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Abstract 

Huntington’s disease (HD) is an inherited neurodegenerative disorder caused by an expanded CAG repeat in the cod‑
ing sequence of huntingtin protein. Initially, it predominantly affects medium-sized spiny neurons (MSSNs) of the cor‑
pus striatum. No effective treatment is still available, thus urging the identification of potential therapeutic targets. 
While evidence of mitochondrial structural alterations in HD exists, previous studies mainly employed 2D approaches 
and were performed outside the strictly native brain context. In this study, we adopted a novel multiscale approach 
to conduct a comprehensive 3D in situ structural analysis of mitochondrial disturbances in a mouse model of HD. 
We investigated MSSNs within brain tissue under optimal structural conditions utilizing state-of-the-art 3D imaging 
technologies, specifically FIB/SEM for the complete imaging of neuronal somas and Electron Tomography for detailed 
morphological examination, and image processing-based quantitative analysis. Our findings suggest a disruption 
of the mitochondrial network towards fragmentation in HD. The network of interlaced, slim and long mitochondria 
observed in healthy conditions transforms into isolated, swollen and short entities, with internal cristae disorganiza‑
tion, cavities and abnormally large matrix granules.
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Introduction
Huntington’s disease (HD) is an inherited neurodegen-
erative disorder caused by an expanded CAG repeat in 
the coding sequence of huntingtin protein (Htt). Symp-
toms typically emerge in middle age (35–45  years) and 
life expectancy post-onset is generally 15–20  years. Ini-
tially, the disease primarily affects the corpus striatum 
involving the selective neurodegeneration of medium-
sized spiny neurons (MSSNs) [3]. Clinical manifestations 
include motor, cognitive, and psychiatric symptoms. 
Despite extensive research since the discovery of its 
genetic cause, the precise pathophysiological mecha-
nisms of HD remain poorly understood [54]. Signifi-
cantly, there is still no effective treatment for the disease 
[29, 42]. Consequently, identifying potential targets for 
therapeutic intervention in HD remains a top priority.

The expansion of a CAG repeat in the sequence of the 
gene coding for Htt leads to an abnormally expanded 
polyglutamine (polyQ) tract at the N-terminus of the 
protein [31]. The aberrant polyQ expansion induces con-
formational changes in Htt that increase its propensity 
to form aggregates, hallmarks of the pathology. Htt is a 
ubiquitous, mainly cytoplasmic, protein and it has been 
related to the endoplasmic reticulum (ER), mitochondria 
and Golgi complex [10]. Mutant Htt (mHtt), in either sol-
uble or aggregate state, interferes with a wide spectrum 
of cellular functions, including transcription, cell traffic, 
autophagy and metabolism [3].

Mitochondria play a pivotal role in neurons as the orga-
nelles responsible for meeting the high energy demands 
necessary to support their physiological functions. Evi-
dence of mitochondrial dysfunction has been identified 
in HD, with disturbances at the structural and functional 
levels [12, 41]. However, the precise causes and nature of 
this dysfunction remain unknown, even with conflicting 
results among different systems used for investigation 
[10, 25, 41, 43, 46, 52].

At the structural level, alterations in mitochon-
drial morphology and dynamics have been observed. 
Mitochondria are highly dynamic organelles that con-
tinuously undergo remodelling, fusion, fission and traf-
ficking. There is evidence that mitochondrial dynamics 
is disrupted in HD, with an imbalance between fusion 
and fission that results in excessive mitochondrial frag-
mentation driven by increased GTPase activity of Drp1, 
a protein implicated in fission [7, 9, 12, 23, 40, 52, 56]. 
Ultimately, this may result in an abnormal distribution 
of mitochondria across the neuronal domains. Morpho-
logically, cristae disorganization and swelling have been 
reported, which impair the mitochondrial capacity to 
produce energy [9, 25, 52, 56]. Additionally, recent find-
ings describe the enlargement of mitochondrial matrix 
granules [64].

