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Abstract
DNA methylation analysis based on supervised machine learning algorithms with static reference data, allowing 
diagnostic tumour typing with unprecedented precision, has quickly become a new standard of care. Whereas 
genome-wide diagnostic methylation profiling is mostly performed on microarrays, an increasing number of 
institutions additionally employ nanopore sequencing as a faster alternative. In addition, methylation-specific 
parallel sequencing can generate methylation and genomic copy number data. Given these diverse approaches to 
methylation profiling, to date, there is no single tool that allows (1) classification and interpretation of microarray, 
nanopore and parallel sequencing data, (2) direct control of nanopore sequencers, and (3) the integration of 
microarray-based methylation reference data. Furthermore, no software capable of entirely running in routine 
diagnostic laboratory environments lacking high-performance computing and network infrastructure exists. To 
overcome these shortcomings, we present EpiDiP/NanoDiP as an open-source DNA methylation and copy number 
profiling suite, which has been benchmarked against an established supervised machine learning approach using 
in-house routine diagnostics data obtained between 2019 and 2021. Running locally on portable, cost- and energy-
saving system-on-chip as well as gpGPU-augmented edge computing devices, NanoDiP works in offline mode, 
ensuring data privacy. It does not require the rigid training data annotation of supervised approaches. Furthermore, 
NanoDiP is the core of our public, free-of-charge EpiDiP web service which enables comparative methylation data 
analysis against an extensive reference data collection. We envision this versatile platform as a useful resource not 
only for neuropathologists and surgical pathologists but also for the tumour epigenetics research community. In 
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Introduction
Epigenetic analyses of tumour tissue have become 
increasingly important in personalised oncology and 
have recently been defined by the WHO as a standard-
of-care principle in the classification of central nervous 
system tumours [30]. Genome-wide copy number pro-
files obtained in parallel to DNA methylation profiles 
further contribute to molecular tumour diagnostics [2, 
6]. Currently, artificial intelligence-driven methylome 
analysis and copy number profiling can justifiably be con-
sidered the most advanced and clinically relevant branch 
of digital pathology [15]. In this context, we termed our 
resource web service “epigenomic digital pathology / 
EpiDiP” and refer to the locally installed software built 
around 3rd generation sequencing as “nanopore digital 
pathology / NanoDiP”.

A number of supervised epigenetic classification sys-
tems have been proposed and, in part, made publicly 
available [2, 6, 13–12, 16, 19, 22]. Yet, only a few are pro-
vided as web services. A limited number of algorithms 
with respective reference data have been published as 
offline tools, often exceeding the infrastructure and infor-
matics knowledge of diagnostic laboratories [12, 13]. No 
single one of them is capable of running entirely on local 
low-cost, low-resource devices. Moreover, large quanti-
ties of publicly available datasets, e.g., on Gene Expres-
sion Omnibus (GEO) and The Cancer Genome Atlas 
(TCGA), have not been included as reference data. Diag-
nostic institutions with high caseloads require straight-
forward mechanisms to include their own reference data 
without the need for re-training and re-validation inher-
ent to supervised machine learning. Collectively, these 
shortcomings significantly impede the clinical utility of 
available methylation and copy number reference data.

We set out to explicitly incorporate an unsupervised 
machine learning system and copy number profiler into 
our diagnostic routine that combines several modes of 
data acquisition to facilitate integrated diagnoses in sur-
gical (neuro-)pathology. While we absolutely advocate 
using the existing supervised classification algorithms, 
we likewise strongly suggest parallel examination of diag-
nostic methylomes by unsupervised data matching. In 
support of this notion, Aldape and colleagues recently 
reported that supervised brain tumour classification 
renders high-confidence matching scores in only about 
2⁄3 of cases [32]. Here, we benchmarked UMAP plotting 
against a published random forest brain tumour classifier 

[2]. The result corroborates the clinical utility of our tool 
across a wide range of human neoplasias and healthy tis-
sues. UMAP further introduces a novel quality criterion 
for microarray-based methylation profiles and identifies 
significant divergence of epigenetic profiles across many 
tumour cell lines.

