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Abstract
Cerebrovascular and α-synuclein pathologies are frequently observed alongside Alzheimer disease (AD). The 
heterogeneity of AD necessitates comprehensive approaches to postmortem studies, including the representation 
of historically underrepresented ethnic groups. In this cohort study, we evaluated small vessel disease pathologies 
and α-synuclein deposits among Hispanic decedents (HD, n = 92) and non-Hispanic White decedents (NHWD, 
n = 184) from three Alzheimer’s Disease Research Centers: Columbia University, University of California San Diego, 
and University of California Davis. The study included cases with a pathological diagnosis of Intermediate/High 
AD based on the National Institute on Aging– Alzheimer’s Association (NIA-AA) and/or NIA-Reagan criteria. A 2:1 
random comparison sample of NHWD was frequency-balanced and matched with HD by age and sex. An expert 
blinded to demographics and center origin evaluated arteriolosclerosis, cerebral amyloid angiopathy (CAA), and 
Lewy bodies/Lewy neurites (LBs/LNs) with a semi-quantitative approach using established criteria. There were 
many similarities and a few differences among groups. HD showed more severe Vonsattel grading of CAA in the 
cerebellum (p = 0.04), higher CAA density in the posterior hippocampus and cerebellum (ps = 0.01), and increased 
LBs/LNs density in the frontal (p = 0.01) and temporal cortices (p = 0.03), as determined by Wilcoxon’s test. Ordinal 
logistic regression adjusting for age, sex, and center confirmed these findings except for LBs/LNs in the temporal 
cortex. Results indicate HD with AD exhibit greater CAA and α-synuclein burdens in select neuroanatomic regions 
when compared to age- and sex-matched NHWD with AD. These findings aid in the generalizability of concurrent 
arteriolosclerosis, CAA, and LBs/LNs topography and severity within the setting of pathologically confirmed AD, 
particularly in persons of Hispanic descent, showing many similarities and a few differences to those of NHW 
descent and providing insights into precision medicine approaches.
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Introduction
Mixed pathologies are commonly found in the brains of 
persons diagnosed with dementia. The terminology of 
“mixed pathologies” refers to the co-occurrence of mul-
tiple pathological findings within the same individual [1, 
2]. The three most common mixed pathologies within 
the dementia spectrum are Alzheimer disease (AD), 
cerebrovascular disease (CVD), and Lewy body disease 
(LBD) [2, 3, 4]. Cohort studies investigating individuals 
with pathological diagnoses of AD reported a high rate of 
concomitant vascular and Lewy body (LB) pathologies [2, 
5–7]. The presence of these combined pathological fea-
tures can complicate diagnosis, prognosis, and treatment 
strategies. Concomitant pathologies can also present 
substantial hurdles in identifying biomarkers and accu-
rate assessment of disease progression timelines [1, 2]. 
Given the multifactorial nature of dementia as well as the 
increasing demographic diversity of the United States, 
comprehensive approaches examining diverse cohorts 
are essential to unravel the intricate contributions of 
these diseases, their potential interactions, and the com-
plex conditions observed [8].

Cerebrovascular disease (CVD) is very heterogeneous 
and can encompass multiple pathologies such as infarcts, 
atherosclerosis, arteriolosclerosis, and cerebral amyloid 
angiopathy (CAA) [2, 9]. Among the most common vas-
cular pathologies, arteriolosclerosis and CAA, which we 
will collectively refer to as small vessel disease (SVD) for 
this paper, have been increasingly recognized as key con-
tributors to cognitive impairment and increased risk of 
dementia [9–14]. Arteriolosclerosis, involving thickening 
of vessel walls with subsequent narrowing of the lumen, 
is associated with cardiovascular risk factors, such as 
hypertension and diabetes [13, 15], and mostly found in 
the deep white matter of basal ganglia, frontal, temporal, 
and occipital cortices [9, 16–18]. The deposition of amy-
loid protein in the vessel walls, defined as CAA, is pre-
dominately present in the leptomeninges and grey matter 
of occipital, temporal, and frontal cortices [19–21].

Lewy body disease (LBD) is a pathological term with 
a spectrum of clinical syndromes including Parkinson 
disease, Parkinson disease dementia (PDD), and demen-
tia with Lewy bodies (DLB) and is characterized by the 
presence of Lewy bodies in the brain [22, 23]. LBD is the 
second most common neurodegenerative disease follow-
ing AD, although individuals often exhibit co-existing 
AD-related pathologies [6, 24]. Similar to AD, LBD is a 
substantial socioeconomic burden within the United 
States [25]. This concerns the affected persons, their 
caregivers, and the healthcare system, with far-reaching 
negative socioeconomic implications, especially for his-
torically marginalized populations [26–29]. Despite its 
widespread impact, research investigating LBD progres-
sion and its co-occurrence of AD pathology has been 

predominantly centered on individuals of European 
ancestry, with few studies examining ethnically diverse 
cohorts, particularly those of Hispanic descent [8]. This 
dearth of diversity in research cohorts may limit the gen-
eralizability of the current literature, ultimately limiting 
advancement in diagnostic and therapeutic efforts that 
are inclusive for all individuals.