Electron microscopy (EM) stands as a classical tech-
nique for studying the cellular ultrastructure. Recent 
revolutionizing advances in three-dimensional (3D) 
imaging by EM and in sample preparation are enabling 
3D ultrastructural studies of samples in their native con-
text, preserved at close-to-physiological conditions and 
at a resolution of few nanometers. Electron Tomography 
(ET) and Focused Ion Beam Scanning Electron Micros-
copy (FIB/SEM) are two major 3DEM techniques that are 
allowing addressing fundamental questions in molecular 
and cell biology [8, 15, 32, 45]. ET relies upon a transmis-
sion electron microscope (TEM) and provides 3D ultra-
structural information with resolution around 2–4  nm 
from biological samples with limited thickness (250–
500 nm) [32, 45]. FIB/SEM overcomes this limitation by 
cyclically (i) milling a thin layer of the specimen using the 
FIB, followed by (ii) SEM imaging of the exposed surface. 
FIB/SEM can thus collect information from large 3D 
volumes (tens of microns thick) at a resolution around 
5–10 nm [45, 65]. These 3DEM techniques can be com-
bined through multiscale integrative approaches so as to 
enable comprehensive ultrastructural studies.

Sample preparation constitutes a crucial step in EM. 
Cryofixation, involving the rapid freezing of the sample 
(in milliseconds) and maintaining it hydrated in vitre-
ous ice, ensures optimal structural preservation, avoiding 
artefacts induced by traditional chemical fixatives [26]. 
Cryofixation of thick samples (up to 200 microns thick) 
is accomplished by high-pressure freezing (HPF) to pre-
vent the ice crystal formation [58, 59]. While observing 
pristine HPF samples under cryogenic conditions (cryo-
ET, cryo-FIB/SEM) would be ideal, it remains challeng-
ing for tissues, although it is increasingly feasible for cell 
cultures. Cryo-ET would require thinning of the tissue 
sample by the technically demanding cryo-FIB lift-out 
technique and cryo-FIB/SEM volume imaging still suf-
fers from significant charging artefacts and low contrast 
to identify specific cells within the tissue block. Conse-
quently, the standard protocol for tissues to conduct 
comparative analysis among different conditions contin-
ues with freeze-substitution (FS) of the frozen water by 
an organic solvent and resin embedding [17]. The HPF/
FS tissue sample can then be (i) cut into thin sections (up 
to 200–500  nm) for observation with ET or (ii) directly 
visualized in the FIB/SEM at room temperature.

3DEM combined with sample cryofixation is provid-
ing new insights into cellular compartments and their 
functions [5, 6, 18, 20, 32] and is gaining traction in the 
exploration of neurodegenerative diseases [30, 55, 67]. 
In HD in particular, these techniques are expanding our 
understanding of polyQ aggregates and subcellular alter-
ations by working with in vitro samples or cultured cells 
[4, 19, 64, 66]. It is important to note, however, that these 
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studies are conducted outside the strictly native context, 
as they do not deal with intact tissue samples.

In this study, we aim to explore the structural dis-
turbances of mitochondria within their native tissue 
environment under the pathological conditions associ-
ated with Huntington’s Disease. To this end, we con-
duct in situ 3D structural analysis of mouse brain tissue 
samples under optimal structural preservation condi-
tions using a multiscale combination of advanced 3DEM 
techniques.

Results
FIB/SEM tomography reveals alterations 
in the mitochondrial network and morphology in a mouse 
model of HD
HD involves the selective degeneration of striatal MSSNs 
from the onset of the disease [3]. So, we aimed to ana-
lyze the organization and morphology of mitochondria 
in these neurons within their native brain tissue context 
to identify and characterize their disturbances in HD. To 
study such a complex and large structure as the mito-
chondrial network in a comprehensive manner and in 3D, 
we used FIB/SEM tomography. This imaging technology 
allows us to image large samples (in the range of tens or 
hundreds of microns) at a resolution of few nanometers.

Brain tissue samples from a 10-months old HD animal 
model (heterozygous zQ175) [37] and a corresponding 
littermate wild-type (WT) control were prepared with 
HPF/FS, as described in Materials and Methods. This 
preparation protocol ensures optimal structural preser-
vation of tissue samples. The tissue blocks were exam-
ined by FIB/SEM tomography and stacks were acquired 
from cells compatible with morphological characteristics 
of striatal MSSNs [36]. A total of 8 and 5 MSSNs from 
the HD animal model and the control, respectively, were 
imaged. The acquired stacks represented volumes of a 
thickness in the range 5–30 microns.

