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Abstract
Background Optical coherence tomography (OCT) is a non-invasive technique to measure retinal layer thickness, 
providing insights into retinal ganglion cell integrity. Studies have shown reduced retinal nerve fibre layer (RNFL) and 
ganglion cell inner plexiform layer (GCIPL) thickness in Parkinson’s disease (PD) patients. However, it is unclear if there 
is a common genetic overlap between the macula and peripapillary estimates with PD and if the genetic risk of PD is 
associated with changes in ganglion cell integrity estimates in young adults.

Method Western Australian young adults underwent OCT imaging. Their pRNFL, GCIPL, and overall retinal 
thicknesses were recorded, as well as their longitudinal changes between ages 20 and 28. Polygenic risk scores 
(PRS) were estimated for each participant based on genome-wide summary data from the largest PD genome-wide 
association study conducted to date. We further evaluated whether PD PRS was associated with changes in thickness 
at a younger age. To evaluate the overlap between retinal integrity estimates and PD, we annotated and prioritised 
genes using mBAT-combo and performed colocalisation through the GWAS pairwise method and HyPrColoc. 
We used a multi-omic approach and single-cell expression data of the retina and brain through a Mendelian 
randomisation framework to evaluate the most likely causal genes. Genes prioritised were analysed for missense 
variants that could have a pathogenic effect using AlphaMissense.

Results We found a significant association between the Parkinson’s disease polygenic risk score (PD PRS) and 
changes in retinal thickness in the macula of young adults assessed at 20 and 28 years of age. Gene-based analysis 
identified 27 genes common to PD and retinal integrity, with a notable region on chromosome 17. Expression 
analyses highlighted NSF, CRHR1, and KANSL1 as potential causal genes shared between PD and ganglion cell integrity 
measures. CRHR1 showed consistent results across multiple omics levels.
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Introduction
Parkinson’s disease (PD) is a chronic and progressive 
neurodegenerative disorder that affects 1% of the popu-
lation over 60 years [1]. Motor symptoms, such as trem-
ors, rigidity, and bradykinesia, traditionally characterise 
PD. However, non-motor symptoms are also manifested 
in the disease. Among these, ocular changes have gained 
attention as potential early indicators of PD [2, 3] and its 
progression [4].

The retina is an extension of the central nervous sys-
tem and offers a unique and accessible window to under-
stand neurodegenerative processes. Retinal ganglion cells 
(RGC), a type of neuron located near the inner surface of 
the eye’s retina, play a crucial role in transmitting visual 
information from the retina to the brain. RGC atrophy 
and the associated thinning of retinal layers have been 
previously observed in prospective and cross-sectional 
studies for PD [5]. Recent studies have suggested that 
individuals with PD exhibit reductions in the retinal 
nerve fibre layer (RNFL) [6] and the ganglion cell inner 
plexiform layer (GCIPL) [7] thicknesses, as quantified 
using optical coherence tomography (OCT) imaging. 
Such findings highlight retinal structural integrity as 
a potential marker for PD. However, the molecular and 
genetic mechanisms driving the atrophy of RGC in PD 
are still unclear.

In addition to clinical observations, genetics could pro-
vide insights into PD aetiology. Genome-wide association 
studies (GWAS) have identified multiple loci associated 
with an increased risk of PD [8] and retinal ganglion cell 
measures [9]. Combining genetic association studies and 
OCT estimates, our study aimed to investigate whether 
genetic predispositions to PD, as captured by polygenic 
risk scores (PRS), are associated with cross-sectional and 
longitudinal structural retinal estimates in young adults. 
We further used a colocalisation approach to assess the 
overlap between macular GCIPL and RNFL with PD and 
to evaluate overlapping genes and common biological 
pathways associated with retinal neurodegeneration in 
PD using bulk and single-cell gene expression data.

Methods
Raine cohort dataset
This analysis utilised data from the Generation 2 (Gen2) 
participants of the Raine Study, a longitudinal health 
study that has been following the Gen2 cohort since their 

prenatal stages in 1989–1991 [10, 11]. Between 2010 and 
2012, when participants were approximately 20 years old, 
they underwent a baseline eye examination. A follow-up 
examination occurred in 2018–2020 when the partici-
pants were around 28 [12]. Before each eye examination, 
participants received a detailed explanation of the pro-
cedure and provided informed written consent. Blood 
samples were obtained from participants when they were 
aged 14 or 17. Samples were analysed in 2010 for 1,592 
participants using the Infinium HD Human660W-Quad 
Beadchip Array, and those from an additional 310 partic-
ipants were analysed in 2013 using the Infinium OmniEx-
press-24 BeadChip Array, for a total of 1,902 participants.