As defined by the WHO [30], methylation profiling is 
currently mandatory for the diagnosis of certain brain 
tumour types. To facilitate methylome-based tumour 
diagnostics, we designed EpiDiP/NanoDiP to address 
multiple clinical scenarios including the related global 
economic challenges for epigenetic and copy number 
analysis. Our public web service EpiDiP performs unsu-
pervised machine learning and copy number plotting 
for microarray data free of charge [1, 8, 9, 21]. EpiDiP is 
a website frontend to NanoDiP, a portable edge comput-
ing approach for laboratory integration on cost-effective 
hardware, widely available, and energy-efficient com-
puter hardware, in particular systems-on-chip/systems-
on-module (SoC) and cryptocurrency miners (CCM), 
addressing recent concerns about global applicability 
[11]. Our ultra-fast setup eliminates the need for data 
transfer, network access, high-performance comput-
ing clusters, and dedicated computer housing. It also 
simplifies the assembly of reference data collections. A 
nanopore sequencing-compatible ambient temperature 
sample shipment protocol widens the clinical utility of 
our approach by allowing remote diagnostic institutions 
to benefit from fast tumour profiling. As a proof-of-con-
cept, our system, which has already been implemented 
in two foreign diagnostic laboratories, allows molecu-
lar tumour classification even before FFPE-based H&E 
histology is available. Of note, EpiDiP/NanoDiP enables 
resource-efficient methylome and copy number analy-
ses according to WHO guidelines also in low- and mid-
dle-income regions, including those without access to 
expensive technologies such as immunohistochemistry, 
microarrays, or conventional sequencing.

Here, we describe the underlying algorithms, strategies 
of computational optimization, clinical applicability, and 
diagnostic performance of EpiDiP and NanoDiP in our 
surgical (neuro)pathology practice.

Materials and methods
DNA extraction
Diagnostic biopsy specimens submitted to our institution 
were routinely examined in the course of intraoperative 

daily diagnostic routine, analysis of native, unfixed biopsies by NanoDiP delivers molecular tumour classification in 
an intraoperative time frame.
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consultations (frozen sections), followed by standard 
formalin-fixation and paraffin-embedding (FFPE) for 
histological workup in most cases. External cases were 
either received as FFPE blocks or as near-native tumour 
tissue submitted in SurePath® (Becton Dickinson, USA) 
or ThinPrep® preservatives (Hologic Inc., USA). For cryo-
preserved biopsies, one to four 70 μm thick cryosections 
were collected. For FFPE blocks, a series of 8 or 14 serial 
sections (4  μm) were collected on glass slides, and an 
additional H&E section in the middle of each series was 
used to verify tumour cell content. In samples contain-
ing significant non-neoplastic or necrotic areas on the 
cut surface, viable tumour cell-rich areas were manu-
ally microdissected. For native specimens, DNA was 
extracted with automated commercial systems: Promega 
Maxwell® FFPE DNA extraction, Promega Maxwell® 
blood DNA extraction, and Qiagen DNeasy® Blood and 
Tissue kits on Maxwell or QiaCube® instruments (Pro-
mega, USA; Qiagen, Germany). DNA from FFPE speci-
mens was extracted with the Promega Maxwell® FFPE 
DNA extraction, Qiagen DNeasy®, and RecoverAll® kits. 
Except for differences in average read lengths in nano-
pore sequencing runs for native materials, all of the 
above-mentioned kits produced technically valid results.

Copy number profiling
Microarray
Copy number levels were computed and plotted as PDF 
with Conumee [29]. Detailed version information and 
installation instructions are included in the NanoDiP 
repository (Suppl. file 1). In addition, copy number data 
were stored in binary format to facilitate ad-hoc in-depth 
plotting and re-annotation for specific loci using plotly 
[https://plotly.com/]. The latter functionality is accessible 
through the NanoDiP web interface.