Figure  1 presents representative 2D slices of three 
volumes, one MSSN from the WT animal (A) and two 
MSSNs from the HD model (B,C). In these slices, mito-
chondria are discernible as dark grey masses within the 
lighter spotty cytoplasm. Selected areas with representa-
tive mitochondria and their 3D context are also depicted 
in Fig.  1D,E,F, illustrating different scenarios such as 
interlaced mitochondria (D), potential fission process 
(E) or an isolated mitochondrion with abnormal shape 
(F). Figure 2 showcases a gallery of typical mitochondria 
collected from the slices of all the 13 volumes acquired. 
Figures  1 and 2 present consistent phenotypical mito-
chondrial features in the HD model and control. Mito-
chondria in the WT animal appear as relatively slim rods 
that, depending on the orientation in the 3D volume, may 
be observed as circular, elliptical or long shapes in the 

slices. Furthermore, they exhibit a nearly homogeneous 
inner density, except for the dark mitochondrial matrix 
granules, owing to their tightly packed cristae that are 
barely visible individually. In contrast, mitochondria in 
the HD model look as swollen, irregular and distorted 
shapes. Their inner density is not homogeneous and the 
cristae appear separated. Moreover, a distinctive feature 
is the presence of holes in the matrix, membrane-less 
open spaces among the cristae, often containing some 
indistinct material in their interior (Fig. 2, white arrows). 
Despite the resolution limitations, the matrix granules 
seem to be more noticeable than in the WT animal.

Figure 3 presents 3D views of the three representative 
MSSNs shown in Fig. 1, featuring segmented mitochon-
dria and delineated plasma and nuclear membranes (also 
see Supplementary Movies 1–3). The membranes are 
presented with transparency to ensure visibility of mito-
chondria at any side of the nucleus. This visualization of 
the entire cytoplasmic area that was imaged with the FIB/
SEM microscope allows a more complete interpretation 
of the spatial distribution of mitochondria and their inter-
relationships. The thickness (size along the Z dimension) 
of those volumes was 25, 13 and 10 microns, respectively. 
In the WT animal, mitochondria appear as long and slim 
rods intricately interlaced and distributed throughout the 
cytoplasm, forming a complex mitochondrial network. 
In contrast, in the HD model, most mitochondria appear 
as isolated individual entities with irregular, rough and 
bumpy shapes and relatively short extensions, thus giv-
ing the impression of a disrupted mitochondrial network. 
While these alterations are somewhat recognizable in the 
2D slices presented in Figs.  1 and 2, the full interpreta-
tion of these changes is only achievable through the 3D 
visualization of a significant area of the neuronal soma as 
in Fig. 3.

Quantification of FIB/SEM data confirms the disruption 
of the mitochondrial network in a mouse model of HD
To conduct an objective quantification of the alterations, 
we devised a workflow that started with the automated 
segmentation of mitochondria in the volumes by means 
of an artificial-intelligence-based approach (see Materi-
als and Methods, and Fig. 3 for the segmentation result). 
The binary volumes with the mitochondria segmented 
were then fed to MitoGraph software [24, 50, 61]. This 
program estimates the skeleton of each individual mito-
chondrion, given as edges (i.e. mitochondrial segments 
or branches) and nodes (i.e. terminal ends and branch-
ing points), and provides both length and local width of 
the individual edges (Fig.  4A). Finally, all the data from 
MitoGraph were compiled to provide measurements for 
each individual mitochondrion, namely number of edges 
(i.e. segments or branches), volume, length (sum of the 
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length of its edges) and width (average of the width along 
the entire skeleton) (Fig. 4A).

To perform the quantification, we selected three rep-
resentative FIB/SEM volumes, one MSSN from the con-
trol and two MSSNs from the HD model (Fig.  3), with 
a significant cytoplasmic volume of the neuronal soma, 
796, 588 and 385 μm3, respectively. The automated seg-
mentation procedure identified and segmented a total of 
260, 140 and 119 mitochondria from the three volumes, 
respectively, which were then processed with MitoGraph. 
Subsequently, MitoGraph data were post-processed to 
obtain measurements for all individual mitochondria. For 
the statistical analysis, they were grouped into two cat-
egories: WT (260 mitochondria) and HD (259).

Figure  4 (B-F) presents the quantification results. 
While there are no significant differences in the total 
volume per mitochondrion between the phenotypes, 
there is a trend towards higher volume in HD (Fig. 4C). 
However, the other measurements (i.e. length, width 
and number of edges in Fig.  4D, 4E, 4B, respectively) 
indeed reveal statistically significant differences. 
Remarkably, mitochondria in the HD model are shorter 
(Fig. 4D) and exhibit a lower number of edges, mostly 
one (Fig. 4B), whereas in the WT counterpart they are 
notably longer and consist of a higher number of seg-
ments or branches, up to 10. This observation strongly 
supports the idea that an intricate network com-
posed of mitochondria with many and relatively long 