At the 2022 Alzheimer’s Disease-Related Demen-
tias (ADRD) Summit, experts addressed the research 
priorities concerning health equity and multiple etiol-
ogy dementias [1]. Given the growing diversity within 
persons afflicted with dementia and a dearth of stud-
ies examining persons of Hispanic descent, we sought 
to include a more extensive representation of Hispanic 
decedents into the current cohort to approach mixed 
pathologies comprehensively. Most studies focus on con-
current AD and SVD, or AD pathologies within LBD 
[30, 31]. Hence, using a cohort of Hispanic and non-His-
panic White decedents with AD in the current study, we 
examined pathological burdens with established semi-
quantitative scoring systems of arteriolosclerosis [9, 15], 
CAA [32, 33], and Lewy pathologies [22, 23] in select 
neuroanatomic areas across three Alzheimer’s Disease 
Research Centers (ADRCs): Columbia University, Uni-
versity of California San Diego (UCSD), and University of 
California Davis (UCD).

Materials and methods
Cohort and area selection
For a detailed description of overall methods and cohort 
selection, please refer to Scalco et al., 2023 [34]. Briefly, 
participants were selected based on a pathological diag-
nosis of Intermediate/High AD [35, 36], as well as self-
reported identification of ethnicity as Hispanic and 
non-Hispanic White descent utilizing data from the 
National Alzheimer’s Coordinating Center (NACC) uni-
form data set (UDS) [37]. A 2:1 random sample of non-
Hispanic White decedents was chosen, stratified by age 
group, sex, and center to be comparable to Hispanic 
decedents. The final sample consisted of 276 individuals 
(92 Hispanic decedents, 184 non-Hispanic White dece-
dents), including Hispanic decedents from Mexican, 
Caribbean (Cuban, Puerto Rican, and Dominican), and 
other origins (Central and South America). Cases with-
out available pathology data and individuals with ethnici-
ties other than Hispanic or non-Hispanic White descent 
were excluded. We follow the guidelines provided by 
JAMA regarding the usage of terminology when report-
ing race and ethnicity [38].

The selection of brain areas for analysis was based 
on 2012 NIA-AA guidelines availability [36, 39], hav-
ing similar sampling procedures across all three centers. 
The temporal and frontal cortices, amygdala, substantia 
nigra, and locus coeruleus were assessed for α-synuclein 
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deposits in the form of LBs/Lewy neurites (LNs). The 
temporal, parietal, and frontal lobes, posterior hippo-
campus, and cerebellum were assessed for CAA. White 
matter regions of temporal, parietal, and frontal lobes 
were assessed for arteriolosclerosis. Additional details on 
scoring systems are located below.

Clinical comorbidity data
Available information on select clinical comorbidities 
was documented by retrieved data from the NACC UDS 
or similar forms employed by each ADRC [37]. Presence 
of diabetes, hypertension, depression, trans ischemic 
attack, hyperlipidemia, and stroke was recorded in the 
UDS as active or inactive throughout the history of diag-
nosis and/or if the participant was mentioned to be tak-
ing medication to treat these conditions.

Histology and assessments
Methodologies for sample preparation, cutting, as well 
as amyloid-β and tau immunohistochemistry have been 
previously described [34]. The deparaffinized slides for 
α-synuclein assessment underwent a 30-minute steam 
pretreatment in distilled water using an Oster pressure 
steamer, followed by a 5-minute incubation in a Protein-
ase K solution (Sigma-Aldrich, Cat # P8038, St. Louis, 
MO, USA) prepared with 0.1 g of Proteinase K and 400 
milliliters of distilled water. After pretreatment, slides 
were placed on a DAKO AutostainerLink48 and then 
subjected to the following: after rinsing in deionized 
water for 1 min, 0.3% Hydrogen Peroxide was applied to 
block the endogenous peroxidase for 10 min. Slides were 
then rinsed with wash buffer (Agilent Technologies, Cat 
# S3006, Santa Clara, CA, USA) and deionized water 
each for 1  min. Slides were then incubated for 30  min 
with a monoclonal antibody LB509 against α-synuclein 
(1:80 dilution, Invitrogen, Cat # 180215, Waltham, MA, 
USA). After two 1-minute rinses with wash buffer and 
deionized water, the primary antibody was labelled by 
the EnVision + HRP. Mouse (Agilent Technologies, Cat 
# K400111-2) for 20 min. Another 2 min of rinsing with 
wash buffer and deionized water was applied before 
the 10-minute incubation of DAB + as the substrate-
chromogen (Agilent Technologies, Cat # K346811-2). 
Next, slides were rinsed with wash buffer for 5 min and 
deionized water for 1  min, and then hematoxylin (1:4, 
American Mastertech, Cat # HXHHEGAL, Lodi, CA, 
USA) as the counterstain was applied for 5 min. After 
2  min of rinsing with wash buffer and deionized water, 
the visualization of α-synuclein was finished. Standard 
procedures were adhered to antibody staining using 
automated machines (DAKO AutostainerLink48, Agi-
lent Technologies), ensuring the inclusion of appropriate 
positive and negative controls for each specific antibody. 
The UCD Histology Core conducted all staining and 

immunohistochemistry procedures, complying with all 
Federal, State of California, and UCD guidelines and reg-
ulations [34].

