed during treatment in the glioblastoma 
population, median overall survival (OS) was 13 months 
(range: 10.0–17.0), and progression-free survival was 
6 months (range: 5.0–6.8).
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Differential expression analysis
Patients versus controls
We performed a differential expression analysis of metab-
olite and protein levels between controls and patients at 
each sampling point (Additional file 1: Tables S3, S4). A 
total of 371 omics features were measured. Regarding 
metabolites, 140 out of 188 were differentially expressed 
between patients and controls (74.5%). Among them, 75 
Glycerophospholipids (83.3%), 26 acylcarnitines (65%) 
13 biogenic amines (61.2%), 15 amino acids (71.4%), and 
11 sphingomyelins (73.3%) were differentially expressed. 
Glutamate and Valine were more expressed in patients 
than in controls, the opposite was observed for Leucine, 
Isoleucine and Asparagine (Fig. 2). Pimeloylcarnitine was 
the most significantly and differentially expressed acyl-
carnitines. Spermidine was the most significantly dif-
ferentially expressed biogenic amine. Lyso PC a C18:0, 
Lyso PC a C16:0, PC aa C36:5, PC ae C34:1, PC aa C34:1, 
were the most significantly differentially expressed glyc-
erophospholipids. For proteins, 131 out of 183 were 

differently expressed (71.6%). The proteins NPY, KLK13, 
DCTPP1, CDKN1A, MANSC1, CXCL14, HMBS, SCLY, 
S100A4 and FCFBP1 had the highest fold change. The 
heatmap (Fig.  3) of the omics profiles highlights two 
groups. One group constituted of FGFPB1, S100A4, 
LysoPC a C16:0, LysoPC a C18:0, Pimeloylcarnitine and 
Spermidine is highly expressed in controls. In contrast, 
the second group composed of PC aa C36:5, PC aa C34:1, 
PC ae C34:1, Isoleucine, Leucine, Asparagine, NPY, 
HMBS, DCTPP1, MANSC1, SCLY, KLK13, CDKN1A, 
CXCL14 is highly expressed in patients. Notably, the dif-
ferences of expression between Patients and Controls did 
not change under treatment or at tumor relapse. Detailed 
results are presented in Additional file 1: Table S5.

Longitudinal variation analysis
In the patient population, a subset of metabolites and 
proteins were differentially expressed between the 
three timepoints. Among them, 34 proteins (18.6%) and 
12 metabolites (6.7%) significantly changed between 
inclusion, W6 and progression. Proteins and metabo-
lites involved in carcinogenesis, tumor necrosis or 
immune reaction were particularly represented; in par-
ticular CD22, CXCL13, EGF, IL6, GZMH, KLK4 and 
TNFRSP6B. Notably the EGF protein significantly 
decreased between inclusion and progression (Fold 
change <—1). The most differentially expressed metabo-
lites and proteins and their variation through time are 
detailed in Fig. 4. Detailed results are presented in Addi-
tional file 1: Table S5.

Predictive model
The measured concentrations and expressions of the 265 
differentially expressed proteins and metabolites between 
patients at inclusion and control samples were analyzed. 
We explored the predictive performance of each lipid and 
proteinomics feature and all their combinations using 

Table 1 Summary of the cohort characteristics at inclusion

a Median (IQR)

Characteristics Controls Inclusion p-value

Agea 59 (53–65) 63 (56–66)  > 0.9

Sex

 Female 14/33 (42%) 15/34 (44%)  > 0.9

 Male 19/33 (58%) 19/34 (56%)

Karnofksy score > 70 29/34 (85%)

Obesity 7/34 (21%)

Diabetes 7/34 (21%)

Hypercholesterolemia 8/34 (24%)

Corticoids (mg/j) 35 (0–40)

Statin 5/34 (15%)

Metformin 5/34 (15%)

MGMT promoter methylation 6/34 (18%)

Table 2 Longitudinal variations of the cohort

a Median (IQR)

Characteristics Inclusiona n = 34 Week  6a n = 34 Progressiona n = 34 p-valuea

Overall Survival (months) 13 (10–17)

Progression free survival (months) 6.0 (5.0–6.8)

Corticoid treatment (mg/j) 35 (0–40) 40 (20–75) 40 (20–80)

Bactrim 0/34 (0%) 23/34 (68%) 0/34 (0%)

Hemoglobin (g/dl) 14.4 (13.8–15.3) 13.20 (12.5–14.6) 13.10 (11.5–14.4)

Leucocytes (G/L) 9.0 (7.6–12.3) 7.4 (5.8–10.0) 6.2 (5.6–8.7)