Retinal integrity estimates
Participants underwent Spectral Domain OCT imaging 
(SD-OCT; Spectralis HRA + OCT, Heidelberg Engineer-
ing, Heidelberg, Germany) at the 20- and 28-year eye 
examinations (Fig. 1); further details outlining acquisition 
and processing protocols of the OCT measurements for 
the Raine Study are explained in Lee et al., 2020. Disc-
centred 3.5-mm circular B-scans were conducted to 
obtain the pRNFL thickness(n = 658). A 31-slice macula-
centred scan covering a 6-mm diameter area was con-
ducted to obtain the GCIPL(n = 640) and overall macular 
thicknesses(n = 520) based on the Early Treatment for 
Diabetic Retinopathy (ETDRS) grid; the study design 
is outlined in Fig.  2. Outcome estimates (i.e., pRNFL, 
GCIPL, and overall macular thickness) were averaged 
between the two eyes. Cross-sectional measures for these 
traits at ages 20 and 28 and the longitudinal change in 
thicknesses between the two-time points were regressed 
against the PRS of PD.

Parkinson’s disease GWAS summary statistics
We leveraged GWAS summary statistics for a PD meta-
analysis that included ~ 37.7  K cases, ~ 18.6  K UK Bio-
bank proxy cases (having a first-degree relative with 
PD), and 1,417,791 controls, yielding a total sample size 
of 1,474,097. This dataset included samples of Euro-
pean ancestry from multiple cohorts, including the 
International Parkinson’s Disease Genomics Consor-
tium (IPDG), 23andMe Inc., and the UK Biobank. More 
information about the GWAS meta-analysis is available 
in the corresponding publication [8]. Summary-level 
data from the 23andMe cohort was obtained through 

Interpretation Our findings suggest that retinal measurements, particularly in young adults, could be a potential 
marker for PD risk, indicating a genetic overlap between retinal structural integrity and PD. The study highlights 
specific genes and loci, mainly on chromosome 17, as potential shared etiological factors for PD and retinal changes. 
Our results highlight the importance of further longitudinal studies to validate retinal structural metrics as early 
indicators of PD predisposition.
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the corresponding application procedure (https://
research.23andme.com/dataset-access/) and Institutional 
Data Transfer Agreement. Additionally, we obtained a 
version of the summary statistics excluding the 23andMe, 
Inc. cohort from corresponding authors [8].

Estimating polygenic risk scores for parkinson’s disease
Polygenic risk scores (PRS) is a statistical method that 
adds the number of risk alleles a person carries weighted 
by their effect sizes to estimate an individual’s genetic 
risk for developing a particular disease. PRS were used 
to evaluate the association between the genetic risk of 
PD and retinal integrity estimates. PRS estimates for 
Raine participants were derived using the GWAS sum-
mary statistics for PD described above [8] and PLINK 
2.0 [13]. We selected 105 independent SNPs using the 
following parameters: --clump-r2 0.05, --clump-p1 5e-8, 
and --clump kb 1000. We employed a subset of the UK 
Biobank, comprising 5,000 healthy individuals, as a ref-
erence for linkage disequilibrium during the clumping 
process. Quality control measures excluded data with 
an SNP call rate below 0.95, a Hardy-Weinberg equilib-
rium p-value less than 10-6, and a minor allele frequency 
under 0.01. Post-quality control, the genotype data from 
the Raine Study were imputed using the Haplotype Refer-
ence Consortium reference panel. PRS was estimated in 
individuals of European ancestry, as determined through 
principal component analysis, using the 1000 Genomes 
Project as the reference population. To further assess the 
reliability of genetic scoring approaches, we calculated 
the PRS of GCIPL analysis based on GWAS studies [9], 

aiming to determine if the model was robust enough to 
predict GCIPL structural estimates in the Raine Study. 
A linear model was employed to evaluate the association 
between the scores generated from genome-wide sig-
nificant SNPs and retinal integrity measurements. Linear 
models were adjusted for age, sex, principal components 
1–10, and genotyping array.