For assessment of arteriolosclerosis, slides were sub-
jected to Hematoxylin and Eosin (H&E) staining. H&E 
staining consisted of three xylene rinses (5, 5, and 3 min), 
followed by four 30-second washes with 100%, 100%, and 
95% ethanol, and water. Following an 11-minute incuba-
tion in Harris hematoxylin (American Mastertech, Cat 
# HXHHEGAL), the slides were rinsed for 1 min, differ-
entiated using 1% acid alcohol for 3 s, and then washed 
for 30 s. Next, four 30-second washes with water, bluing 
reagent (prepared weekly by 15  g of Lithium carbonate 
with 4000 milliliters of distilled water), water, and 80% 
ethanol, preceded a 4.5-minute incubation with eosin 
Y (American Mastertech, Cat # STE0157). The slides 
underwent three 45-second rinses with 100% ethanol, 
followed by clearing in three xylene baths (60, 45, and 
45 s).

Stained slides were digitally scanned using the Zeiss 
Axio Scan Z.1 scanner. H&E slides were scanned at 
20 × (0.22  μm/pixel) magnifications and α-synuclein and 
amyloid-β stained slides at 40 × (0.11  μm/pixel) magni-
fications to acquire whole slide imaging. The resulting 
digital images were saved in the czi format with a com-
pression rate of 60%. An expert (BND), blinded to the 
demographic, pathological, clinical, and genetic data on 
the cases as well as ADRC origin, performed semi-quan-
titative histopathological assessments of each area and 
stain. The assessments included the evaluation of CAA, 
arteriolosclerosis, and LBs/LNs pathologies, and followed 
the guidelines outlined in the NACC Neuropathology 
form version 10, Vonsattel et al., and dementia with Lewy 
bodies consortium [9, 15, 22, 23, 32, 33]. The detailed 
scoring systems of amyloid plaques and tau pathologies 
has been previously published elsewhere [34].

The evaluation of CAA utilized amyloid-β-stained 
slides from the cerebellum, posterior hippocampus, and 
frontal, parietal, and temporal lobes by assessing the 
density of positive vessels and the severity of individual 
vessels within each area, using a modified NACC and 
Vonsattel’s scoring system [32, 33]. The modifications 
refer to the use of amyloid-β staining as well as adapting 
the global scale to the specific tissue section. On a spe-
cific region of CAA, the expert assigned a grade (0 = none 
- absent, 1 = mild - scattered positivity in parenchymal 
and/or leptomeningeal vessel in focal areas within the 
tissue sample, 2 = moderate - intense positivity in many 
parenchymal and/or leptomeningeal vessels within the 
tissue sample, 3 = severe - widespread (throughout the 
tissue sample) intense vessel positivity). The CAA Von-
sattel grade (ranging from grade 0 to 4) was determined 
by considering the majority of the severity level within 
the tissue observed [33]. For a Vonsattel grade 1 - most 
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affected vessels contained amyloid-β deposits in other-
wise normal leptomeninges in an incomplete rim around 
muscle fibers; Vonsattel 2 - most affected vessels had the 
media of vessels fully replaced by amyloid-β and walls 
were thickened; Vonsattel 3 - most affected vessels had 
total amyloid-β replacement of media and cracking of 
vessel walls creating a vessel within vessel appearance; 
Vonsattel 4 - majority of affected vessels showed scar-
ring and necrosis with traces of intermingled amyloid-β 
deposits. It should be emphasized a score was assigned 
only when the majority of vessels in a region exhibited 
that level of severity, rather than scoring solely based 
on the presence of a single vessel with that severity. We 
utilized previously published scales to provide a semi-
quantitative assessment of arteriolosclerosis based on the 
appearance of the majority of vessels (0 = none - normal, 
1 = mild - mild thickening of vessel medial, mild fibro-
sis, 2 = moderate - partial loss of smooth muscle cells in 
the media, moderate hyaline fibrosis, 3 = severe - com-
plete loss of smooth muscle cells in media, severe hya-
line fibrosis, lumen stenosis) in the white matter of the 
frontal, parietal, and temporal lobes [9, 15]. Assessment 
of α-synuclein pathologies, LBs and LNs, utilized the 
four stages as defined by the dementia with Lewy bod-
ies consortium (0 = absent, 1 = mild - sparse LBs or LNs, 
2 = moderate - more than one LB per high power field 
and sparse LNs, 3 = severe - more than four LBs and scat-
tered LNs in low power field, 4 = very severe - numerous 
LBs and LNs) [22, 23].