Fig. 1  FIB/SEM tomography of MSSNs. A,B,C Two representative XY slices of one MSSN from the WT animal (A) and two MSSNs from the HD model 
(B,C) are shown. Green and cyan contours delineate the plasma and nuclear membranes, respectively. Mitochondria are identified as dark grey 
masses inside the lighter cytoplasm. Dashed boxes enclose selected cytoplasmic areas with representative mitochondria. Bar: 1 μm. D,E,F Magnified 
views of the dashed boxes in A,B,C respectively, are presented (left panels) along with 3D isosurface representations (right panels) of a volume 
of 2 × 2× 2 μm3 around those areas, thus showing the nearby context of those mitochondria



Page 5 of 14Martin‑Solana et al. Acta Neuropathologica Communications           (2024) 12:88 	

Fig. 2  Mitochondria in slices of FIB/SEM volumes. Gallery of characteristic mitochondria (*) observed in 2D slices of all FIB/SEM volumes as dark 
grey masses within the lighter cytoplasm. A Mitochondria from 5 MSSNs from the WT animal. B Mitochondria from 8 MSSNs from the HD animal 
model. Mitochondrial granules are those black spots in the mitochondrial matrix (black arrowheads). To highlight the cytoplasm, nuclear areas (n) 
and extracellular space are shaded in cyan and grey colours, respectively, with the nuclear and plasma membranes delineated in cyan and green. 
Mitochondria in the HD model (B) present swollen and distorted shapes with separated cristae in comparison to the elliptical or long shapes 
in the WT animal (A). White arrows indicate some hollow areas with undefined content in the matrix of mitochondria in the HD model. Bar: 1 μm



Page 6 of 14Martin‑Solana et al. Acta Neuropathologica Communications           (2024) 12:88 

branches is disrupted under pathological conditions in 
HD, transforming mitochondria into short, monolithic 
individual entities. This supports a scenario of mito-
chondrial fragmentation.

Moreover, Fig. 4E also shows that mitochondria under 
healthy conditions are relatively thin, mostly with a width 
around 0.17  μm. In contrast, in the HD model they are 
significantly thicker, with a broad width range (up to 
0.44 μm) that accounts for irregular and bumpy shapes. 
Visualization of the length and width measurements of 
individual mitochondria in a scatterplot, as presented 
in Fig.  4F, clearly enables identification of the two phe-
notypes: short and thick in HD whereas long and slim 
in WT. These results explain why no significant differ-
ences in the total volume per mitochondrion are found, 
as described previously.

We also conducted the quantification by discriminat-
ing between the two MSSNs from the HD model. The 
results (Supplementary Figure S1) are consistent with the 

differences between the WT animal and the HD model 
described in the previous paragraphs.

In summary, these measurements and the results in 
Fig.  4 and in Supplementary Figure S1 faithfully reflect 
in objective and quantitative terms the alterations of the 
network and morphology observed in Figs.  1–3. They 
indicate disruptions in mitochondrial dynamics, with a 
tendency towards fragmentation, and disturbances in 
morphology, characterized by shorter and thicker (swol-
len) mitochondria under pathological conditions in HD.

Electron tomography enables zoomed‑in analysis 
of the mitochondrial disturbances and quantification 
of the altered matrix granules in HD
Although FIB/SEM tomography was valuable in visual-
izing the mitochondrial network and morphology, as 
described in previous sections, its resolution was still 
limited for studying fine details of the mitochondrial 
matrix, particularly granules. Therefore, we used ET as it 

Fig. 3  3D visualization of the FIB/SEM volumes. Three different views of the volumes from the MSSNs in Fig. 1 A,B,C are presented in A (WT), B (HD) 
and C (HD), respectively. The leftmost views show the volumes with their Z axis running through the depth, a 90° rotation around the horizontal 
axis results in the views at the central panels, and a subsequent 90° rotation around the vertical axis produces the rightmost views. Segmented 
mitochondria are depicted with isosurface representation in gold colour. Plasma and nuclear membranes are displayed in 85% transparent green 
and 50% transparent cyan, respectively, allowing visualization of the mitochondria behind the nucleus. The missing wedge in the volume shown 
in B (central panel) is caused by a technical drift while FIB/SEM acquisition. Bar: 1 μm
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enables identification and characterization of alterations 
in matrix granules thanks to the higher resolution power 
of this imaging technique.