Linkage disequilibrium score regression and colocalisation
To evaluate the overlap between retinal integrity esti-
mates and PD, we used macula RNFL and GCIPL GWAS 
published by Currant et al. [9] based on 31,434 partici-
pants from UK Biobank. The genetic correlation between 
these retinal ganglion cell integrity measures and PD was 
evaluated using Linkage Disequilibrium Score Regression 
(LDSC). LDSC is a method that estimates the genetic 
correlation between phenotypes by analysing GWAS 
summary statistics while considering factors such as 
overlapping samples and polygenicity [14]. We used the 
1000 Human Genome Project reference panel for LDSC 
estimations.

We subsequently contrasted the genetic makeup of 
GCIPL, macula RNFL, and PD by analysing data from 
existing literature using the GWAS pairwise approach 
(GWAS-PW) [15]. The GWAS-PW methodology evalu-
ates the genetic overlap across specific genomic regions 
by segmenting the genome into 1,703 regions, then cal-
culating the probability for four models: the region is 
exclusive to the retinal integrity estimate, it is exclusive 
to PD, shared by both with a shared causal variant and 
shared by both but without a common causal variant. For 

Fig. 1 Spectral Domain optical coherence tomography scans centred on the disc (left) and macular (right). The 3.5 mm-diametre disc-centred B-scan 
obtains measurements of the peripapillary retinal nerve fibre layer thickness. The 31-slice macular-centred scans cover a 6-mm diameter area
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segments that suggested shared risk factors between reti-
nal integrity estimates and PD, we used HyPrColoc. This 
deterministic Bayesian grouping method combines sum-
mary data to concurrently perform colocalisation among 
multiple traits.

Annotation and prioritisation of variants
Regions highlighted in the colocalisation analysis as 
regions with a shared causal variant were annotated by 
a gene-based association test, mBAT-combo v 1.94, a 
method recognised for its efficacy in identifying SNPs 
with masking effects [16]. Multiple testing was adjusted 
using the Bonferroni method, considering the total 

Fig. 2 (A) Polygenic risk scoring analysis in the Raine Study (Gen2), which included two time point measurements (20 and 28 years of age) and longitu-
dinal changes of three OCT outcome variables: GCIPL, pRNFL, and overall macular thickness. (B) Study design to evaluate the genetic overlap between 
ganglion-cell structural estimates (i.e., macula RNFL and GCIPL) and Parkinson’s disease
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number of genes evaluated in our study (α = 0.05/6600 
[genes], p < 7.57e-6).

We then leveraged omics data to explore the functional 
relevance of the genes that were consistent between the 
gene-based and the colocalisation analyses. Firstly, we 
utilised the summary-data-based Mendelian Randomisa-
tion (SMR) version 1.3.1 [17] to discern potential causal 
associations based on peripheral blood gene expression 
data from 2,765 participants from the Consortium for the 
Architecture of Gene Expression (CAGE) [18] and retinal 
gene expression data from 453 participants [19]. We used 
single-cell RNA-sequencing data from 23 retinal ganglion 
cell sub-groups comprising 247,520 cells [20] and over a 
million neurons, both exposed and not exposed to rote-
none-induced oxidative stress [21]. Neurons encompass 
a diverse range of cells: dopaminergic neurons, serotonin 
transporters, astrocyte-like cells, ependymal cells, and 
clusters undergoing neuronal differentiation. Addition-
ally, to account for the multiple tests, we applied the 
Bonferroni correction technique, taking into account the 
effective number of independent genes being analysed 
(α = 0.05/27 [genes], p < 0.001).

Lastly, we assessed the multi-omic profile of genes 
that were consistent between single-cell and bulk tissue 
gene expression using Omics Pleiotropic Association 
(OPERA) version 1.0.0. OPERA is a Bayesian method [22] 
that aims to provide further interpretation of the biologi-
cal mechanisms underlying GWAS signals and prioritise 
molecular phenotypes. This evaluation encompasses the 
single-cell RNA-sequencing data, a methylation profile 
derived from mQTL of peripheral blood samples from 
1,980 individuals [23], and eQTL information from the 
peripheral blood of 2,765 subjects from the CAGE Con-
sortium [18].

Regions prioritised through the gene-based analysis 
were evaluated for missense variants. Missense muta-
tions lead to single amino acid changes that can affect 
protein folding and are usually pathogenic. In the con-
text of PD, missense mutations in the leucine-rich repeat 
kinase 2 (LRRK2) gene have been associated with famil-
ial PD [24]. However, it is unclear if they have a broader 
effect and play a role in the thinning of the ganglion lay-
ers of the retina. We used AlphaMissense, a machine-
learning approach that uses the sequence to predict the 
protein structure and evaluate the pathogenicity of mis-
sense variants [25].

