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Introduction
Traumatic brain injury (TBI) afflicts an estimated 70 mil-
lion people across the world annually with both age and 
sex as important determinants of severity and outcomes 
[1, 2]. Mild to moderate TBI are the most common type 
of injuries among civilians, professional sports personnel, 
and military service members [3, 4]. Behavioral, physi-
ological and psychosocial deficits persist for extended 
periods after the initial injury and include depression, 
post-traumatic stress, sleep, Alzheimer’s disease, and 
dementia related disorders amongst others [5–8]. Despite 
advances in our understanding of the pathophysiological 
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Abstract
Traumatic brain injury (TBI) survivors face debilitating long-term psychosocial consequences, including social 
isolation and depression. TBI modifies neurovascular physiology and behavior but the chronic physiological 
implications of altered brain perfusion on social interactions are unknown. Adult C57/BL6 male mice received 
a moderate cortical TBI, and social behaviors were assessed at baseline, 3-, 7-, 14-, 30-, and 60-days post injury 
(dpi). Magnetic resonance imaging (MRI, 9.4T) using dynamic susceptibility contrast perfusion weighted MRI 
were acquired. At 60dpi mice underwent histological angioarchitectural mapping. Analysis utilized standardized 
protocols followed by cross-correlation metrics. Social behavior deficits at 60dpi emerged as reduced interactions 
with a familiar cage-mate (partner) that mirrored significant reductions in cerebral blood flow (CBF) at 60dpi. 
CBF perturbations were dynamic temporally and across brain regions including regions known to regulate social 
behavior such as hippocampus, hypothalamus, and rhinal cortex. Social isolation in TBI-mice emerged with a 
significant decline in preference to spend time with a cage mate. Cortical vascular density was also reduced 
corroborating the decline in brain perfusion and social interactions. Thus, the late emergence of social interaction 
deficits mirrored the reduced vascular density and CBF in regions known to be involved in social behaviors. 
Vascular morphology and function improved prior to the late decrements in social function and our correlations 
strongly implicate a linkage between vascular density, cerebral perfusion, and social interactions. Our study 
provides a clinically relevant timeline of alterations in social deficits alongside functional vascular recovery that can 
guide future therapeutics.
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processes underlying TBI, there is a gap in the linkage 
between behavioral outcomes and cerebrovascular alter-
ations following TBI.

Social interactions are impaired after TBI with reduc-
tions in interpersonal communication, [9] time with 
friends and families, [10, 11] and is evident in children 
[12, 13] and adults [14, 15]. Social behavior is also dimin-
ished in adult mice after a single [16, 17] or repeated-mild 
TBI, [18, 19] and in pediatric models of TBI [20]. Social 
isolation in rodents reflects increased neuropathology 
after TBI, [21] however, increased social interaction post-
injury is known to facilitate recovery [22]. Lacking are 
studies that examine how TBI modifies sociability and 
its relationship to disrupted cerebrovascular morphology 
and function.

We and others have reported acute vascular alterations 
following TBI spanning chronically reduced microvas-
culature, [23–25] and global reductions in cerebrovascu-
lar reactivity and tone [26–28]. TBI induced changes in 
the vasculature are associated with motor and cognitive 
behavioral deficits, [29, 30] while others have reported no 
change at long-term after injury [31]. Autism spectrum 
(ASD) subjects, which manifest deficits in social interac-
tions, exhibited CBF reductions that correlated with the 
severity of behavioral alterations [32]. Further, intrana-
sal treatment with oxytocin increased blood flow across 
social processing brain regions [33] and monitoring vas-
cular metrics has been proposed as a biomarker for social 
interactions [34]. 

To address the paucity of knowledge linking physi-
ological CBF, underlying angioarchitecture, and social 
behavior deficits after moderate TBI, we undertook a lon-
gitudinal study in adult male mice. Specifically, we tested 
the hypothesis that long-term cerebrovascular deficits 
facilitate social dysfunction. We report that temporal 
vascular flow and morphology initially recover but ulti-
mately decline by 2 months post TBI which are mirrored 
by social interaction deficits. Our novel study provides 
the basis for future preclinical and clinical interventional 
studies targeting social psychopathologies following 
acquired moderate TBI.

Materials and methods
Animals
All experiments were conducted using ARRIVE guide-
lines and animal use was approved by the University of 
California Irvine Animal Care and Use Committee. Adult 
C57/B6 male mice (JAX#000664, 2-3months old) from 
Jackson Laboratory were group housed (3/cage) with 
12  h light/dark cycle in ventilated cages and acclimated 
for a minimum of 7d after arrival. Male C57BL/6 mice 
were randomly assigned to either sham surgery (n = 11) or 
a moderate TBI (n = 10) followed by longitudinal behavior 
and perfusion MRI across a 60d post injury (dpi) time 

course (Fig.  1A, B). Animal numbers were based on lit-
erature and pilot experiments, and subsequent statistical 
power estimations. A subset of sham and TBI mice (n = 6/
group) were relegated for foot-fault behavior. Two of ten 
TBI mice died at 30dpi. Sham and TBI mice maintained 
similar weight profiles (Supplementary Fig. 1).

Traumatic brain injury (TBI)
TBI with controlled cortical impact (CCI, Fig.  1A) was 
induced as previously reported [25, 35] and detailed in 
the supplementary materials. Briefly, anesthetized (iso-
flurane 1–3%) mice were maintained at 37oC and then 
placed in a stereotaxic device. Under aseptic condi-
tions, a scalp incision was made, underlying connective 
tissue retracted and a 5  mm craniotomy (bregma AP 
− 1.25  cm, ML + 1.25  cm) was performed to expose the 
brain. A 1.5 mm impactor tip was zeroed to pial surface 
and electromagnetic impactor was discharged (Leica, 
NeuroscienceTools, O’Fallon) with the following param-
eters: 1  mm depth, 200ms dwell-time, speed 5  m/s. 
Extravascular bleeding was immediately wicked away 
and the skin was sutured closed without replacing the 
bone. Buprenorphine (100ng/g body weight, intramuscu-
lar) was injected, and mice were returned to a warmed 
chamber until ambulatory. Sham mice were exposed to 
the identical anesthesia duration but did not experience 
a craniotomy [23].

Behavioral paradigms
Mice were carefully handled to habituate with experi-
menter 1–2 days before testing [36]. Behavioral testing 
sequentially included foot-fault (FF), open-field (OF), 
3-chamber social preference (3Ch) tests prior to each 
magnetic resonance imaging (MRI) session for a sub-
group of animals (n = 12 for baseline, 3, 7, 14 and 30dpi, 
n = 16 at 60dpi). Mice in their home cages were acclima-
tized to the behavior room for 5–10  min before onset 
of testing. Mice were allowed to rest for 10 min in their 
home cage between testing paradigms. All apparatus 
were disinfected before and after each mouse. Extended 
behavioral details are delineated in the Supplementary 
materials.