Platelets (G/L) 271 (230–320) 214 (149–239) 177 (148–214)  < 0.001

Albumin 44.0 (42.0–46.0) 42.0 (40.0–44.0) 40.0 (37.5–44.0) 0.004

Prothrombin time 1.12 (1.03–1.18) 1.09 (0.96–1.20) 1.10 (1.04–1.23)

Creatinine (µmol/L) 66 (60–75) 72 (62–82) 64 (52–72)
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predictive machine learning. The generated data were 
separated into a training set (80%), and a test set (20%). 
The area under the curve and ROC curves were used as 
performance metrics. Out of the whole metabolomic 
and proteomic dataset, 5 metabolites: Pimeloylcarnitine, 
Leucine, Asparagine, LysoPC a C18:0, PC ae C40:3, and 
5 proteins: NPY, KLK13, SCLY, S100A4, CXCL17 had 
and AUC above 0.74. When combined, these 10 omics 
features had an AUC equal to one and almost always 
accurately classified patients as patients and controls as 
controls. Interestingly, the protein NPY taken individu-
ally had a similar predictive performance. Regarding 
metabolites, pimeloylcarnitine had an AUC = 0.95 with 
one control sample being misclassified. The test set with 
the performance of each omics profile as well as their 
ROC curve and variation between controls, patients and 
timepoints, is described in Fig.  5. Detailed results are 
presented in Additional file 1: Tables S7 and S8.

Survival analysis
The association analysis of each of the 371 omics features 
with OS has been performed. To do so, we used an itera-
tive Cox modeling at each time point. The median level in 
the patient samples at inclusion is used for each feature as 

a threshold defining the high and low expression groups. 
Unbalanced groups, albeit with a significatively different 
median OS, were excluded. The results yielded a total of 
77 omics features that were significantly associated with 
OS at different time points (Fig.  6). Among them, pro-
teins were the most represented (n = 51, 66.2%) followed 
by 26 metabolites (33.8%), including 8 acylcarnitines 
(10.4%), 11 glycerophospholipids (14.3%), 4 amino acids 
(5.2%), 2 biogenic amines (2.6%) and 1 sphingomyelin 
(1.3%). At inclusion, 28 proteins and 12 metabolites have 
been identified. Aside from PC aa C36:4, Hydroxyhexa-
decenoylcarnitine and Hydroxyhexadecadienylcarnitine, 
the high expression group were associated with the worst 
OS. Notably, a high expression of NPY, the protein with 
the best predictive performance of glioblastoma diag-
nosis in our cohort, was significantly associated with a 
poorer prognosis.

At Week 6, after treatment by RCT, 22 omics features 
were associated with OS, including 16 proteins and 6 
metabolites. At progression, 35 omics profiles, includ-
ing 25 proteins and 10 metabolites were associated with 
OS. Interestingly, omics features with similar function 
had a different influence on the prognosis. For instance, 
a high plasma concentration of glycerophospholipids 

Fig. 2 Omics‑based differential analysis. A Overview of the differential expression analysis of proteins and metabolites between patients versus 
controls at the three studied time (inclusion, W6 and progression). B Barplot showing the proportions of proteins and metabolites and their novelty 
compared with literature. C Volcano plot of the most differentially expressed proteins and metabolites between Patients and Controls at baseline 
(left), at progression (middle) and at W6 (right)
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(GPC) was associated with a worst overall survival at 
inclusion, whereas a high expression of GPC at progres-
sion was predictive of a better OS. Moreover, 15 omics 
features including 13 proteins and 2 metabolites were 
associated with overall survival at different timepoints. 
Notably, the proteins ERBB2 (HER2) and ITGAV (Inte-
grin subunit alpha V) were associated with OS at each 
timepoints. Hazard ratios of each omics profiles are 
detailed in Fig.  6. Detailed results are presented in 
Additional file 1: Supplementary data 9. We performed 
a pathway enrichment analysis and observed that the 
oncogenic pathways involved differed at each time-
point. At inclusion, Transmembrane Receptor Protein 
Tyrosine Kinase Activity, TGF Beta and TRAIL path-
ways were mainly involved, whereas GRB7 events in 
ERBB2 signaling were the main pathway at Week 6 and 
Progression. VEGF and pyrimidine catabolism were 
also among the involved pathways. Detailed data is pre-
sented in Additional file 1: Supplementary data 10.