Tissue-specific gene expression
The causal association between genes identified via func-
tional annotation and PD-related alterations in visual 
cortex morphology were tested using the Allen Brain 
Atlas, which encompasses an extensive gene expression 
dataset specific to several brain regions [26]. Three brain 
models were employed, including a 55 and a 57-year-old 

male and a 49-year-old female. We chose these brain 
models due to their proximity to the age of onset for PD 
(40 to 65 years). Gene expression data were collected 
from 52 brain regions selected for their relevance to the 
retina and the vision system. These regions include the 
optic nerve, optic tract, optic chiasm, optic radiations, 
supraoptic decussation, oculomotor nerve, and occipital 
lobe in both hemispheres, as detailed in Supplementary 
Table 7. Fifteen brain regions with missing expression 
data were excluded from the analysis. The Allen Brain 
Atlas project facilitated gene expression quantification 
through fragment counts of RNA-Seq using quantita-
tive PCR. Values were based on fluorescence or intensity 
measurements obtained from RNA microarrays.

Results
Association between polygenic risk scores and retinal 
integrity estimates
PD was nominally associated with longitudinal changes 
in GCIPL thickness between ages 20 and 28 (R2=0.004, 
p-value = 0.03) and longitudinal changes of the macular 
thickness in the inferior, temporal and inner nasal grids, 
as shown in Fig. 3. We further evaluate point estimates as 
a sensitivity analysis. Specifically, the PD polygenic score 
exhibited a nominal association with the thickness of the 
nasal pRNFL at age 20 years (R² = 0.03, p-value = 0.028). 
However, this association was not sustained at age 28 (R² 
= 0.03, p-value = 0.07). Furthermore, the PD polygenic 
score was significantly correlated with the retinal thick-
ness at the nasal (R² = 0.01, p-value = 0.001) and inferior 
(R² = 0.01, p-value = 0.005) inner macula at the ETDRS 
grid. Results were consistent when assessing the associa-
tion in pRNFL; as shown in Supplementary Table 1. We 
further evaluated the reliability of PRS models in predict-
ing retinal structural estimates. The PRS for GCIPL pre-
dicted cross-sectional measurements at ages 20 and 28 
(p < 0.001), but it did not predict changes in the GCIPL 
layer between these two time points, as shown in Supple-
mentary Fig. 1 to 3. The statistical significance threshold 
was adjusted to p < 0.01 using the Bonferroni correction 
(0.05 divided into three main outcome measures: GCIPL, 
RNFL and overall macula thickness).

Linkage disequilibrium score regression and colocalisation
Linkage disequilibrium score regression showed no sta-
tistically significant association between PD and GCIPL 
(rg = 0.04, p > 0.05) or macula RNFL (rg = 0.02, p > 0.05). 
Further examination of all loci across the genome 
using the GWAS-PW identified three regions with the 
same causal variant shared between GCIPL and PD 
and two regions shared between macula RNFL and 
PD, as detailed in Table 1. A region on chromosome 17 
(43056905–45875506; hg19) was consistently associated 
with GCIPL, macula RNFL, and PD. HyPrColoc analysis 
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on chromosome 17 indicated a high likelihood that the 
region 43,056,905–45,875,506, build hg19, is shared 
between ganglion integrity estimates and PD (PP = 0.97) 
and a candidate SNP (rs199453) likely shared between 
retinal estimates and PD (PP = 0.62).

Annotation and prioritisation of variants
Gene-based analysis using mBAT-combo on 6.600 
genes identified 27 genes common to both PD and reti-
nal integrity measurements. However, only seven genes 
(CRHR1, SPPL2C, STH, MAPT, NSF, KANSL1, and 
LINC02210) located on chromosome 17 remained sta-
tistically significant after corrections for multiple testing 
(see Supplementary Table 2). Rs199453 and rs117300236 
were the most significantly associated SNPs in mBAT-
combo analysis for the region containing genes WNT3 
and NSF. Aggregates of the N-ethylmaleimide sensitive 
factor (NSF) have previously been linked to PD through 
the LRRK2 [27] pathway, and NSF has been previously 
associated with another neurodegenerative disease, such 
as frontotemporal dementia [28].