For the ET experiments, we kept focused on striatal 
MSSNs from brain tissue samples and had available a 
9-months old HD animal model (homozygous zQ175) 
and a corresponding WT control. The samples were pre-
pared with HPF/FS, thereby ensuring optimal structural 
preservation as already described, and cut into ultrathin 
250-nm-thick sections suitable for TEM and ET. A total 
of 120 sections from cells compatible with striatal MSSNs 
of the HD model and control were observed by TEM, 
showing consistent structural patterns in accordance 
with the observations by FIB/SEM already described. 

Subsequently, representative areas containing mitochon-
dria from the HD model and the control were selected for 
examination through ET.

Figure  5 presents representative slices of the tomo-
grams of the MSSNs from the WT animal (A) and the 
HD model (B) as well as their 3D visualization (C). The 
mitochondria in Fig. 5 exhibit features consistent with the 
previous FIB/SEM results shown in Figs. 1 and 2. In WT, 
a bundle of mitochondria was imaged, all of them being 
slim, rod-shaped and having relatively homogeneous 
density, except for the granules. The cristae are discerni-
ble, displaying a compact stacked organization. However, 
the mitochondrion from the HD model appears aber-
rantly swollen with a disrupted matrix where the cristae 

Fig. 4  Quantification of mitochondrial alterations in FIB/SEM volumes. A Measurements. Each individual mitochondrion consists of its body 
and skeleton, where the skeleton comprises edges (mitochondrial segments or branches) and nodes (i.e. terminal ends and branching points). 
For each mitochondrion, the following measurements are obtained: number of edges, volume, length (sum of the length of its edges) and width 
(average of the local width -here shown with a colormap- along its edges). Illustrative examples of mitochondria from WT and HD animals are 
presented in semitransparent 3D isosurface representation with their skeleton overlaid. B–F Quantification plots. Comparison of measurements 
based upon 260 and 259 mitochondria from MSSNs of the WT animal and HD model. Violin plots show the distribution of the mitochondrial 
measurements: number of edges (B), volume (C), length (D) and width (E). A miniature boxplot is included inside the violin plots, with the box 
representing the interquartile range (between the first and third quartile), an additional quartile with the whiskers and the median with a white dot. 
The scatterplot (F) represents measurements (length and width) of all individual mitochondria. *p < 0.05; ***p < 0.0001
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are abnormally disorganized and significant areas are 
devoid of material or have fuzzy content (Fig. 5, arrow).

ET allowed identification of matrix granules and thus 
a fair comparison between the phenotypes. Visually, the 
dense granules exhibit granulated textures, consisting 

of smaller structural units (Fig.  5, insets), whereas FIB/
SEM only allowed visualization of matrix granules as 
black small spots (Fig.  2, black arrowheads). Further-
more, Fig.  5 already shows that the granules in the HD 
model generally appear larger than in the control. To 

Fig. 5  Electron tomography of mitochondria from MSSNs and analysis of matrix granules. A,B Tomograms of mitochondria from a WT animal (A) 
and a HD model (B). Three slices, separated by 22.12 nm, are shown for each tomogram. The arrow points to a hollow area with fuzzy content. 
Dashed boxes indicate granules magnified in the insets. Bar: 0.5 μm. C 3D visualization of the matrix granules within mitochondria. Granules are 
presented with isosurface representation in gold color and mitochondrial membranes are delineated in different semitransparent colors. D The 
distribution of the granule volumes obtained from 66 and 37 granules of the WT and HD animals, respectively, are presented with violin plots (right). 
Similar to Fig. 4, a miniature boxplot is included inside the violin plots and the median of the distributions denoted by a white dot. ***p < 0.0001
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carry out a quantitative analysis about their size, the indi-
vidual granules were segmented in an objective manner 
(as described in Materials and Methods), yielding a total 
of 66 and 37 granules in the WT and HD model, respec-
tively, and their volumes were then measured. Figure 5D 
presents the quantification results, confirming signifi-
cantly enlarged granules in HD. In the WT animal the 
distribution of granule volumes is narrow and the median 
value (white dot in boxplots in Fig. 5D) is approximately 
46,000 nm3 whereas in the HD model the distribution is 
much more dispersed and the median value is around 
84,000 nm3. These two median volume values are equiva-
lent to spheres with diameter 44 nm and 54 nm, respec-
tively, which represents an enlargement factor around 
1.23 × in the diameter of the mitochondrial granules of 
the HD model compared to WT. Finally, the number of 
matrix granules per nm3 of mitochondrial volume was 
measured from the segmented mitochondria and gran-
ules in Fig.  5, resulting in a decrease in the HD model 
(2.580 × 10–7 granules/nm3) with respect to the WT ani-
mal (8.097 × 10–7 granules/nm3).