Foot-fault (FF)
Mice were individually placed at one end of a grid 
(47.5 × 29.5  cm, 25 beams, 1.5  cm apart) and allowed 
to walk freely until they reached their home cage at the 
other end of the grid or 120 s, whichever occurred first. 
Foot slips through the grid were manually counted by 
two blinded experimenters. Only n = 6 sham and n = 6 
TBI mice were tested for foot-fault.
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Fig. 1 Chronic social and exploratory behavior changes following TBI. (A) Cortical contusion injury (CCI) in adult male mice centered at somatosensory 
and motor cortices. (B) Behavioral and MRI experimental timeline with vessel painting at 60 days post injury (dpi). (C) Heat maps of 3-chamber social 
behavior utilized a known cage-mate mouse (partner) and illustrate increased cumulative time spent by sham (top) and TBI mice (bottom row) at 3 and 
60dpi (D) Relative partner-preference (RPP) is significantly reduced at 60dpi in TBI (red circles) relative to sham mice (black squares) (2wANOVA - Injury 
factor - F(1,60) = 5.02, *p = 0.029, Tukey’s post-hoc 60dpi. sham vs. TBI - ** p = 0.002). (E) Open-field arena schematic (left) with center and periphery zones. 
Heatmap of average time spent at 3- and 60dpi for sham (top row) and TBI animals (bottom row) illustrates increased center time after TBI. (F) Sham mice 
(black, squares) spent significantly more time in periphery at 14dpi vs. baseline (2wANOVA: F(5,61) = 0.006, Tukey’s post hoc **p = 0.008) but reduced time 
in TBI mice (Injury factor, 2wANOVA, F(1, 61) = 3.80, p = 0.056). (G) TBI mice in open field exhibited increased average speed compared to shams (2wANO-
VA, injury factor, F(1, 61) = 6.44, *p = 0.014). (H) Total distance travelled in open field was also significantly increased in TBI mice vs. shams (2wANOVA, injury 
factor, F(1, 61) = 14.4, ***p = 0.0003) at 7, 14 and 60dpi (*p < 0.05). (I) Sensorimotor tests in TBI mice at 3dpi exhibited increased foot-faults with modest 
longitudinal recovery. (dpi - days post injury, CCI - Cortical contusion injury, TBI - Traumatic brain injury, partner - cage mate mouse, CBF - cerebral blood 
flow, Bn - baseline, bright asterisk on coronal and axial view of the brain - TBI impact site)
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Open field (OF)
Mice were placed in the center of an open field arena 
(30 × 30cm2) and allowed free exploration for 10 min (top 
view webcam recording).

3-Chamber social preference (3Ch)
Our 3Ch test utilized a known cage-mate (partner) being 
placed inside a wireframe enclosure in one of the periph-
eral chambers and alternated between each session [37]. 
The peripheral chambers were connected to the central 
chamber (15.5 × 28.50cm2) with manual sliding doors. 
The test mouse was placed in the central chamber with 
closed doors for 5  min and then doors were opened to 
allow free access to both peripheral chambers for 10 min. 
The behavior was video recorded for offline analysis.

Behavior analyses
All semi-automated image analyses or manual scoring 
were blinded to injury condition. We utilized multiple 
software, including Fiji [38] for OF and 3Ch, and Ani-
malTA [39] for OF animal tracking to estimate speed 
and distance. Videos were cropped to isolate the identi-
cal regions of interest (ROIs) for OF and 3Ch (Supple-
mentary Fig.  2). FIJI’s image adjust algorithm was used 
with automated minimum threshold for animal (red) and 
background (dark) detection, to generate binary masks. 
Thresholded stacks were averaged as heat-maps (Fiji), 
with pixel-intensity representing time [40] allowing mea-
surement of time spent in partner vs. no-partner cham-
bers, termed relative partner-preference (RPP). Manual 
scored behavior utilized BORIS [41] to derive, (a) abso-
lute partner-interaction time (API) defined as total time 
the test mouse was facing the cylindrical enclosure with 
the partner mouse, and (b) relative partner-interaction 
time (RPI), defined as the ratio of time spent interact-
ing with (pointed towards) partner enclosure vs. total 
interaction time across both partner and non-partner 
enclosures.

MRI
In vivo longitudinal MRI was performed (Fig. 1B) at base-
line and after TBI induction (3, 7, 14, 30, 60dpi) on a hor-
izontal 30 cm bore, 9.4Tesla MR scanner (Bruker Avance) 
equipped with a 72  mm diameter volume excitation RF 
coil. Our perfusion weighted imaging (PWI) MRI meth-
ods are published [42] and described in more detail in 
the supplementary materials. Succinctly, mice were anes-
thetized (2% isoflurane) and tail veins were cannulated 
to facilitate contrast injection (0.1mmol/kg Gadoterate 
Meglumine diluted with sterile saline, Dotarem, Guerbet, 
Princeton, NJ). Sham or TBI mice were then pseudo-ran-
domly placed in MRI and the following sequences were 
acquired: T2-weighted (T2), T1-weighted images (T1), 
PWI during which Gd was infused (1ul/g body weight), 

and susceptibility-weighted MRI (Supplementary Table 1 
for MRI sequence details).

MRI image analysis
Detailed MRI processing methods are reported in Sup-
plementary materials. PWI MRI was processed using Jim 
software (V9.1, Xinapse Systems Ltd, Essex, UK) using 
the Brain Perfusion tool to automatically derive the arte-
rial input function (AIF) curves which were manually 
reviewed for typical AIF profiles. AIF curves from each 
sham mouse across all six time points were averaged 
for a group average AIF [43] and used to calculate cere-
bral blood flow (CBF, ml/100 g-tissue/min) and cerebral 
blood volume (CBV, %tissue) [44]. TBI animals used indi-
vidual AIF curves to calculate CBF and CBV to account 
for variability due to injury. In Jim software an in-house 
mouse atlas was applied to CBF and CBV parametric 
maps, values were extracted and summarized in Excel. 
MRI analyses were performed blind with respect to the 
behavior data.

Vessel painting and analyses
To visualize cortical angioarchitecture we utilized our 
vessel painting protocol as previously reported (see 
supplementary materials) [35]. Briefly, 1,1’-Dioctadecyl-
3,3,3’,3’-Tetramethylindocarbocyanine Perchlorate (DiI, 
D282, Invitrogen, Carlsbad) was delivered via intracar-
diac injection prior to transcardial fixative perfusion 
at 60dpi and brains were extracted after 24  h post fixa-
tion, rinsed in 4% PFA for 24 h and stored in PBS + 0.02% 
sodium azide until microscopic acquisition. All animals 
had successful staining of the cortical vasculature (n = 8 
TBI, n = 11 sham).

Vascular image acquisition and analysis protocols have 
been previously published [23, 35]. Briefly, the bilateral 
axial cortices were imaged at 2X magnification using an 
epifluorescent wide-field microscopy ( BZ-X810, Key-
ence Corp., Osaka) and 10x magnification images of the 
middle cerebral artery (MCA) of the ipsilateral hemi-
sphere. Classical vascular analysis for vessel density, junc-
tional branch points, total end points, and average and 
total vessel length were obtained using the Fiji plugin, 
Angiotool [45]. Analysis focused on lesion and perile-
sional regions (see Fig. 4A). Fractal analyses for vascular 
complexity was also performed using Fiji Fraclac plugin 
to obtain local fractal dimensions (LFD).

Statistics
Behavioral indices, MRI, and vessel painting derived val-
ues were imported into MS-Excel and MRI data were 
filtered for outliers using interquartile ranges. Data was 
assumed to be normally distributed and confirmed dur-
ing statistical testing. Any mouse that exhibited regional 
data outliers > 30% (CBF or CBV smaller or larger than 
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1.5 times the IQR) were excluded for calculating aver-
ages (Supplementary Table 2). Accordingly, statisti-
cal tests, Pearson’s correlation coefficient estimations, 
and plotting were performed using MS-Excel or Prism 
9.0 (GraphPad, San Diego). 3D-CBF plot was generated 
using custom python script (Plotly.com). Scatter plots 
used box and whisker graphs with mean and error bars 
(minimum to maximum values) where the box bound-
ing represents 25th and 75th percentiles. In line graphs 
error bars are plotted as standard error of mean (SEM). 
Two-way ANOVA (2wANOVA) with Tukey’s Post-hoc 
test was used for statistical comparisons, unless specified 
otherwise. Statistical significance was noted at *p < 0.05, 
**p < 0.01, or ***p < 0.001, with trending as p < 0.1.