Discussion
This longitudinal study included 34 biopsy-only patients 
with glioblastoma. The median OS for our population 
was 13 months, with a range of 10.0 to 17.0 months. The 
differential expression analysis of metabolite and protein 
levels between controls and patients at each sampling 
point (before radiochemotherapy, after treatment, and at 
disease relapse) yielded differential patterns. Regarding 
metabolites, 74.5% (140 out of 188) have changed and this 
included all assessed groups: 75 Glycerophospholipids, 
26 acylcarnitines, 13 biogenic amines, 15 amino acids, 
and 11 sphingomyelins. For proteins, 131 out of 183 were 
differentially expressed with NPY, KLK13, DCTPP1, 
CDKN1A, MANSC1, CXCL14, HMBS, SCLY, S100A4, 
and FCFBP1 as the most expressed proteins. We com-
pared our results with previously reported studies [15, 
18, 19]. Most of these studies assessed patients’ plasma 
proteome or metabolome before treatment. Out of 265 
the reported differentially expressed omics features 

Fig. 3 Proteins and metabolites expression levels across samples. A Levels of omics features with two distinct profiles of between glioblastoma 
samples and controls. B Violin plots showing the omics feature levels across the different groups: controls, inclusion, week 6 (W6) and at progression
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reported in this study, 168 (63.3%) were not previously 
reported, including 128 proteins (76.2%) and 40 metab-
olites (23.8%). The novelty status of the differentially 
expressed proteins and metabolites is shown in Fig.  2B. 
Furthermore, through iterative selection, a predictive 
diagnostic model was derived, including 5 metabolites: 
Pimeloylcarnitine, Leucine, Asparagine, LysoPC a C18:0, 
PC ae C40:3, and 5 proteins: NPY, KLK13, SCLY, S100A4, 
CXCL17. The predictive analysis revealed the high diag-
nostic prediction of NPY. The NPY is a neurotransmitter 
highly expressed in the hypothalamus involved in many 

physiological functions. Overexpression of NPY has been 
described in glioblastoma preclinical models but, to our 
knowledge, never reported on glioblastoma patients’ 
plasma [13]. However, NPY is known to be elevated in 
other conditions, such as myocardial infarction [20]. 
Other omics features had also shown a high predictive 
performance, such as pimeloylcarnitine, an acylcarni-
tine not known to be associated with glioblastoma. Fur-
ther studies with a larger cohort are needed to confirm 
the reproducibility of these observations. The longitu-
dinal design of our study allowed us to observe the time 

Fig. 4 A Overview of the differential expression analysis of proteins and metabolites between patients. B Barplot showing the proportions 
of proteins and metabolites and their novelty status regarding the literature. C Volcano plot highlighting the most differentially expressed proteins 
and metabolites between timepoints. D Violin plots of the most differentially expressed proteins between timepoints
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variation of omics features after treatment and at relapse. 
Few proteins and metabolites varied under treatment and 
at progression. These included 34 proteins and 13 metab-
olites with CD22, CXCL13, EGF, IL6, GZMH, KLK4 and 
TNFRSP6B as the most varying between time points. A 
comparison with the literature was performed for omics 
profiles related to longitudinal variation (Fig. 3B). Among 
the proteins and metabolites differentially expressed over 
time, 28 were novel. When comparing inclusion versus 
progression, 5 glycerophospholipids and 11 proteins were 
not previously reported. Regarding inclusion versus W6, 
14 proteins are novel. When comparing W6 versus Pro-
gression, 4 proteins and 1 glycerophospholipid were not 

previously reported. It could be hypothesized that under 
radiochemotherapeutic pressure, only core pathophysio-
logical processes are triggered. For instance, we observed 
a significant variation of the EGF protein between inclu-
sion and progression. Indeed, EGFR gene amplification is 
a cornerstone of glioblastoma molecular diagnosis [21]. 
However, targeted therapy using EGFR inhibitors such 
as erlotinib/gefitinib or, more recently osimertinib has 
no significant effect [22, 23]. Glioblastoma heterogene-
ity, drug delivery issues, and the use of alternative path-
ways are the main drivers behind this failure. However, 
most studies have been conducted as a second-line treat-
ment after the conventional RCT and TMZ regimen. 