Statistical analysis
Demographic and clinical characteristics of the cohort 
were summarized descriptively and compared for His-
panic and non-Hispanic White decedents, using means, 
standard deviations (SD), and t-tests for continuous vari-
ables and percentage and chi-square tests for categorical 
variables. Neuropathological findings were all reported 
as ordinal scales reflecting density in chosen regions; they 
were summarized descriptively by median, minimum, 
and maximum values, and compared between groups by 
Wilcoxon two-sample tests with ties correction. Ordinal 
logistic regression models were then used to compare the 
level of neuropathology findings after adjusting for age, 
sex, and center. The Hispanic decedents were further 
categorized by self-reported ethnicity (Caribbean, Mexi-
can, and Others), and differences across ethnic Hispanic 
groups further compared via ordinal logistic regression 
adjusted for age and sex and corrected for multiple com-
parisons by false discovery rate. All analyses were car-
ried out in SAS version 9.4. Figures were created using 
Biorender (Biorender.com) and R Studio package ggplot2 
[40].

Results
Demographic and clinical characteristics
In the cohort, persons of Hispanic descent were compa-
rable to persons of non-Hispanic White descent in age at 
death (means 81 ± 9 and 82 ± 9 years) and sex ratios (59% 
and 60% female), as well as apolipoprotein E (APOE) ε4 
carrier status (55% and 57%) (Table  1). Hispanic dece-
dents had fewer years of formal education, with a mean 
of 9.7 years compared to 14.6 years for non-Hispanic 
White decedents. Examining data from NACC, within 
the cohort, persons of races other than White included 
Hispanic decedents who identified as African American 
(n = 4, all with Caribbean origins), other (n = 27, of these 
27 with respect to ethnicity: 18 with Caribbean origins, 
1 with Mexican origins, and 8 with other origins), and 
unknown (n = 16, 2 with Caribbean origins, 2 with Mexi-
can origins, and 12 with other origins). The proportions 
with a pathological diagnosis of AD only (AD lacking a 
concomitant diagnosis of CVD and/or LBD) were iden-
tical (37%), and with mixed AD/CVD as well were very 
similar (35% and 38%), but Hispanic decedents had 
greater frequencies of LBD (29% compared to 19%). Cer-
tain clinical comorbidities were more common among 
Hispanic decedents: diabetes (24% vs. 8%), hyperten-
sion (67% vs. 52%), and stroke (24% vs. 14%), while high 
cholesterol was more common in non-Hispanic Whites 
decedents (58% vs. 39%).

Neuropathology
All neuropathology measures followed an ordinal scale; 
while medians were generally similar and often low, the 
distribution above the 50th percentile, representing a 
subgroup with more severe pathology, sometimes dif-
fered between groups, as detected by the Wilcoxon test. 
Arteriolosclerosis was less frequent in the parietal lobe 
in Hispanic compared to non-Hispanic White decedents 
(Table 1) while similar in both groups across three lobes 
with semi-quantitative analysis (Table 2). Cerebral amy-
loid angiopathy (CAA) was similar in temporal, parietal, 
and frontal lobes, but greater in Hispanic decedents 
in the cerebellum in both density and Vonsattel grade 
(Tables  1 and 2), as well as in density in posterior hip-
pocampus (Fig. 1). The median LBs/LNs score detecting 
α-synuclein was 0 for all five regions for both Hispanic 
and non-Hispanic White decedents (Table  2), indicat-
ing half or more cases did not have LBs/LNs pathology. 
But among the remainder, increasing density of LBs/LNs 
was denoted in Hispanic than non-Hispanic White dece-
dents in both the temporal and frontal cortical regions 
(Fig.  2). Results were similar in ordinal logistic regres-
sions adjusted for age and sex.

The Hispanic decedents came from three centers, with 
different ethnic mixes; the largest groups had Mexi-
can ethnic origins and Caribbean origins, with Others 
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NHWD (n = 184) HD (n = 92) P value
Demographics
Age at death (years), mean (SD) 82.2 (8.7) 81.4 (9.2) 0.47*
Education (years), mean (SD)
total

14.6 (3.0)
181

9.7 (4.6)
86

<0.01*

Sex (female), N (%) 110 (60.0%) 54 (58.7%) 0.86§
APOE ε4 (at least one), N (%)
total

75 (56.8%)
132

41 (54.7%)
75

0.76§

Contributing Pathology
AD only, N (%) 68 (37.0%) 34 (37.0%) 1§
Mixed AD/LBD, N (%) 35 (19.0%) 27 (29.3%) 0.05§
Mixed AD/CVD, N (%) 69 (37.5%) 32 (34.8%) 0.66§
Clinical Comorbidities
Diabetes, N (%)
total