Discussion
There is evidence of mitochondrial dysfunction in HD, 
with implications at the functional and structural levels 
[12]. However, certain conclusions remain controversial, 
likely caused by the inherent differences between model 
systems or experimental approaches [41]. In this study, 
we employed a novel multiscale approach for a compre-
hensive 3D in situ structural study of the mitochondrial 
disturbances in a mouse model of HD. We analyzed 
MSSNs from brain tissue samples prepared with cryo-
fixation-based methods to ensure structural preservation 
at close-to-native conditions. By combining various state-
of-the-art 3D imaging technologies, we examined mito-
chondria over significantly large areas of the neuronal 
soma (FIB/SEM) and their inner details with sufficient 
resolution (ET). Finally, computational image processing 
facilitated quantification of the disturbances.

Our findings suggest a disruption of the mitochondrial 
network in HD, leading to fragmentation. This results 
in isolated, short, swollen and aberrantly shaped mito-
chondria dispersed throughout the cytoplasm, where the 
intricate network composed of interlaced, slim, long and 
branched mitochondria found in healthy conditions no 
longer exists. Moreover, upon closer examination, swol-
len mitochondria in HD exhibit disorganized cristae, 
internal hollow areas with fuzzy contents and abnormally 
large matrix granules. In contrast, in the control they 
appear dense with tightly stacked cristae and granules of 
moderate size.

One strength of our approach is that it considers large 
areas of the neuronal soma within intact tissue and works 

in 3D at a resolution of few nanometers, allowing for a 
more precise analysis of the mitochondrial network. 
Strategies based on 3D optical microscopy (e.g. confo-
cal) enable analysis of the network within the entire cell 
volume [24, 50, 61], though at a limited resolution com-
pared to electron microscopy. Working with 2D electron 
microscopy, hence from only partial views of mitochon-
dria obtained from ultrathin sections of cells, is prone to 
misleading results concerning mitochondrial network, 
as it would be the case if conclusions on fragmentation 
were to be taken from Fig. 2. In our approach, image pro-
cessing has also been important for quantification. How-
ever, to quantitatively reflect the visual results (Fig.  3), 
we had to employ elaborate metrics such as number of 
edges, length and width of mitochondria (Fig. 4). In this 
regard, the total volume per mitochondrion, which is the 
simplest measurement, proved to be a misleading met-
ric that did not adequately reflect the evident alterations 
observed in Fig.  3. It showed no differences between 
control and HD (Fig.  4) simply due to the transforma-
tion of mitochondria from slim and long to swollen and 
short in HD. Regardless, our results of mitochondrial 
fragmentation are consistent with previous studies on 
other HD models or human samples, primarily based on 
2D microscopy or molecular approaches [7, 9, 40, 56]. 
Conflicting results concerning fragmentation also exist 
[25], possibly attributable to differences in HD models, 
experimental strategies or the reasons just mentioned in 
this paragraph (i.e. working in 2D and/or with deceiving 
metrics).

Regarding morphology, the mitochondrial swelling and 
cristae disorganization observed in MSSNs (Figs. 2 and 5) 
align with all morphological reports thus far [9, 25, 38, 
52]. Remarkably, we noticed hollow areas in the matrix 
with fuzzy content. They resemble mitochondrial vacu-
olization scenarios highlighted in previous works [25, 38]. 
They are also compatible with the mitochondrial pockets 
that emerge under perturbed mitochondrial dynamics to 
encompass the aberrant accumulation of mitochondrial 
RNA granules (MRG, fluid condensates that comprise 
essential components of the mitochondrial post-tran-
scriptional pathway and mitoribosome biogenesis) [53].

The texture, number and volume of the matrix granules 
as well as the disturbances observed in intact brain tis-
sue (Fig. 5) are consistent with recent findings in mouse 
neuronal cultures by cryo-ET [64]. These granules, iden-
tified as calcium phosphate deposits, are related to the 
role of mitochondria in subcellular calcium homeostasis. 
They absorb the excess of cytoplasmic calcium and store 
it in the form of granules [44, 47], whose larger size needs 
accommodation in the matrix through remodelling cris-
tae. An excessive calcium influx can trigger mitochon-
drial swelling, depolarization and eventual collapse [47, 
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57], potentially contributing to the observed aberrant 
morphology. The composition of these calcium phos-
phate granules has been determined by elemental anal-
ysis [63] and studies on mitochondrial calcium uptake 
capacity with cryo-fixed samples [28, 57]. Therefore, the 
abnormal size of the granules in the HD model may be 
linked to the excess of basal intracellular calcium [11, 
49, 51] or the controversial lower calcium uptake capac-
ity [44, 46] associated to this disease. It is important to 
note the fact that visualization and quantification of these 
granules are only feasible with cryo-fixed samples [28, 
57, 63, 64], as chemical fixation methods result in their 
extraction [48].