Fig. 5 Machine learning analysis. A Overview of the diagnostic performance of the predictive model. Each tile shows the probability of accurately 
classifying patients and controls from the test set. B ROC curves of each omics feature and their combined model. C Violin plots of the most 
significative omics features included in the model
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Fig. 6 Forest plot of the omics features associated with overall survival
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As highlighted here in patient plasma, the loss of EGF 
expression at relapse might explain part of this failure and 
could help patients’ selection in future anti-EGFR trials. 
Another protein that significantly varies under treatment 
is the Kallikrein 4 (KLK4). We observed that its expres-
sion increases under treatment and at progression. KLK 
proteins are hormone-regulated genes expressed in vari-
ous human tissues, playing a role in various physiological 
functions. These functions include regulating blood pres-
sure, tissue remodeling, processing of peptide hormones, 
and inflammation. For instance, KLK6, 7, and 8 are well-
described in intracranial tumors. Drucker et al. reported 
an association of KLK6 expression with poorer overall 
survival in a cohort of 23 glioblastomas [24]. KLK4 is 
upregulated in prostate cancer, and its function in glio-
blastoma remains unknown. Regarding metabolites, the 
differential analysis between timepoints revealed impor-
tant metabolic remodeling. The glycerophospholipids 
PC ae C42:4, PC ae C42:5, PC ae C 44:5, PC ae C44:6 sig-
nificantly decreased after treatment and at progression. 
These observations shed light on glioblastoma metabolic 
remodeling under treatment. Indeed, glycerophospholip-
ids are involved in cellular signaling processes and play 
key roles in plasma membrane composition and integrity. 
Wildburger et al. observed that glioma cells had elevated 
phosphatidic acid (PA) levels, specifically PC a 36:2, PC 
a 44:5, PC a 42:5, and PC a 42:7 [25]. PA is primarily 
utilized along with endogenous fatty acids (FAs) to sup-
ply glycerophospholipids for membrane synthesis. The 
increased accumulation of PA is associated with various 
alterations in cancer cell metabolism. Notably, PA stimu-
lates the upregulation of several kinases involved in intra-
cellular stress signaling pathways [26]. Our results show 
that 4 phosphatidylcholines significantly decrease during 
treatment and tumor progression. This observation could 
be explained by a metabolic shift directly due to RCT or 
the selection of RCT-resistant glioblastoma cells with dif-
ferent energy metabolism. The survival analysis showed 
that 77 omics features (51 proteins and 26 metabo-
lites) were significantly associated with OS at different 
time points. Interestingly, the proteins ERBB2 (HER2) 
and ITGAV (Integrin subunit alpha V) were associated 
with OS at each timepoint. The set threshold to test the 
association of each protein and metabolite was their 
respective median in patients at inclusion. Out of the 26 
metabolites (12 glycerophospholipids, 8 acylcarnitines, 4 
amino acids, 1 biogenic amin, and 1 sphingomyelin) were 
associated with OS. Interestingly, glycerophospholipids 
or acylcarnitines were not constantly associated with 
the worst prognosis. Furthermore, their association with 
OS changed according to timepoints. This highlights 
the importance of metabolic remodeling due to onco-
genic drivers switching under treatment pressure. For 

proteins, 51 were associated with OS, 27 at inclusion, 16 
at W6, and 23 at progression. Only 2 proteins, ErBB2 and 
ITGAV were associated with OS at all timepoints. ITGAV 
is an important subtype of the integrin α chain family and 
is involved in angiogenesis. Wan et al. demonstrated that 
the overexpression of ITGAV had the best predictive sur-
vival performance among a set of 31 proangiogenic genes 
in glioblastoma [27]. The enrichment analysis unveiled 
different oncogenic pathways over time. It can be specu-
lated that RCT treatment triggers core pathways involved 
in tumor survival. The exploratory nature of these analy-
ses is the main limitation alongside the sample size and 
the omics coverage. Further large-scale studies keeping 
the same dynamic approach are needed to investigate 
the metabolic remodeling and pathway changes of glio-
blastoma under treatment. A potential limitation of this 
study is the risk of statistical overfitting. Despite efforts 
to mitigate these risks through cross-validation and cau-
tious interpretation of results, these limitations should be 
considered. Furthermore, the study’s findings would ben-
efit from validation on larger cohorts to enhance gener-
alizability and statistical power, ensuring that the results 
are applicable to a broader population and achieve clini-
cal actionability.

In conclusion, the deep metabolic and signaling 
remodeling of glioblastoma can be probed in plasma 
samples to capture glioblastoma in situ status. Notably, 
NPY shows a strong predictive performance of glio-
blastoma. Secondly, few significant protein expression 
changes are detected in plasma before treatment, after 
treatment, and at relapse. This highlights the core resil-
ience of glioblastoma under treatment that could allow 
a better selection of key oncogenic drivers after treat-
ment. The EGF protein expression significantly changed 
under treatment and at relapse. Lastly, omics features 
were associated with OS, emphasizing the changes in 
the key pathways involved in glioblastoma prognosis. 
This could be promising for dissecting these changes in 
a larger cohort.

Conclusion
Proteomic and metabolomic analysis of plasma from 
unresected glioblastoma patients receiving radiotherapy 
and temozolomide reveals a singular circulating omic 
profile distinct from healthy subjects. The omics profile 
remains stable overall during the first line of treatment, 
with the exception of a few protein markers involved 
in tumor biology, such as EGF. Some omics features 
have prognostic or diagnostic potential in glioblastoma 
patients. This pilot study opens up new insights for the 
identification of circulating biomarkers in glioblastoma 
patients.
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