Further analysis of the expression profile on peripheral 
blood using SMR highlighted the consistency between 
the NSF GWAS association in PD, GCIPL and macula 

RNFL, and eQTL data. However, the results were het-
erogeneous (p > 0.05 [HEIDI]) except for an association 
between NSF and GCIPL, as shown in Supplementary 
Table 3. Single-cell expression results showed a statisti-
cally significant association between the expression of 
CRHR1 and KANSL1 in PD, GCIPL and macula RNFL 
involving serotonin transporter neurons exposed to 
rotenone-induced oxidative stress, as per Supplementary 
Table 4.

Results for CRHR1 were consistent with the multi-
omics analysis. Rs12949256 was associated with DNA 
methylation at multiple promoter regions, as detailed in 
Supplementary Table 5, with a posterior probability of 
association greater than 0.9, reflecting a combined effect 
of changes in gene expression and methylation of CRHR1 
in macula RNFL and PD. Analysis of missense variants 
using AlphaMissense identified 25,173 variants within 
the seven regions prioritised by the GWAS PW analy-
sis, as depicted in Supplementary Table 6. Of these loci, 
10,737 are likely pathological. However, none of the vari-
ants highlighted by the eQTL and mQTL overlap with 
these pathological missense variants.

Table 1 GWAS PW results evaluating the posterior probability (PPA) of four hypotheses: the region is exclusive to the retinal integrity 
estimate (1), it is exclusive to Parkinson’s disease (2), it is shared by both with a shared causal variant (3), or it is shared by both without 
a common causal variant (4). Positions are in hg19
Trait 1 Trait 2 CHR START (BP) STOP

(BP)
PPA 1 PPA 2 PPA 3 PPA 4

RNFL PD 12 182,451 1,080,007 0.12 0.04 0.80 0.04
RNFL PD 17 43,056,905 45,875,506 < 0.01 < 0.01 0.98 0.01
GCIPL PD 17 43,056,905 45,875,506 0.01 0.02 0.95 0.02
GCIPL PD 19 40,171,266 40,983,034 0.03 0.01 0.94 0.02
GCIPL PD 21 41,389,527 43,321,426 < 0.01 < 0.01 0.98 0.01

Fig. 3 The phenotypic variance explained (R2) by the Parkinson’s disease polygenic risk score for changes in retinal thickness from 20 to 28 years of age. 
The macular grid of the GCIPL layer is reported. Subfields are described as inferior (I), nasal (N), superior (S), temporal (T), inner (1), and outer (2)
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Tissue-specific gene expression
We focused on four key genes: N-ethylmaleimide sensi-
tive factor (NSF), KANSL1 antisense RNA 1 (KANSL1-
AS1), corticotropin-releasing hormone receptor 1 
(CRHR1), and Wnt family member 3 (WNT3), given that 
these genes were highlighted as possible causal genes 
shared between ganglion cell integrity measurements 
and PD in the colocalisation and SMR analyses. Results 
were based on the highest match of probes for genes: 
NSF (probe number 1053554), KANSL1-RNA1 (probe 
number 1016061), CRHR1 (probe number 1011485), 
and WNT3 (probe number 1050353). Results revealed 
a consistent gene expression pattern across the visual 
cortex regions for the four studied genes. Gene expres-
sion levels for NSF, KANSL1-RNA1, CRHR1, and WNT3 
across 52 visual regions, with mean values ranging from 7 
to 9.6, were observed, as shown in Supplementary Table 
7. However, since these results are based on three brain 
models, confirming the consistency of these findings in 
studies with a larger sample size is necessary.

Discussion
Our study offers a comprehensive overview of the poten-
tial genetic overlap between retinal structural integrity 
and PD. Our findings indicate that genetic susceptibility 
to PD likely influences retinal morphometric measure-
ments of the RGC and longitudinal changes of macular 
retinal thickness in young adults. We observed signifi-
cant associations between PD PRS and OCT measures. 
A higher PRS was nominally associated with a thinner 
pRNFL in young adults and a generally thinner retina 
at both 20 and 28 years of age. Additionally, the PRS of 
PD was linked with longitudinal changes in retinal thick-
ness from ages 20 to 28. The temporal and inferior grids 
were identified as the areas most likely associated with 
retinal thinning in PD. This likely underscores the vulner-
ability of the RGC in these regions to neurodegenerative 
processes.

Our findings align with a potentiation pattern of neu-
rodegeneration in the macula, as corroborated by both 
observational studies [5, 29] and comprehensive reviews 
[30]. Notably, the parafoveal region appears particularly 
susceptible to the neurodegenerative processes associ-
ated with PD [31, 32]. Furthermore, observational studies 
were done on patients who were on average over 60 [5], 
while our research highlights that structural changes in 
the macula are associated with a genetic predisposition 
to PD from a younger age. If our findings are sustained 
on other cohorts and under diverse ancestries, it might 
present avenues for screening patients at high risk of PD 
from a younger age through eye examination (i.e., OCT).