Results
Long-term reduction in social behavior after TBI
Animals underwent longitudinal evaluation following a 
CCI (Fig.  1A, B) alongside social behavior using a 3Ch 
paradigm with cage-mate mice. Similar relative partner-
preference (RPP) at 3dpi with dramatic reductions at 
60dpi (Fig.  1C, Supplementary Fig.  3A-D). Semi-auto-
mated quantitative image analyses confirmed a signifi-
cant RPP decrease in cage-mate interaction (2wANOVA, 
Injury: F(1,60) = 5.02, *p = 0.029) with significant post-
hoc reductions in TBI animals at 60dpi (Adj. **p = 0.002) 
(Fig.  1D, Supplementary Fig.  4). Manual video scor-
ing confirmed similar RPP profiles (Supplementary 
Fig.  3A-D). The social deficits were independent of 
motor deficits, as evident in FF and OF tests, confirming 
comparable speeds with higher exploratory drive likely 
reflecting increased risk-taking behavior in TBI-mice vs. 
shams (Fig. 1E-H).

Increased exploratory behavior after TBI
Increased risk-tasking in TBI mice was evident with 
significantly reduced OF periphery activity as early as 
14dpi through to 60dpi relative to shams (Fig.  1E, F) 
(2wANOVA, Injury, F(1,61) = 3.80, p = 0.056; Timepoints, 
F(5,61) = 3.64, **p = 0.006). Post-hoc, sham mice spent 
more time in periphery at 14dpi compared to baseline 
(**p = 0.008). Ratio of time spent in center/periphery 
found no significant differences (Supplementary Fig. 3F).

TBI mice exhibited higher speeds and distance trav-
elled from 7dpi onwards across all the timepoints with 
significant ‘time X injury’ interactions for speed (Fig. 1G-
H, Supplementary Fig.  3E-H); (Fig.  1G, average speed, 
2wANOVA, Injury, F(1,61) = 6.44, *p = 0.014; Time-
point, F(5,61) = 1.91, p = 0.1, Interaction F(5,61) = 2.99, 
*p = 0.018); (Fig.  1H, total distance, 2wANOVA, Injury, 
F(1,61) = 14.4, ***p = 0.0003; Timepoint, F(5,61) = 1.28, 
p = 0.28, Interaction F(5,61) = 1.01, p = 0.42). TBI animals 
had significantly reduced speed at 3dpi (Adj.*p = 0.045) 
but elevated at 7dpi (Adj. *p = 0.027) and 60dpi 

(Adj.*p = 0.027) vs. sham mice. Distance travelled was ele-
vated at 7dpi (Adj.*p = 0.017), 14dpi (Adj. *p = 0.048), and 
60dpi (Adj.*p = 0.022) for TBI vs. sham mice (Fig. 1H).

Early sensorimotor deficits post-TBI recover with time
Sensorimotor failures assessed using FF testing were 
increased in TBI compared to sham mice at 3dpi (Supple-
mentary Figs. 5, 1wANOVA, F = 3.99, p < 0.001, Post hoc 
3dpi TBI vs. Sham, **p = 0.001), with return to baseline 
between 7-60dpi (Fig. 1I, rmANOVA, F(4.28, 11.8) = 4.28, 
*p = 0.035, post-hoc: 3- vs. 7dpi *p = 0.012, 3- vs. 60dpi 
p = 0.064).

CBF dysfunction mirrors social behavior deficits
Structural T2WI in TBI mice exhibited early edema 
which resolved over time (3-7dpi) with subsequent corti-
cal thinning at the impact site (14-60dpi; Fig. 2A). Lesion 
volumes were initially elevated during the edematous 
phase and then stabilized to ~ 10mm3 or ~ 4% of brain 
volume (Fig.  2B, C). CBF exhibited regional and global 
declines that gradually recovered over the initial 30dpi, 
but then steeply declined at 60dpi (Fig.  2A, D). CBF at 
the cortical impact site in TBI mice had acute reductions 
at 3dpi, modest recovery during 7-30dpi, followed by 
precipitous CBF declines at 60dpi (Fig. 2D, mixed effect 
1wANOVA, slice#1: F(2.993, 24.55) = 3.71, *p = 0.02, 3- vs. 
7dpi *p = 0.036, and 3- vs. 30dpi *p = 0.046; slice#4: F(2.66, 
23.38) = 5.20, Tukey’s post-hoc: Bn vs. 7dpi *p = 0.031, 
Bn vs. 14dpi ***p < 0.001, Bn vs. 30dpi *p = 0.036, and Bn 
vs. 60dpi **p = 0.006). TBI induced CBF perturbations 
extended beyond the impact site to adjacent and dis-
tant ipsilateral cortical and subcortical regions (Fig. 2A, 
E) where CBF heatmaps highlight the regional multi-
phasic nature of physiological recovery. Like the injury 
site profile (Fig.  2D), distant regions reflected an initial 
CBF decline at 3dpi, transient recovery at 7-30dpi with 
a subsequent decline at 60dpi (Fig.  2E). We then exam-
ined the relationship between social behavior (RPP) and 
CBF at 60dpi which demonstrated positive correlations 
in regions involved in exploratory and social behavior 
(Fig.  2F-H). Hippocampal CBF was trending positively 
correlated to RPP (Fig.  2F, p = 0.08, R2 = 0.30) and was 
significantly correlated in the entorhinal cortex (Fig. 2G, 
*p = 0.04, R2 = 0.30), but not in somatosensory cortex 
(Fig.  2H, p = 0.28, R2 = 0.12). Thus, TBI elicits a dynamic 
profile of tentative recovery followed by regional reduc-
tions that correlated to indices of social isolation.

Cortical and sub-cortical progression of CBF dynamics 
post-TBI
We next investigated regional CBF profiles as a func-
tion of distance from the impact site (Fig. 3A). The lesion 
site CBF was significantly lower across the 60dpi epoch, 
reflecting protracted neurovascular damage after TBI 
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(Fig.  3B, Injury, F(1,105) = 8.36, **p = 0.005, Timepoints, 
F(5,105) = 2.51, *p = 0.035). After an initial decline, lateral 

perilesional (somatosensory) cortex CBF progressively 
increased above shams (Fig.  3C, Injury, F(1,106) = 4.47, 