Recently, new proteomics data have revealed an enrich-
ment of proteins involved in RNA processing in iPSC-
derived cultured neurons from HD patients, suggesting 
that the matrix granules are MRGs [64]. Therefore, it 
is possible that both, calcium phosphate and compo-
nents of MRGs, coexist as constituents of the observed 
electron-dense granules. Alternatively, the abnormally 
accumulated MRGs might be located within the mito-
chondrial pockets [53] often observed in our FIB/SEM 
volumes, as described above.

In conclusion, our approach combining tissue cryo-
fixation, multiscale 3D electron microscopy and image 
processing has enabled the direct visualization, holistic 
analysis and quantification of the mitochondrial disrup-
tions in HD within the native brain context. Our results 
support the evidences of mitochondrial fragmentation in 
HD research derived from partial or 2D approaches and 
might serve to reconcile some of the conflicting views. 
Our innovative approach opens new avenues for the 
in  situ analysis of the disturbances of subcellular com-
partments and the identification of therapeutic targets in 
HD and in other neurodegenerative diseases.

Materials and methods
Animals
A stable colony of the zQ175 mice [37] was established 
through founders donated by the Cure Huntington’s Dis-
ease Initiative (CHDI) and sourced from Jackson Labo-
ratory Inc. The zQ175 line is a knock-in model bred 
on a C57BL/6  J background featuring an endogenous 
murine HTT gene with a chimeric human/mouse exon 
1 containing approximately 190 CAG repeats (B6.12951-
Htt < tm1Mfc < 190JChdi). Heterozygous and homozy-
gous mice and wild-type (WT) control counterparts 
were bred to maintain a stable colony within the ani-
mal facility of the Centro Nacional de Biotecnologia 
(CSIC). They were provided with food and water ad libi-
tum. All experiments complied with Spanish and Euro-
pean legislation and were in accordance with the ethical 

guidelines established by the Spanish National Research 
Council (CSIC) ethics committee concerning animal 
experimentation.

Sample preparation based on HPF/FS
Brain tissue samples were prepared for ET and FIB/SEM 
imaging following our established protocols designed 
to ensure optimal structural preservation. These proce-
dures are primarily based on high-pressure freezing and 
freeze-substitution (HPF/FS), as previously described 
[17]. In short, mouse brains were dissected immediately 
post-mortem and 200-μm-thick sagittal slices were cut 
using a tissue slicer (Stoelting, Co.). Striatal samples were 
promptly extracted, placed onto a flat specimen carrier, 
and then subjected to high-pressure freezing within a 
Leica EMPACT2 device. The samples were further pro-
cessed with freeze-substitution of frozen water to metha-
nol, including 0.5% uranyl acetate, and were subsequently 
embedded in Lowicryl resin HM20 with a Leica AFS2 
EM FSP system.

For visualization in the TEM and for ET, Sects. (250 nm 
thick) were obtained from the resin-embedded samples 
using a Leica Ultracut EM-UC6 ultramicrotome, and 
placed on Quantifoil S7/2 grids.

FIB/SEM imaging
FIB/SEM imaging was done on a FEI/ThermoFisher 
Scientific Helios NanoLab Dual-Beam 650 at the LMA 
node of the Spanish ICTS ELECMI. Regions of interest 
were identified by visual inspection of the sample surface 
with the SEM. Areas with cells compatible with striatal 
MSSNs were selected based on morphological criteria 
[36] and FIB/SEM stacks were then acquired. Prior to 
imaging, the areas were protected with a carbon deposit 
(approximately 1  μm thick) performed by FE/FIBID 
(Focused electron and ion beam-induced deposition). 
The milling was performed using a slice thickness of 15 
to 25 nm. Image acquisition was done at 2 kV and cur-
rent 1.6 nA using a TLD detector in BSE mode. Stacks of 
hundreds of images representing a sample thickness of 5 
to 30 microns were acquired with a pixel size at the speci-
men level in the range of 8 to 11 nm.