We further assessed the overlap between the genetic 
architecture of RGC and PD. Notably, there was a lack of 
genetic correlation and only a few regions highlighted as 

shared with the same causal variants through the colo-
calisation analysis between ganglion cell integrity mea-
surements and PD. This suggests a pleiotropic effect, 
one gene influencing multiple traits, rather than a causal 
association with PD. This is consistent with the identifi-
cation of a few shared genomic regions that are mainly 
located on chromosome 17, which shared causal variants 
between retinal integrity and PD. Previous studies eval-
uating the putative causal association between PD and 
RGC highlight a similar pleiotropic association between 
PD and RGC integrity estimates on chromosomes 12, 17, 
and 21. [33].

However, it is important to emphasise that the GWAS 
of RGC integrity estimates used for this analysis cor-
responds to a single-point thickness estimate. Thus, we 
are likely capturing the overlap between retinal structure 
(which corresponds more to a single time-point mea-
surement) and not the decrease in retinal thickness that 
might be more closely associated with the neurodegen-
erative process. In line with this notion, some genes, such 
as WNT3, appear to be more related to the developmen-
tal processes of the brain and retina. It is necessary to 
emphasise this limitation of our study and to suggest that 
future studies adopt a prospective approach to further 
elucidate the causal relationship between PD and gan-
glion cell integrity over time, given the apparent associa-
tion between RGC longitudinal estimates and the risk of 
PD, as highlighted in this study.

The prioritisation of specific genes, such as CRHR1, 
KANSL1, NSF, and others on chromosome 17, under-
lines the potential involvement of these loci in both RGC 
integrity estimates and PD. NSF, in particular, has been 
previously associated with PD through the LRRK2 path-
way; phosphorylation of the gene leads to the accumula-
tion of NSF in toxic aggregates [26]. Furthermore, within 
retinal photoreceptor cells, NSF is observed to co-localise 
in the synaptic region, outer nuclear layer, and inner seg-
ments, indicating NSF involvement in the synaptic pro-
cessing of photoreceptors [34].

Both CRHR1 and KANSL1 have been linked to PD 
through GWAS studies. CRHR1 has been proposed as 
a potential drug target due to its interaction with sev-
eral drugs, including hydrocortisone [29]. In mice,  
CRHR1  seems to modulate the responses of RGCs 
through a potential autocrine action via corticotropin-
releasing hormone [35], which has been shown in animal 
models to modulate dopamine release [36]. KANSL1, 
confirmed to be expressed in RGC [20], plays a key role 
in the development of PD [30]. KANSL1 is a mitophagy 
regulator involved in the PINK1-mitophagy pathway in 
idiopathic PD [37]. This pathway serves as a critical con-
trol mechanism for mitochondrial health, helping to pre-
vent the accumulation of dysfunctional mitochondria, 
which has been implicated in the progressive damage to 
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RGCs in other neurodegenerative diseases, such as glau-
coma [38]. Consistently, in our analysis, these genes have 
been associated with PD and RGC integrity estimates 
through multi-omic and single-cell analyses. Addition-
ally, they have been confirmed to be expressed in both 
retinal and brain tissue.

Our results suggest a shared genetic architecture 
between PD and retinal ganglion cell integrity. PRS was 
associated with ganglion cell integrity estimates over time 
in a cohort that comprises young adults who are unlikely 
to have thinned pRNFL due to other diseases such as 
glaucoma or macular degeneration. However, these find-
ings warrant careful interpretation. The longitudinal 
nature of our analysis is constrained to two temporal data 
points. Comprehensive longitudinal studies encompass-
ing broader age intervals and diverse cohorts are nec-
essary to elucidate this relationship further. While the 
underlying mechanisms for these associations appear to 
be pleiotropic, we identified links between genes CRHR1, 
KANSL1, and NSF with both PD risk and RGC integrity 
measures. Further validation and functional characteriza-
tion of these genes are encouraged, as this will elucidate 
shared pathways that could enhance our understanding 
of the disease etiology. Our findings further advance the 
understanding of the molecular interplay between retinal 
structure and PD, emphasising that structural integrity 
measurements could serve as potential markers for PD 
risk in young adults.
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