13 (8.4%)
154

18 (24.0%)
75

<0.01§

Hypertension, N (%)
total

81 (52.3%)
155

50 (66.7%)
75

0.04§

High Cholesterol, N (%)
total

77 (57.5%)
134

24 (38.7%)
62

0.01§

Stroke, N (%)
total

25 (14.2%)
176

21 (23.6%)
89

0.06§

Trans ischemic attack, N (%)
total

16 (12.0%)
133

8 (15.4%)
52

0.54§

Depression, N (%)
total

35 (23.8%)
147

16 (22.5%)
71

0.84§

Arteriolosclerosis Presence
Temporal lobe, N (%)
total

162 (99.4%)
163

77 (97.5%)
79

0.25†

Parietal lobe, N (%)
total

170 (96.0%)
177

78 (89.7%)
87

0.05†

Frontal lobe, N (%)
total

165 (97.1%)
170

80 (94.1%)
85

0.31†

CAA Presence
Temporal lobe, N (%)
total

124 (72.5%)
171

62 (75.6%)
82

0.60§

Parietal lobe, N (%)
total

111 (68.1%)
163

59 (72.0%)
82

0.54§

Posterior Hippocampus, N (%)
total

89 (53.6%)
166

55 (66.3%)
83

0.06§

Frontal lobe, N (%)
total

126 (75.9%)
166

67 (78.8%)
85

0.60§

Cerebellum, N (%)
total

128 (70.7%)
181

70 (83.3%)
84

0.03§

LBs/LNs Presence
Temporal cortex, N (%)
total

45 (25.3%)
178

30 (36.6%)
82

0.06§

Amygdala, N (%)
total

64 (38.8%)
165

35 (44.3%)
79

0.41§

Substantia nigra, N (%)
total

53 (29.4%)
180

31 (38.3%)
81

0.16§

Table 1 Demographics, select clinical comorbidities, and presence of regional pathology divided by ethnic group (n = 276)
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representing various countries in Central and South 
America, combined for purposes of analysis. UC Davis 
contributed 7 with Mexican origins and 10 Others, UC 
San Diego 23 with Mexican origins and 8 Others, and 
Columbia 1 with Mexican origins, 7 Others, and 36 
with Caribbean origins. We compared neuropathology 
across the three Hispanic ethnic subgroups of Mexican, 
Caribbean, and Others, with ordinal logistic regression 
adjusted for age and sex but not center as it was con-
founded with ethnicity. The primary finding was LBs/
LNs pathology was elevated in both temporal and frontal 
cortices among the Caribbean decedents compared both 
to non-Hispanic White and other Hispanic ethnic groups 
(Table  3). There were no differences found across His-
panic ethnicities in arteriolosclerosis or CAA presence or 
densities.

Discussion
We examined regional burdens of arteriolosclerosis, 
CAA, and LBs/LNs pathologies through a semi-quan-
titative assessment within a research-based autopsy-
confirmed AD cohort, comprised of Hispanic and 
non-Hispanic White decedents. Our findings confirm 
previous cohort studies denoting high frequencies of 
mixed pathologies in individuals with advanced AD 
pathology. Arteriolosclerosis was present in over 90%, 
CAA in 54-83%, and LBs/LNs in 15-39% across neuro-
anatomic regions in this cohort. There were many simi-
larities across groups with some differences. Compared 
with non-Hispanic White decedents, Hispanic decedents 
displayed greater frequencies of CAA in the cerebellum 
(83% vs. 71%), increased CAA density in the posterior 
hippocampus and cerebellum, and higher frequency of 
LBs/LNs in the frontal cortices (27% vs. 15%) and tem-
poral cortices (37% vs. 25%). This study provides a deeper 
phenotype denoting many similarities and some differ-
ences across ethnicity in persons with pathological AD, 
which may aid with precision medicine approaches for 
AD and related disorders.

There have been few studies to our knowledge, exam-
ining LBD with respect to Hispanic ethnicity [8, 41–43]. 

In a cohort assessed from the NACC dataset, which 
included participants with neuropathologically con-
firmed transitional (limbic) or diffuse (neocortical) LBD, 
Hispanic decedents (n = 54) were reported to have more 
transitional LBD compared with non-Hispanic White 
decedents (n = 141) [42]. Previous works in individu-
als with dementia, regardless of underlying pathology, 
who had autopsy at the UCD ADRC, reported a higher 
frequency of mixed LBD and AD pathology in persons 
of Hispanic descent (25%) when compared to persons 
of non-Hispanic White descent (18%) [41]. The current 
study included cases from UCD and two additional cen-
ters (Columbia and UCSD) with a focus on AD. In this 
study of three centers, higher frequencies of AD with LBD 
were found in Hispanic (29%) compared to non-Hispanic 
White decedents (19%). We also found an increased den-
sity of LBs/LNs deposits in the temporal and frontal cor-
tical regions in Hispanic decedents, providing additional 
anatomic specificity. In contrast to our current work, 
another study of 1625 participants with pathological AD 
diagnoses, including 67 Hispanic decedents, showed no 
significant differences in LBD frequencies between His-
panic (25%) and non-Hispanic White decedents (24%) 
[43]. Despite the similarity in the design of these two 
studies, the observed variation could be explained by 
their sample size, most of which were of Caribbean origin 
(n = 46). Our study did have similar overall frequencies of 
LB types within the setting of AD; although prior studies 
did not examine ethnicity. In a cohort of 522 participants 
aged 50 or older, neocortical and amygdala predominant 
LBD were frequently observed in people with Intermedi-
ate (40%) and High (62%) AD pathology [31]. In our study 
extrapolating data from Table 1, we had 32% of cases with 
neocortical (n = 76) or amygdala (n = 10) predominant 
LBD. More research is needed to confirm whether con-
comitant Lewy related pathologies in AD could relate to 
increased cognitive decline, age of onset, or progression 
of AD, particularly in persons of Hispanic descent.