Fig. 2 Cerebral blood flow (CBF) recovers but declines at 60dpi. (A) Representative T2-weighted anatomical MR images and CBF maps (ml/100 g-tissue/
min) from the same TBI mouse illustrates transient decrements, recovery and then followed by precipitous decline at 60dpi. Edema at 3dpi at the impact 
site (asterisk) resolves and is followed by moderate tissue loss 14-60dpi. (B) Lesion volume (mm3, red; % brain volume, black) edema increases and stabi-
lizes after edema resolution (1wANOVA – Lesion Volume, F(2.17, 18.4) = 5.43, Geisser-Greenhouse’s =0.541, *p = 0.013, Tukey’s post-hoc 3- vs. 30dpi *p = 0.47; 
Lesion/Cerebrum volume, F(2.18, 18.5) = 5.37, Geisser-Greenhouse’s =0.544, *p = 0.013, Tukey’s post-hoc 3- vs. 30dpi *p < 0.05). (C) Brain 3D-reconstruction in 
a TBI mouse (3dpi) illustrates edematous lesion (red). PWI MRI data were collected from four 1 mm thick coronal slices. (D) Temporal evolution (Baseline-
60dpi) of CBF at lesion site across antero-posterior slices with acute reductions at 3dpi, recovery followed by declines at 60dpi. (E) CBF heatmap depicting 
longitudinal CBF changes for each slice (columns) with brain regions (rows) sorted by distance from TBI impact site. Statistical significance (t-test TBI vs. 
Sham) is noted (* p < 0.05, ** p < 0.01, *** p < 0.001) as are trending p-values. Reduced CBF was evident in anterior slices but increased in posterior slices 
distant from TBI site. (F-H) Correlations between 60dpi CBF and relative partner preference (RPP) in sham and TBI mice in social exploration related brain 
regions (dorsal hippocampus p = 0.08, R2 = 0.30 (F), entorhinal cortex p = 0.04, R2 = 0.46 (G) and somatosensory cortex (p = 0.28, R2 = 0.12, (H))
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*p = 0.037, Timepoints, F(5,106) = 3.77, **p = 0.003). 
Post hoc, CBF at 3dpi was acutely reduced after injury 
(**p = 0.004). Longitudinally for TBI animals, CBF at 
3dpi was lower compared to 30dpi (*p = 0.026) and 

60dpi (**p = 0.003), and 14dpi CBF was lower vs. 60dpi 
(*p = 0.042) in TBI animals, demonstrating a multiphasic 
pattern with long-term increment after initial decline. 
Notably, the recovery by 30dpi was reflected as similar 

Fig. 3 Longitudinal CBF dynamics in brain regions. (A) Representative regions of interest (ROIs) on a coronal MRI. (B) CBF at lesion cortex shows 
overall significant difference across both timepoints (6-sessions 0-60dpi, F(5,105) = 2.51, *p = 0.035) and injury condition (Sham vs. TBI, F(1,105) = 8.36, 
**p = 0.005). (C) Increased CBF in lateral peri-lesional cortex of TBI mice was significant across timepoints (F(5,106) = 3.77, **p = 0.003) and injury condi-
tions (F(1,106) = 4.47, *p = 0.037) and interactions (F(5,106) = 2.51, *p = 0.034). (D) Medial peri-lesion cortex CBF was significantly reduced across time 
(F(5,107) = 3.06, *p = 0.013) and injury condition (F(1,107) = 23.0, ***p < 0.001, interaction–ns). (E) CBF profile in dorsal hippocampus was significantly 
different across time (F(5,107) = 3.10, *p = 0.012) and injury condition (F(1,107) = 14.3, ***p < 0.001, interaction–ns). (F) Somatosensory cortex showed 
stable CBF across all timepoints (F(5,106) = 1.88, p = 0.104, ns) with higher overall longitudinal trend for shams compared to TBI animals (injury factor, 
F(1,106) = 10.4, **p = 0.002, interaction–ns). (G) Auditory cortex profiles were significantly different across time (F(5,107) = 3.16, *p = 0.011) and injury con-
dition (F(1,107) = 12.7, ***p < 0.001, interaction–ns). (H) Piriform cortex reported stable CBF profiles across timepoints (F(5,105) = 1.20, p = 0.316, ns) and 
injury condition (F(1,105) = 1.86, p = 0.175, ns and post-hoc comparisons identified significantly lower CBF at 60dpi in TBI vs. sham mice(*p = 0.025). (I) 
Rhinal cortices (ento, ecto, peri) showed an overall similar CBF trend across time (F(5,106) = 2.11, p = 0.069, trending) and injury condition (F(1,106) = 2.13, 
p = 0.147, ns). Post-hoc comparison found a trending decline at 60dpi for TBI vs. sham (p = 0.076). (J) CBF in thalamus was significantly different across 
timepoints (F(5,104) = 4.57, ***p < 0.001) and injury condition (F(1,104) = 10.0, **p = 0.002, interaction–ns). (K) Hypothalamus found stable CBF profiles 
across time (F(5,103) = 1.56, p = 0.177) with significantly different perfusion across injury conditions (F(1,103) = 7.73, **p = 0.006). (numbers in regional titles 
denote the PWI slice data)
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CBF in sham and TBI animals. Medial perilesional (ret-
rosplenial) cortex also had significant reductions in CBF 
across time (Fig.  3D, Injury, F(1,107) = 23.0, ***p < 0.001, 
Timepoints, F(5,107) = 3.06, *p = 0.013). CBF in TBI 
mice was reduced relative to shams at 3 (*p = 0.028), 14 
(*p = 0.011), and 60dpi (*p = 0.021).

Hippocampus exhibited reduced CBF across the 
60dpi period in TBI mice (Fig. 3E, Injury, F(1,106) = 14.3, 
***p < 0.001, Timepoints, F(5,106) = 3.10, *p = 0.012) 
with significant reductions compared to shams at 14 
(*p = 0.037) and 60dpi (*p = 0.016). CBF within the cor-
tical regions adjacent to injury (somatosensory, audi-
tory) showed complementary temporal dynamics. In 

Fig. 4 (See legend on next page.)
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somatosensory cortex TBI mice had reduced CBF span-
ning the entire experimental period whilst shams had 
temporal reductions but were not significantly different 
albeit there was a significant group effect (Fig. 3F, Injury, 
F(1,106) = 10.40, **p = 0.002, Timepoints, F(5,106) = 1.88, 
p = 0.104). TBI CBF was significantly lower relative to 
shams at 3 (*p = 0.012) and 14dpi (*p = 0.04). In the adja-
cent auditory cortex but more distant from TBI site, CBF 
increased over the first 30dpi but then declined at 60dpi 
(Fig.  3G, Injury, F(1,104) = 9.31, **p = 0.003, Timepoints, 
F(5,104) = 2.63, *p = 0.028) with significantly reduced CBF 
in TBI mice only at 60dpi (*p = 0.035).

Even more distant from the TBI site, two ventrolateral 
cortical regions (piriform, ento-ecto-peri-rhinal) exhib-
ited similar declines at 60dpi (Fig.  3H, I), with no sig-
nificant injury vs. time interactions. Piriform cortex was 
significantly reduced at 60dpi (Post-hoc, Sham vs. TBI 
*p = 0.025) with trending reductions in the rhinal corti-
ces (ento, ecto, peri) at 60dpi (Post-hoc, Sham vs. TBI, 
p = 0.076).

Subcortical regions such as thalamus and hypothala-
mus are involved in social behavior (Fig. 3J, K) [46]. Sham 
animals showed higher thalamic CBF than TBI mice 
at baseline (Fig.  3J, Injury, F(1,104) = 10.0, **p = 0.002, 
Timepoints, F(5,104) = 4.57, ***p < 0.001, Post hoc, base-
line *p = 0.013, 60dpi *p = 0.027). Hypothalamus had no 
temporally significant CBF changes (F(5,103) = 1.56, 
p = 0.177) but significant differences across injury condi-
tions (F(1,103) = 7.73, **p = 0.006) with TBI mice having 
lower CBF at baseline (*p = 0.017) and 14dpi (*p = 0.032) 
compared to shams.