TEM and ET imaging
A conventional JEOL JEM-1011 transmission electron 
microscope (100  kV) was used to screen the 250-nm-
thick sections, check the integrity of the tissue samples, 
and select areas of interest. Cells compatible with striatal 
MSSNs were selected based on morphological criteria 
[36] for subsequent ET and analysis. The magnification 
was set to 10 K and 30 K for identification of neurons and 
mitochondria, respectively.
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Tomographic data were acquired by taking series of 
images from the sections while tilting them within a 
range of ± 60° at 1° interval around a single tilt-axis. The 
tilt-series were acquired using a Thermo Fisher Scien-
tific/FEI Tecnai G2 (200 kV) equipped with a CCD cam-
era. The pixel size at the specimen level was 0.79 nm. For 
processing, visualization and analysis, the images were 
rescaled with a binning factor of 4. Prior to ET, grids were 
incubated in a solution of 10-nm diameter colloidal gold 
(EM.BSA 10, Electron Microscopy Sciences, Hatfield, PA, 
USA) to facilitate subsequent image alignment.

Image processing of FIB/SEM stacks
Acquired stacks were first processed with contrast 
enhancement and noise reduction [16, 21]. The result-
ing stacks were then subjected to alignment with IMOD 
[27]. For 3D visualization and analysis, the stacks were 
rescaled to isotropic voxel size [22]. Delineation of 
plasma and nuclear membranes was done manually with 
IMOD tools to define the cytoplasmic area of the neuron. 
Semantic segmentation of mitochondria in the cytoplasm 
was performed with automated deep-learning proce-
dures. To this end, a 2.5D U-net neural network was 
implemented to operate on 2D slices plus the immediate 
neighbour slices to predict the location of mitochondria 
using Dragonfly software (Comet Technologies Canada 
Inc.) [33]. The U-net had a depth level of 5 and worked 
on patches of 64 × 64. The training was volume-specific 
and was conducted in two steps. For the first step, train-
ing data was objectively produced by a computational 
procedure consisting of edge-preserving filtering of the 
FIB/SEM stacks with anisotropic non-linear diffusion 
[14, 39] followed by thresholding on density and on size 
of connected components [34, 35]. This procedure ena-
bled preliminary segmentation  of mitochondria. The 
U-net was then trained using a subset of 100 slices of 
these stacks, with 2 × data augmentation, using a batch 
size of 32 and a maximum number of epochs of 25 with 
early stopping criterion on a 20% slice subset that acted 
as a validation subset. After that first training step, the 
labels predicted for the training subset were manually 
revised to produce a new training data. The U-net net-
work was then subjected to a second training step using 
the new data, continuing from the previous state of the 
network and using the same training hyperparameters. 
The final trained network was then applied to the whole 
stack to derive, after some manual revision, the definite 
segmented mitochondria.

Quantitative analysis of the segmented mitochondria 
was then carried out with MitoGraph [24, 50, 61] and 
in-house programs. The binary, segmented tomograms 
were processed with MitoGraph to decompose the indi-
vidual mitochondria into their body and their skeleton 

comprising edges (mitochondrial segments or branches) 
and nodes (either mitochondrial ends or branching 
points) and to obtain measurements of the length of 
edges and the local width (distance from the edge points 
to the mitochondrial surface). An in-house program was 
developed to process these data and to provide measure-
ments for individual mitochondria (number of edges, 
volume, length as the sum of the length of their edges, 
and width as the average of the width along the entire 
skeleton) for statistical analysis and for visualization with 
IMOD.

Image processing of ET data
Alignment of the tilt-series and 3D reconstruction of the 
tomograms were conducted using IMOD software [27] 
and Tomo3D [1, 2] applying standard protocols [13]. 
Alignment was based on the colloidal gold beads as fidu-
cial markers using IMOD. Tomographic reconstruction 
relied on weighted back-projection (WBP) using a filter 
that simulates an iterative reconstruction method (SIRT).

Delineation of mitochondrial outer membranes in the 
tomograms was done manually with IMOD tools. Auto-
mated semantic segmentation of mitochondrial matrix 
granules was done with edge-preserving filtering of the 
tomograms with anisotropic non-linear diffusion [14, 
39] followed by density thresholding. This procedure was 
enough to segment the granules owing to their signifi-
cantly different density in comparison with the rest of the 
mitochondrial matrix.

Statistical analysis and plotting
Statistical analyses were performed with Python using 
the Pingouin package [60]. The comparisons were car-
ried out based on the Mann–Whitney test as the Shap-
iro–Wilk tests indicated that all data were non-normally 
distributed. Plots were generated with the Seaborn pack-
age [62].
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