A recent review compiling neuropathological studies 
on persons of Hispanic descent, revealed multiple find-
ings without a unifying agreement regarding AD and 

NHWD (n = 184) HD (n = 92) P value
Frontal cortex, N (%)
total

25 (14.5%)
172

22 (26.2%)
84

0.02§

Locus coeruleus, N (%)
total

45 (27.3%)
165

26 (32.9%)
79

0.36§

Total represents the number of cases with available data on the specific variable. All cases had available data on age at death, sex, and primary/secondary pathology 
diagnoses. Items presented are from historical data collected by each center albeit regional pathology scores

APOE ε4, apolipoprotein E ε4; NHWD, non-Hispanic White decedents; HD, Hispanic decedents; LBD, Lewy body disease; CVD, cerebrovascular disease; CAA, cerebral 
amyloid angiopathy; LBs/LNs, Lewy bodies/Lewy neurites

§Chi-square test

†Fisher exact test

*T-test

Table 1 (continued) 
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CVD [8]. These various results indicate the heterogene-
ity within persons of Hispanic descent and emphasize the 
concerns of the sample size of Hispanic cohorts in pre-
vious studies. Comprehensive clarification of the varia-
tions across studies involving persons who identified as 
Hispanic will not be elucidated until greater diversity is 
included in AD research. There was no statistically signif-
icant difference in the frequency of mixed AD with CVD 
between Hispanic (35%) and non-Hispanic White dece-
dents (38%) in the present study. Regarding select SVD 
pathologies and clinical comorbidities, differences were 

observed in CAA density, diabetes, hypertension, and 
high cholesterol, but not in arteriolosclerosis. In a previ-
ous investigation, examining individuals with dementia 
(n = 423), Hispanic decedents (n = 28) had higher frequen-
cies of CVD (21% vs. 4%) and mixed AD with CVD (54% 
vs. 28%), as well as higher rates of severe arteriolosclero-
sis (21% vs. 7%) and CAA (11% vs. 5%), in comparison to 
non-Hispanic White decedents (n = 360) [41]. This posi-
tive association between arteriolosclerosis and Hispanic 
decedents was not consistent with the current results 
perhaps due to differences in inclusion/exclusion criteria. 

Table 2 Severity scores of cerebrovascular and Lewy-related neuropathologies in select brain areas by ethnic group (n = 276)
NHWD (n = 184) HD (n = 92) P value (Wilcoxon two-sample test)

Arteriolosclerosis (0–3: 0 = None, 1 = Mild, 2 = Moderate, 3 = Severe) [9, 15]
Temporal lobe, median (min, q3, max) 2 (0,2,3) 2 (0,2,3) 0.60
total 163 79
Parietal lobe, median (min, q3, max)
total

2 (0,2,3)
177

1 (0,2,3)
87

0.39

Frontal lobe, median (min, q3, max)
total

1 (0,2,3)
170

2 (0,2,3)
85

0.27

CAA Density (0–3: 0 = None, 1 = Mild, 2 = Moderate, 3 = Severe) [32]
Temporal lobe, median (min, q3, max) 1 (0,2,3) 1 (0,3,3) 0.17
total 171 82
Parietal lobe, median (min, q3, max)
total

1 (0,2,3)
164

2 (0,3,3)
82

0.11

Posterior Hippocampus, median (min, q3, max) 1 (0,1,3) 1 (0,2,3) 0.01
total 166 83
Frontal lobe, median (min, q3, max)
total

1 (0,2,3)
165

2 (0,3,3)
85

0.28

Cerebellum, median (min, q3, max)
total

1 (0,3,3)
181

2 (0,3,3)
84

0.01

CAA Vonsattel (0–4: Grade 0 ~ 4) [33]
Temporal lobe, median (min, q3, max) 2 (0,3,4) 2 (0,3,4) 0.35
total 171 82
Parietal lobe, median (min, q3, max)
total

2 (0,3,4)
163

2 (0,4,4)
82

0.14

Posterior Hippocampus, median (min, q3, max) 1 (0,2,4) 1 (0,3,4) 0.08
total 166 83
Frontal lobe, median (min, q3, max)
total

2 (0,3,4)
166

2 (0,3,4)
85

0.32

Cerebellum, median (min, q3, max)
total

2 (0,2,4)
181

2 (0,3,4)
84

0.04

LBs/LNs (0–4: 0 = Absent, 1 = Mild, 2 = Moderate, 3 = Severe, 4 = Very Severe) [22, 23]
Temporal cortex, median (min, q3, max) 0 (0,1,4) 0 (0,1,4) 0.03
total 178 82
Amygdala, median (min, q3, max) 0 (0,2,4) 0 (0,4,4) 0.11
total 165 79
Substantia nigra, median (min, q3, max) 0 (0,1,4) 0 (0,1,4) 0.09
total 180 81
Frontal cortex, median (min, q3, max) 0 (0,0,3) 0 (0,1,3) 0.01
total 172 84
Locus coeruleus, median (min, q3, max) 0 (0,1,4) 0 (0,1,4) 0.33
total 165 79
Total represents the number of cases with available data on the specific variable