Reduced cortical angioarchitecture coincides with social 
behavior decrements at 60dpi
We previously reported recovery of cortical vascula-
ture by 30dpi after TBI [25]. Surprisingly, at 60dpi we 
observed broad disturbances to vascular morphology that 
mirrored CBF reductions (Fig. 4A). At TBI site (lesion), 
vessel junctions had a trending reduction (p = 0.068) 
in TBI mice compared to shams (Fig.  4B), while vessel 

density was significantly decreased (p = 0.002, Fig.  4C) 
accompanied by significantly increased vascular end-
points (p = 0.0001, Fig.  4D). Average vessel length was 
unaltered between sham and TBI mice (Fig. 4E). Fractal 
analysis confirmed reduced vascular complexity that mir-
rored reduced vessel density (Fig. 4F-H). Maximum local 
fractal dimension (LFD) was significantly reduced at the 
lesion (p = 0.0001) and the peri-lesion sites (p = 0.047) 
compared to shams (Fig. 4H-tailed-Mann-Whitney Test). 
Thus, impaired angioarchitecture at 60dpi provides an 
anatomical basis for our observed physiological and 
behavioral decrements.

Further linkage between vascular anatomy and lon-
gitudinal social behavior was assessed via correlations. 
Vascular metrics at 60dpi were correlated across tempo-
ral social behavior (Fig.  4I). Broadly, sham animals had 
progressively positive correlations between vessel den-
sity and average vessel length against absolute partner-
interaction (API) across the 60dpi time course but were 
negatively correlated in TBI mice (Fig.  4I). Total vessel 
endpoints were strongly correlated (i.e. more vascular 
fragmentation) with API while maxLFD negatively cor-
related (Fig.  4I, top row). Both RPI (manual) and RPP 
(automated) were identical with opposite correlations 
being observed between groups (Fig. 4I, middle, bottom 
rows). Interestingly, at 7- and 60dpi, maxLFD had posi-
tive correlation with relative partner-interaction for sham 
but negative correlation with TBI. In sum, TBI mice had 
opposite correlation trends compared to shams, espe-
cially at 60dpi, and the correlation trends across time 
would suggest that TBI-induced social behavior deficits 
soon after the injury have predictive potential for long-
term vascular decrements.

Cerebrovascular volumes (CBV) mirror CBF
Cerebral blood volume (CBV) measurements exhibited 
early post injury declines spanning 14dpi with latent 
recovery at 30dpi followed by a robust decline at 60dpi 
(Fig.  4J). CBV in the lesion cortex across time points 
showed a trending change (F(5,104) = 2.20, p = 0.059) 

(See figure on previous page.)
Fig. 4 Vascular networks at 60dpi are perturbed. (A) Axial cerebral vasculature is reduced in TBI (right) compared to sham (left) mice in vessel networks 
encompassing the middle cerebral artery (MCA). Green circle = peri lesion ROI, blue circle = lesion ROI, yellow asterisk = impact site. (B) Number of vessel 
junctions were reduced within the TBI lesion (p = 0.068) (red circles) compared to shams (black squares). (C) Lesion site vessel density in TBI mice was 
significantly (**p = 0.002) reduced compared to shams but not in peri-lesional cortex. (D) Vessel end points were significantly increased at TBI lesion site 
compared to shams (***p = 0.0001). (E) Average vessel length was unaltered between sham and TBI mice. (F, G) Fractal analysis identified a leftward shift 
(reduced vessel complexity) in local fractal dimension (LFD) histograms in the lesion (F) and in peri-lesion (G) sites. (H) Maximum local fractal dimension 
(LFD) was significantly reduced in lesion (***p = 0.0001) and peri-lesion sites (*p = 0.047) for TBI mice relative to shams (B-H: 2-tailed-Mann-Whitney-Test). 
(I) Vascular network parameters at 60dpi were correlated to temporal social outcomes across sham and TBI mice, with opposite correlations between 
groups. Top row – Absolute partner-interaction-time (API), middle row – Relative partner-interaction time (RPI), bottom row – Relative partner-preference 
(RPP). (J) Transient decrements in cerebral blood volume (CBV, % tissue) over the first 14dpi recovers by 30dpi but is followed by a dramatic 60dpi de-
crease. (K) Lesion cortical CBV was low initially but slowly increased after 30dpi (F(5,104) = 2.20, p = 0.059). CBV profiles were significantly different across 
time but not injury condition (sham vs. TBI, F(1,104) = 7.27, **p = 0.008, interaction–ns). (L) Medial peri-lesion cortex had significantly reduced CBV across 
timepoints (F(5,102) = 3.76, **p = 0.004) and injury condition (F(1,102) = 24.2, ***p < 0.001, interaction–ns). (M) CBV in lateral peri-lesion cortex has a similar 
trajectory as lesion cortex with significant differences across temporal (F(5,101) = 3.68, **p = 0.004) and injury condition (F(1,101) = 6.87, *p = 0.010), and 
interactions (F(5,101) = 3.54, **p = 0.005). TBI animals had higher CBV at 60dpi (**p = 0.002)
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Fig. 5 (See legend on next page.)
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and were significantly different across injury condi-
tions (sham vs. TBI, F(1,104) = 7.27, **p = 0.008, interac-
tion – ns) (Fig.  4K). Shams had higher CBV compared 
to TBI at baseline (**p = 0.006) and at 14dpi (*p = 0.033). 
The medial perilesion cortex exhibited significantly dif-
ferent CBV across time (F(5,102) = 3.76, **p = 0.004) and 
injury (F(1,102) = 24.2, ***p < 0.001, interaction – ns) with 
elevated CBV in sham mice compared to TBI at base-
line (*p = 0.015), 3 (**p = 0.007), 7 (*p = 0.048), and 14dpi 
(**p = 0.005) (Fig.  4L). Baseline CBV for sham animals 
was higher compared to 30dpi (*p = 0.044).

CBV in the lateral perilesional cortex (Fig.  4M) was 
significantly different across timepoints (F(5,101) = 3.68, 
**p = 0.004) and injury conditions (F(1,101) = 6.87, 
*p = 0.010) with significant interactions (F(5,101) = 3.54, 
**p = 0.005). CBV was initially lower for TBI mice vs. 
shams at baseline (***p < 0.001) and 3dpi (**p = 0.003) but 
progressively increased whereas, CBV decreased with 
time in sham mice (Baseline vs. 3dpi: *p = 0.047, 7dpi: 
*p = 0.013, 14dpi: **p = 0.002, 30dpi: **p = 0.008, 60dpi: 
**p = 0.002). At 60dpi TBI mice had elevated CBV com-
pared to 3dpi (**p = 0.002) indicating persistent CBV 
increases after injury. CBV in regions distant to the injury 
site, such as the hypothalamus, thalamus and entorhinal 
cortex exhibited a similar profile with broad decreases 
in TBI mice compared to shams across most time points 
(Supplementary Fig. 6).

Spatiotemporally dispersed effects of TBI
The relationship between ipsi- and contralateral brain 
regions and their CBF was assessed for temporally related 
patterns (auto-correlation) and interactions between 
region and CBF (cross-correlations) (Fig.  5A). Broadly, 
TBI at 3dpi resulted in lower autocorrelations of CBF 
to ipsilateral compared to contralateral brain regions 
(Fig.  5A, top panel), which contrasts to the uniform 
bilateral correlations in shams. Early ipsilateral CBF dys-
regulation in TBI animals recovered by 30dpi (Fig.  5A, 
middle panel), which coincides with vascular recovery 
[25]. However, at 60dpi when both CBF and vessel den-
sity are reduced, CBF auto-correlations across multiple 
brain regions are dramatically reduced (Fig. 5A, bottom 

panel) in stark contrast to sham mice that exhibit strong 
bilateral CBF auto-correlations, as would be expected in 
healthy mice. These findings confirm the prolonged sec-
ondary consequences of TBI on blood flow across broad 
portions of the brain, including those distant from the 
injury and mirror angioarchitecture.

We next probed if early CBF dynamics (3-30dpi) pre-
dict the imminent secondary vascular damage late after 
injury (60dpi). Correlations between longitudinal CBF 
(Baseline–60dpi) and vascular metrics measured within 
lesion cortex at 60dpi (Fig.  5B) demonstrate distinct 
longitudinal correlation patterns in sham and TBI mice. 
Roughly, in TBI mice the correlations suggest an initial 
negative correlation(s) between vessel density and length 
that increasingly, with time become strongly correlated 
by 60dpi. These observations are opposite in vessel end-
points and vascular complexity measures (LFD). Thus, 
early (3-7dpi) blood flow and vascular disruption are not 
synchronized whereas the low CBF and loss of the vascu-
lar network are tightly correlated at 60dpi. In summary, 
CBF measures after TBI may reflect altered vascular 
morphology.

Neurovascular function corresponds to social behavior 
decrements
To capture associations between cerebrovascular func-
tion (CBF, CBV) and social behavior longitudinally after 
TBI, we undertook correlations across bilateral regions. 
This approach demonstrated strong linkage of RPI to 
ipsi- and contralateral cerebrovascular decrements 
across social behavior related brain regions (ipsilateral, 
Fig. 6A-C; contralateral, Fig. 6G-I). In general, the corre-
lation matrices, as evident in similar heatmaps between 
ispi- and contralateral regions were remarkably consis-
tent. When all regional correlations were averaged, we 
observed distinct signatures that separated TBI mice 
from shams (Fig.  6B-F, H-L). TBI induced ipsilateral 
CBF and CBV changes which strongly correlated with 
RPI and API but was negatively correlated in sham mice. 
Compared to CBF, the CBV changes exhibited the stron-
gest correlations on both ipsi- and contralateral brain 
regions (e.g. Figure 6C, I). We also note virtually identical 

(See figure on previous page.)
Fig. 5 Temporal relationships between cerebral blood flow (CBF) across brain regions. (A) Temporal CBF correlation coefficients across brain regions high-
light global alterations due to TBI (right panel) resulting in loss of CBF auto-correlations at the injury site at 3dpi that moderately recovers by 30dpi but is 
greatly perturbed at 60dpi unlike shams (left panel). This dysregulation also spreads to the contralateral hemisphere at 60dpi in TBI mice. (B) Temporal CBF 
correlations to vascular network measures at 60dpi further confirm an initial recovery. However, delayed cerebrovascular structural deficits contributes to 
the declining brain perfusion. At 60dpi, vessel density in lesion cortex and longitudinal CBF across ipsi- and contralateral brain regions in TBI animals show 
mostly negative correlations at 3-30dpi followed by positive correlations at 60dpi. In contrast, sham animals show highly positive correlations at 14dpi 
and low mixed correlations at other time points. Vessel length vs. CBF correlations are negative for sham animals across all timepoints but positive for TBI 
animals at 60dpi. Total end points and CBF correlations in sham animals also exhibited mostly mixed correlations except 14dpi with negative correlations. 
Conversely, TBI animals show positive correlations at 3- and 30dpi, negative ipsilateral correlations for 7-60dpi, and negative contralateral correlations at 
7dpi, but positive contralateral CBF correlations at 14-60dpi. maxLFD and CBF correlations were negative for sham animals unlike TBI animals with posi-
tive correlations at 7-14dpi, negative at 30dpi, and positive again at 60dpi. Abbreviations: Med – Medial, Lat – Lateral, Ctx – Cortex, Hpc – Hippocampus, 
CaudPut – Caudate putamen, Thal – Thalamus, Hypoth - Hypothalamus
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Fig. 6 Neurovascular physiology in social behavior associated brain regions. (A-C) Correlation coefficients of relative partner interaction (RPI) to CBF 
and CBV across ipsilateral social behavior associated brain regions in TBI and sham mice at 3, 30, and 60dpi (columns). Regionally averaged correlation 
coefficients are illustrated in B, C. (B) TBI animals exhibit the opposite correlations at 30dpi with strong positive correlations unlike negative correlations 
in shams for RPI vs. CBF. (C) In TBI mice RPI vs. CBV show strong correlations across time in contrast to shams having negative correlations with behavior. 
(D) Correlations of absolute partner interaction (API) with ipsilateral CBF and CBV exhibit a virtually identical (compared to RPI) set of regional correlations 
between sham and TBI animals. (E) API vs. CBF correlations exhibit identical trends as RPI vs. CBF correlations for both sham and TBI animals with the 
largest divergence at 30dpi. (F) API vs. CBV correlations are elevated in TBI mice compared to reduced strength correlation patterns in shams. (G) Cor-
relation coefficients of RPI vs. CBF and CBV across contralateral brain regions behavior have the same temporal patterns as the ipsilateral brain regions. 
(H) Contralateral CBF vs. RPI at 30dpi have increased correlations in TBI mice but reduced in shams with no overt differences at 3 or 60dpi. (I) As in the 
ipsilateral regions, RPI vs. CBV correlations were strongly positive in TBI mice but greatly reduced temporally in shams (J) API correlation to contralateral 
CBF and CBV were strong across all regions in TBI but not shams. (K) API vs. CBF correlations in shams were negative compared to TBI animals showing 
stable moderate positive correlations. (L) API vs. CBV correlation patterns were strongly positive for TBI mice but predominately negative in sham animals. 
Abbreviations: Med – Medial, Lat – Lateral, Ctx – Cortex, Hpc – Hippocampus, CaudPut – Caudate putamen, Thal – Thalamus, Hypoth - Hypothalamus
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correlations across all social behavior metrics (Supple-
mentary Fig.  7). In summary, CBF vs. RPI/API correla-
tions increase from 3- 30dpi but then decline by 60dpi 
while sham animals show opposite trajectories (Fig.  6B, 
E). CBV correlation profiles with RPI/API have progres-
sive negative correlations in shams whereas TBI mice 
have persistent positive correlations (Fig. 6C, F). Similar 
correlational directionality was observed between CBF/
CBV and RPI/API in contralateral brain regions (Fig. 6G-
L). Profiles showing API correlated with ipsilateral 
(Fig. 6D-F) and contralateral (Fig. 6J-L). Hence, early cor-
relations between behavior and CBF predict long-term 
physiological deficits.

Discussion
We investigated longitudinal and dynamic evolution of 
behavior and vascular physiology across 2-months post-
TBI (Fig. 1). Our study is the first preclinical TBI study 
to demonstrate reduced social preference between famil-
iar cage-mates when vascular functions decline. The key 
findings are: (i) a late decline (60dpi) in sociability of TBI 
animals while motor and exploratory behavior recover; 
(ii) longitudinal CBF (Figs.  2 and 3) identifying a novel 
multiphasic recovery profile with delayed 60dpi global 
decline in perfusion that also encompasses brain regions 
processing social behavior; (iii) angioarchitecture exhib-
its vascular damage at 60dpi, including reduced vessel 
density and increased fragmentation (Fig. 4); (iv) vascular 
and social behavior correlations displayed pronounced 
negative correlations early after TBI but progressively 
become positively correlated by 60dpi; iv) regional corre-
lations confirmed dynamic bilateral CBF changes across 
the brain after a unilateral TBI, (Fig. 5) that becomes pre-
dominately perturbed ipsilaterally; and (v) unique corre-
lation patterns between behavior and vascular physiology 
emerge in TBI animals (Fig. 6). In summary, our study for 
the first-time links how cerebrovascular physiology may 
contribute to the decline in social interactions after TBI 
in male mice. Our findings also suggest that monitoring 
social behavior early after brain injury may predict long-
term neurovascular damage, providing a putative avenue 
for therapeutic interventions.