NHWD, non-Hispanic White decedents; HD, Hispanic decedents; CAA, cerebral amyloid angiopathy; LBs/LNs, Lewy bodies/Lewy neurites
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With respect to CAA, prior works have demonstrated 
within neuropathologically confirmed AD (n = 425) par-
ticipants with severe CAA (n = 193) were more likely to 
be Hispanic (7%) rather than non-Hispanic White dece-
dents (1%) [44]. Similarly, in the UCSD ADRC cohort 
of persons with autopsy-confirmed AD, it was observed 
Hispanic decedents (n = 14) had more frequent moder-
ate/severe CAA than non-Hispanic White decedents 
(n = 20) [45]. These results support more frequent pres-
ence of severe CAA among persons of Hispanic descent 
of which is consistent with our results. With our study, 
we reveal increased CAA densities in the cerebellum, 
providing more insight into potential regional neuroana-
tomic disease mechanisms in the setting of AD.

Although we employed carefully designed method-
ologies, limitations were present in our cohort study. 
Caution is advised when extrapolating these results to 

a broader population since they may not be fully gener-
alizable. Further research having more inclusive cohorts 
across disease spectrums, including population- or com-
munity-based cohorts, is warranted. With all studies on 
decedents, cohorts are highly selective as they are based 
on persons who consent for brain donation [48]. Differ-
ences and similarities compared to other studies may be 
due to cohort inclusion/exclusion criteria as well as how 
data were assessed. For the UCSD ADRC, persons were 
excluded from participation if they had insulin depen-
dent diabetes, and/or major stroke [34, 46], which could 
result in exclusion of persons with severe CVD. In addi-
tion, our cohort had an inclusion criterion of only par-
ticipants with Intermediate/High AD pathology. These 
criteria may have excluded the spectrum of other demen-
tia subtypes such as LBD and CVD, which can have dif-
ferent frequencies among individuals. Regarding the 

Fig. 1 Severity of cerebral amyloid angiopathy (CAA) and arteriolosclerosis (ART) in select neuroanatomic regions. a Examples of cerebral amyloid angi-
opathy density (CAAD) in frontal, parietal, and temporal lobes, posterior hippocampus (PHIPPO), and cerebellum; overall regional density scores are listed 
in panel within each image. Cases were selected based on heritage group and center, having similar age at death, sex, and AD likelihood (ADNC = Al-
zheimer’s disease neuropathologic changes). Scale bar = 500 μm. b Violin plots of the severity of ART, CAAD, and cerebral amyloid angiopathy Vonsattel 
score (CAAV) in select brain areas between Hispanic and non-Hispanic White decedents. CAAD and CAAV were assessed in five areas: frontal, parietal, and 
temporal lobes, posterior hippocampus (figure represents collateral sulcus), and cerebellum. ART was assessed in the frontal, parietal, and temporal white 
matter. The violin plots indicated the distribution of the data while the boxes showed the first and third quartiles, median, and range
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CAA assessment, we analyzed scores per region without 
distinguishing capillary, cortical, or leptomeningeal CAA 
separately. Evaluation of CAA as well as the other pathol-
ogies did not involve specific subregions but throughout 

the entire sampled region; for example, the posterior hip-
pocampus was examined as an intact region- of which 
included anatomic regions of the subiculum, entorhi-
nal cortex, parahippocampal gyrus, collateral sulcus, 

Table 3 Regression model analysis of Lewy pathology. Caribbean decedents have significantly higher odds of having denser Lewy 
pathology than NHWD and Mexican decedents in the temporal and frontal cortices

Temporal Lewy Pathology Frontal Lewy Pathology
OR (95% CI) OR (95% CI)

Ethnicity
Mexican vs. NHWD 0.37 (0.1, 1.3) 0.39 (0.08, 1.76)
Caribbean vs. NHWD 4.42 (2.11, 9.25)* 6.58 (2.85, 15.22)*
Others vs. NHWD 1.43 (0.51, 4.0) 1.58 (0.47, 5.28)
Mexican vs. Others 0.26 (0.05, 1.22) 0.24 (0.04, 1.55)
Caribbean vs. Others 3.1 (0.95, 10.07) 4.17 (1.09, 16.04)
Caribbean vs. Mexican 12.05 (3.0, 48.27)* 17.06 (3.32, 87.66)*
Sex
Female vs. Male 1.42 (0.78, 2.58) 1.04 (0.5, 2.15)
Age of death
Age (year) 0.98 (0.95, 1.02) 1.00 (0.96, 1.05)
*Indicates P-values remain significant (< 0.05) after false discovery rate