Neuropsychological disabilities, including sociabil-
ity issues are being increasingly recognized after TBI 
in adults [47] and children [48]. Subjects often exhibit 
the inability to recognize affective facial expressions, 
[49, 50] impaired verbal and non-verbal communica-
tion, [9] and diminished empathy, [51] culminating into 
decreased time spent with friends and families. Interest-
ingly, brain regions regulating social behavior are similar 
between rodents and primates [52, 53]. Feature content 
of socially transferred food preference memory is known 
to decline after systems consolidation, [40] and social iso-
lation elicits similar pathophysiology in healthy rodents 

as in humans [54]. A few studies, in preclinical models 
of TBI, have explored social dominance and interaction 
behavior [20, 55]. Our observation of behavioral recovery 
at 30dpi corroborates a recent study that showed lack of 
social deficits at 30dpi in mice with repeated mTBI [56]. 
Consistent with the previous literature we also found 
TBI animals cover longer distances than the shams, at 
higher relative speed [57]. Preferentially exploring and 
frequenting the center of the open-field arena suggests an 
inclination for taking risks, a well-documented behavior 
observed in rodents and human subjects after TBI [58–
60]. However, long-term social isolation among familiar 
individuals post-TBI has not been studied.

In chronic TBI, cognitive impairments and social iso-
lation often precede the debilitating prolonged conse-
quences of injury among human subjects that parallel 
Alzheimer’s-related signatures, [61] depression, and sui-
cidal tendencies [62]. Our novel approach captures the 
long-term social interaction deficits between familiar 
mice as observed in head-injured human subjects [63, 
64]. In the classic Crawley’s 3-chamber test, [37, 65] a test 
mouse interacts with a combination of un-familiar mice 
and a novel object where the social performance reflects 
combined effect of novel entity and neophobia [66]. An 
adult frontal TBI model showed increased preference 
for familiar mice in 3-chamber task, however, longitudi-
nal transition of social behavior in same animals was not 
investigated [16]. Our temporal study demonstrated, in 
TBI mice, no initial sociability deficits but at chronic time 
points the emergence of a decline in voluntary preference 
of a known animal i.e. their cage-mate partner. This dec-
rement in sociability of TBI mice was accompanied by 
decreased anxiety and increased exploration consistent 
with increased risk behavior, as previously reported [67]. 

Numerous studies have sought to link altered behav-
ior to inflammation [68] and neuronal cell death [69] as 
underlying mechanisms. Surprisingly, there are limited 
investigations into how cerebrovascular morphology 
and function are linked after TBI to behavioral deficits. 
A recent study in TBI subjects found significant associa-
tions at ~ 2yrs post injury between decreased perfusion 
and psychoemotional outcomes (i.e. anxiety) [70]. Neu-
rovascular coupling implies a link between task-evoked 
cellular metabolic demands and blood flow to the acti-
vated brain region [71]. Social recognition associated 
cellular networks require protein synthesis and includes 
cAMP responsive element-binding protein (CREB) for 
transcriptional consolidation [72, 73]. Adult human 
TBI leads to resting hypoperfusion in many task-related 
brain regions years after injury and is similar to that 
reported in TBI rodent models [31, 74]. In our study we 
also found early hypoperfusion that recovered by 30dpi 
but then rapidly declined in virtually every brain region. 
Interestingly at 60 dpi, we found reduced CBF in dorsal 
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hippocampus (dHpC) whose subregions are necessary for 
spatial exploration (CA1) and social interaction (CA2) 
[75]. Reduction in interaction with familiar in compari-
son to novel conspecifics in chronic-TBI could be driven 
by corticotrophin signaling from PFC to lateral septum 
[76]. Two months after the injury, reduction in intrinsic 
excitability and decreased synaptic output of somatosta-
tin neurons in layer V of orbito-frontal cortex has been 
reported [77], consistent with long-term behavioral defi-
cits as shown in ours and other studies [78, 79]. Such 
deficits could arise from the TBI-associated neuronal 
damage in cortex, dorsal hippocampus and thalamus and 
future studies can shed more light on the neural under-
pinnings of similar TBI comorbidities. Along with this 
rationale, our data captures a delayed decline in over-
all neurovascular functional health and maintenance in 
brain regions associated with social behavior. Our results 
show reduced regional CBF post TBI with a novel mul-
tiphasic pattern of intermittent recovery at 7 and 30dpi, 
worsening of blood flow at 14dpi and a delayed decline at 
60dpi. Interestingly, we observe similar longitudinal pro-
files for RPP and CBF measurements in social behavior 
relevant brain regions.

Our results are consistent with previous studies show-
ing acute and chronic hypoperfusion and behavior 
deficits in both clinical and preclinical TBI [57, 80–82]. 
Several studies have demonstrated recovery of behavioral 
performance after TBI in rats, [83] mice, [57, 84] and 
humans [85]. The primary finding of many studies is that 
social, anxiety and cognitive behavioral domains worsen 
with increasing time. A similar progressive decline in 
brain perfusion long-term has been reported. Human 
studies report CBF recovery by 3 weeks post injury, with 
linkage to improved neurological outcomes [86]. Grohn 
and colleagues noted biphasic hypoperfusion with tran-
sient recovery followed by a second hypoperfusion epoch 
over two weeks after TBI, that relates to changes in vas-
cular density [87]. Others have also noted protracted 
CBF reduction in rodents that has been shown to last up 
to 1 year post TBI [88]. Our current study and previous 
observations demonstrated perfusion recovery at 30dpi 
[25] that was reflected by recovery of vascular density. 
It is important to note that brain-wide circuit reorgani-
zation has been well documented after TBI that likely 
impacts behavioral outcomes [89]. In focal ischemic 
injury there is a dissociation between CBF and neuronal 
activity that could impact behavior [90]. In our study the 
consistent decrement in CBF at 60dpi relates to reduced 
vascular density and complexity which may exacerbate 
behavioral deficits and may impact regional connectivity.

In support of our study, previous findings noted that 
focal TBI elicits longitudinal global cerebrovascular defi-
cits underlying large-scale brain network effects, likely 
leading to protracted social deficits [91]. Bilateral CBF 

reductions, similar to our observations, have been seen 
in human mTBI subjects for prefrontal cortex, putamen, 
and hippocampus, while reduced CBF in cortex and cau-
date putamen is associated with depressive symptoms, 
and in hippocampus with anxiety [70]. Consistent with 
the previous human studies, we also observe thalamic 
pathophysiology after mTBI [92]. Decreased thalamic 
dendrite complexity in rats also showed recovery by 
4-weeks post mTBI, [93] corroborated by corresponding 
vascular and functional perfusion recovery in our study 
that subsequently collapses by 60dpi.

TBI results in immediate damage to focal and distant 
cerebrovascular morphology that then partially recov-
ers [23, 25, 94]. The subsequent secondary cellular and 
molecular cascades after moderate to severe TBI result in 
long-term deficits including hemorrhage, edema, reduced 
CBF, vasospasms, blood-brain disruptions, coagulopa-
thy, and chronic inflammation [95–97]. Surprisingly, we 
observed a second period of vascular loss at 60dpi despite 
vascular recovery by 30dpi [25]. The late diminished ves-
sel characteristics mirrored reduced CBF virtually across 
all brain regions compared to shams. Thus, initial vascu-
lar recovery is transient and is not well integrated within 
the brain parenchyma as stable neurovascular units [98, 
99]. Structural vascular abnormalities in human TBI sub-
jects exhibit microvessels with flattened, reduced lumina 
and longitudinal folds in the pial, cortical, and capillary 
zones [26, 100]. In lateral fluid percussion rodent mod-
els there also is microvascular recovery which does not 
mirror healthy control vasculature [87, 101]. As noted 
previously, we observed identical recovery profiles after 
TBI [25] which then rapidly degrade by 60dpi. Vascu-
lar density was also increased at 14dpi after repeated 
TBI concomitant with diminished CBF, cerebrovascular 
reactivity, and neuronal activity [102]. In adult and pedi-
atric human subjects after TBI, CBF and CBV decline 
[47, 103]. Broadly, TBI in clinical and preclinical studies 
suggest that dynamic vascular density alterations lead to 
chronic reductions in brain responsivity and perfusion.

It is noteworthy that there are regional variations, par-
ticularly in correlative preclinical studies. For example, 
hippocampal vessel density does not vary with declining 
CBF whereas increases in CBF and vessel density were 
reported in ipsilateral thalamus 8-months after TBI [28, 
31, 47]. The authors reported that poor spatial explora-
tion performance correlated with increased thalamic ves-
sel density. Griffiths and colleagues reported no changes 
in cortical or hippocampal CBF or CBV 6-months after 
mild TBI despite cognitive decrements [104]. Similar 
findings have been reported in individuals with mild [70]
and in moderate severe TBI [105]. 

Our correlations measure the interdependent blood 
flow across brain regions highlighting bilateral effects 
unique to TBI animals. Specifically, global blood flow 



Page 15 of 19Singh et al. Acta Neuropathologica Communications          (2024) 12:126 

correlations were reduced at 3dpi with recovery by 30dpi 
followed by a dramatic decline at 60dpi. The correla-
tions of longitudinal behavior to 60dpi vascular metrics 
provided an early-stage behavioral marker to predict the 
imminent long term neurovascular damage from TBI. 
Finally, our correlations between social behavior, blood 
flow and blood volume in brain regions exhibited unique 
patterns for TBI animals at 3, 30- and 60dpi. Similar 
behavioral correlations to CBF were found in mTBI [104]. 

The strengths of our study are, (i) longitudinal in vivo 
assessments of behavior alongside cerebrovascular func-
tion after TBI which provide a continuous view of how 
recovery is modulated; (ii) behavioral tests across mul-
tiple domains (motor, exploratory, social) but with novel 
social preference for familiar cage mates, an observation 
reported in human subjects yet underexplored in pre-
clinical models; (iii) our extended observation window 
to 2-months post-TBI which is equivalent to ~ 7 years in 
humans [106], (iv) novel multiphasic global evolution of 
brain perfusion after injury in the same subjects; (v) novel 
CBF autocorrelations across whole brain regions demon-
strating remission of cerebrovascular pathophysiology at 
30dpi but recurrence at 60dpi; (vi) the loss of structural 
vascular networks near the impact site, coupled with spa-
tially dispersed secondary chronic effects underlie CBF 
and social behavior deficits; and vi) correlations across 
behavior and cerebrovascular physiology provide a pre-
dictive assessment of imminent long-term pathophysiol-
ogy underlying TBI comorbidities.

Several mechanisms that may be responsible for the 
findings reported herein; moreover, these mechanisms 
very likely act synergistically to elicit the decrement in 
vascular function. We speculate that the decline in mor-
phology and function is multi-faceted: (1) Recent studies 
have noted vascular pruning is accompanied by microg-
lial clearing of endothelial cells [107], (2) microglia mod-
ulate blood-brain-barrier dysfunction in TBI and are 
linked to vascular leakage [108], (3) Systemic inflamma-
tion evokes microglia appear to initially maintain the BBB 
but sustained inflammation results in astrocyte endfeet 
loss and impaired BBB [109], (4) Microglia are vasoregu-
latory and their transcriptome express vasoreactive genes 
[110], (5) Pericytes and microglia are intimately inte-
grated in capillary function and loss of this association 
contributes to vascular dysfunction [111], and (6) While 
the current study focused exclusively on the evolution of 
vascular perturbations and their impact on social behav-
iors, it would be important to directly assess regional 
connectivity between regions implicated in social behav-
ior. Diffusion MRI or resting state MRI could be and have 
been used to assess changes in regional connectivity after 
TBI [112]. Each of these potential mechanisms are likely 
involved in the temporal blood flow trajectory we report. 

Clearly, additional studies are required to dissect these 
mechanisms in more detail.

There are several limitations of our current study. They 
include: (i) absence of female mice perfusion and behav-
ioral data. Female gender is underrepresented in clini-
cal and most pre-clinical research studies and emerging 
studies suggest that women of the same age group (com-
pared to men) are more susceptible to adverse conse-
quences of TBI [113]. To fill this gap we are currently 
investigating the long term physiological and behavioral 
pathology post-TBI in female mice; (ii) some of the vari-
ance in our measurements can be attributed to the mod-
est number of replicates (n = 6–8/grp/time) but exhibited 
sufficient statistical power particularly in light of our lon-
gitudinal assessments; (iii) limited anatomical resolution 
from the perfusion-weighted MRI measurements. Due 
to the rapid acquisition techniques in-plane resolution 
was 250 μm/pixel which provide sufficient resolution for 
regional brain assessments using manual segmentations 
based on the Allen brain atlas [114]. Future studies will 
address these limitations by combining high-resolution 
optical with magnetic resonance imaging. However, MRI 
does provide a powerful non-invasive and longitudinal 
global assessment of pathophysiology that is not fea-
sible with other techniques; (iv) baseline CBF variations 
between sham and TBI groups before injury were noted 
in some but were not different for regions involved in 
social behavior (hippocampus, piriform, auditory, rhinal 
cortices); and, (v) use of isoflurane anesthesia is known 
to result in a dose-dependent biphasic alterations in 
cerebrovascular flow (vasoconstriction and vasodilation) 
[115, 116] and may impact the variance we observed in 
sham mice. Regional sensitivity to vascular responses 
has also been reported with sub-cortical regions being 
more affected by isoflurane [117], although the effects of 
repeated anesthetic exposure have not been reported.

Conclusions and future directions
In conclusion, our study for the first time demonstrates 
the possible cerebrovascular underpinnings of emerg-
ing social behavioral deficits after chronic TBI. Social 
interactions among familiar mice long after a TBI were 
reduced with concurrent longitudinal physiological 
reductions in CBF and CBV. A steep decline in CBF 
at 60dpi in social behavior related brain regions was 
observed in hippocampus and rhinal cortex. The loss of 
angioarchitecture at 60dpi provides the basis for pre-
cipitous declines in CBF and social behavior. Further, 
our correlations point to broad linkage between impair-
ments in vascular metrics, CBF, CBV, and social behav-
ior metrics. We suggest that such correlations may have 
predictive value for obtaining early estimates of long-
term damage, and potentially informing the optimal 
treatments. In addition to pharmacological interventions, 
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enriched environments with monitored exercise [118–
120] and virtual environments are deemed helpful dur-
ing chronic TBI recovery in rodents [121] and humans 
[122, 123], including virtual social networks [124]. Future 
investigations, in addition to assessing influence of sex, 
should investigate how vascular smooth muscle attri-
butes are modified by TBI [125] and how pericytes regu-
late blood flow [126]. Finally, chronic TBI sequelae such 
as BBB dysfunction, TGFβ signaling, and neuroinflam-
mation also contribute to the long-term effects of injury. 
While our study in a rodent preclinical model hints at the 
linkage between neuropsychological outcomes modu-
lated by brain perfusion, continued investigations are 
needed to improve our understanding of the longitudinal 
implications of TBI and how we might best intervene to 
improve patient outcomes.
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