NHWD, non-Hispanic White decedents

Fig. 2 α-synuclein deposit densities of Lewy bodies/Lewy neurites (LBs/LNs) in select neuroanatomic regions. a Examples of α-synuclein staining densi-
ties in frontal and temporal cortices, amygdala, substantia nigra (SN), and locus coeruleus (LC); overall regional density scores are listed in panel within 
each image. Cases were selected based on heritage group and center, having similar age at death, sex, and AD likelihood (ADNC = Alzheimer’s disease 
neuropathologic changes). Scale bar = 50 μm. b Violin plots of the distribution of LB/LN density scores in five selected brain areas (frontal and temporal 
cortices, amygdala, SN, and LC) between Hispanic decedents (HD) and non-Hispanic White decedents (NHWD). The violin plots indicated the distribution 
of the data while the boxes showed the first and third quartiles, median, and range
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and fusiform gyrus. A recent study with pure or mixed 
AD with advanced amyloid-β pathology (n = 73), not 
denoting ethnicity, showed more leptomeningeal CAA 
(44%) than parenchymal CAA (19%) [47]. Future stud-
ies could subcategorize CAA into capillary, cortical, and/
or leptomeningeal as these subcategories could have 
independent associations with neuropathologies and/
or demographic variables. This can also be the case with 
LBs/LNs, as we examined them together. Lastly, as these 
are archival samples, and certain processes were done 
before this study, there were certain variables we were 
unable to account for. There was evidence of over-fixa-
tion, distinguished by the appearance of formalin crystal 
artifact (Supplementary Fig. 1), present in some anatomic 
regions in about a third of cases. Over-fixation may affect 
immunohistochemical stains, leading to potential false 
negatives, especially with respect to LNs as these pathol-
ogies cannot be appreciated upon H&E.

Despite the limitations, there are several strengths of 
our study. First, it is the most comprehensive autopsy 
study of persons of Hispanic descent examining SVD 
and LBs/LN pathology in the setting of pathological AD 
evaluating multiple neuroanatomic areas. Our inclusion 
criteria and analytical methodology ensured a consider-
able degree of homogeneity in terms of age, sex, APOE ε4 
allele frequency, and final pathological diagnoses in our 
study cohort (Table 1). We focused on participants with 
pathological AD diagnoses of Intermediate/High, aim-
ing to determine frequencies and densities of SVD and 
LBs/LNs pathologies based on ethnicity  under the severe 
burdens of AD pathologies. Second, we examined and 
analyzed semi-quantitative scores to evaluate regional 
burdens of SVD and LBs/LNs in addition to presence/
absence. Dichotomous analysis of pathology can have 
selected advantages, such as getting greater consensus 
in cases of low inter-rater reliability when assessing dif-
ferent severity of white matter arteriolosclerosis [9]. 
However, analyzing presence/absence or collapsing semi-
quantitative scores into dichotomous categories could 
oversimplify the data and limit comprehensive interpre-
tation of the findings, yielding different statistical signifi-
cance as the inconsistent significance of SVD pathologies 
in the current study (Tables 1 and 2). Many times, pathol-
ogy is presented as a global score without providing 
topographical distribution or pathological severity of 
concomitant SVD and α-synuclein burdens in the set-
ting of AD. Our study fills the gap and reveals similarities 
and distinct neuroanatomic patterns of pathology in His-
panic and non-Hispanic White decedents. These investi-
gations highlight the importance of the analysis method 
and delve into deeper phenotypes of SVD and LBs/LNs 
between Hispanic and non-Hispanic White decedents, 
providing potential insights into similarities as well as 
distinct AD progression in different ethnoracial groups.

In conclusion, results of this cohort study demon-
strate, after controlling for age, sex, and center of origin, 
Hispanic decedents with Intermediate/High AD pathol-
ogy have many similarities to non-Hispanic White dece-
dents with Intermediate/High AD pathology. There were 
some differences noted; Hispanic decedents within the 
cohort exhibit significantly greater CAA and LBs/LNs 
burdens in select regions compared with non-Hispanic 
White decedents. Our current and previous work con-
sistently present how ethnicity may relate to neuropatho-
logical differences in AD hallmarks, SVD, and LBs/LNs, 
emphasizing the demand for in-depth phenotyping in 
AD among a diverse cohort due to the comorbidity of 
the disease. Further research should involve more diverse 
cohorts, including subgroups within non-Hispanic 
White, as well as additional underrepresented groups and 
subgroups such as persons who identify as Asian, African 
American, and Native American to achieve more gen-
eralizable results. In addition, researchers should con-
sider including other common CVD into analysis, such 
as infarcts, hemorrhages, mineralized blood vessels, and 
white matter rarefaction, given the heterogeneous nature 
of AD. It is also important to consider clinical comorbidi-
ties within the current cohort, including diabetes, hyper-
tension, and high cholesterol, which we plan to examine 
in future studies. These efforts will play a crucial role in 
the inclusion of historically marginalized groups, partic-
ularly persons who identify as Hispanic. With a diverse 
cohort in dementia studies, the findings from various 
studies can be more generalizable for the development of 
precision medicine.
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