Nanopore
Sequencing reads were basecalled with guppy (ONT) 
and aligned against the human genome (hg19) with mini-
map2 [18] (hg19 link and version-pinned software in 
repository). A target read count of 30 reads per bin was 
defined. Bin size was adapted to the overall read number 
and read counts per bin plotted (NanoDiP subroutine in 
Python 3.7).

Methylation detection
Microarray
DNA was bisulfite converted (Zymo research lightning 
kit) and microarrays (Illumina Infinium Human Methyla-
tion beadchip EPIC / 850 K) were processed according to 
the manufacturer’s protocol (service provided by Life & 
Brain GmbH, Bonn, Germany; FFPE restoration kit was 
not applied). IDAT data were processed with minfi and 
SWAN normalisation [7] as described [10, 11, 23]. The 

source code is available as part of the EpiDiP software 
[https://github.com/neuropathbasel/epidip]. In short, a 
sex chromosome-depleted, blacklist-filtered [4] overlap 
set of 400’962 methylation sites covered by the Illumina 
Infinium Methylation 450 K and EPIC v1 arrays (“overlap 
CpGs”, oCpGs) were extracted as floating-point numbers 
and stored in binary files to accelerate data loading. EPIC 
v2 (950  K) compatibility has been added to the EpiDiP 
web service based on development versions of minfi and 
conumee (Supplementary file 1).

Nanopore
Nanopore sequencing was carried out on Mk1B (Oxford 
Nanopore Technologies [ONT], Oxford, UK) sequenc-
ers connected to control computers running MinKNOW 
and a customised MinKNOW API (Suppl. File 1). Min-
ION R9.4.1 flow cells, SQK RBK-004, RAP top-up, and 
WSH-003/004 kits were used. DNA samples, exclusively 
from native or alcohol-preserved biopsy specimens were 
sequentially labelled with molecular barcodes (SQK RBK-
004), allowing the consecutive analysis of 12 samples per 
flow cell without carryover artefacts (all kits from ONT). 
After each run, flow cells were cleaned (WSH-003/004 
with DNAse I from Sigma Aldrich). For refrigerator stor-
age (4 to 8 °C), flow cells were filled with ‘storage buffer’ 
(ONT). No relevant loss of sequencing quality between 
runs was noted when running up to 14 samples per flow. 
New flow cells were submitted to the “flow cell check” 
protocol (MinKNOW UI). Before each run, a 10-minute 
sequencing “test run” was initiated through NanoDiP to 
verify and document the successful digestion of the DNA 
library digestion from the previous sample, thereby also 
verifying a functional flow cell state before loading the 
next specimen. Of note, paraffin-embedded specimens 
are not compatible with the outlined Nanopore-based 
workflow.

Detailed software version information and installa-
tion instructions are included in the NanoDiP reposi-
tory (Suppl. File 1). In short, guppy (GPU version, ONT) 
was the basecaller, minimap2 the aligner [18], and f5c 
(GPU, version 1) called methylation [8] (technical details 
and GitHub links to all source code in Suppl. File 1). By 
default, 150 megabases of valid reads (ONT qscore > = 7) 
were collected, resulting in 5’000 to 10’000 oCpGs using 
the automatic run terminator function in NanoDiP.

R10 pore sequencing has been implemented in the 
NanoDiP software and tested with MinKNOW ver-
sion 23.07.5 / API version 5.7.2. with Guppy basecalling 
replaced by Dorado. We have established integration of 
NanoDiP with ONT’s sequencing and basecalling soft-
ware on both the aarch64 ORIN AGX 32GB SoC (Nvidia, 
Inc.) and x86_64 hardware with gpGPUs (Nvidia, Inc.), 
both running Ubuntu 20.04. R10 protocols are still con-
sidered early access by the manufacturer and internal 

https://plotly.com/
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clinical validation is ongoing (Suppl. File 1). Detailed 
description of the NanoDiP hardware/software platform 
allowing replication is provided (Suppl. File 1).

MethylSeq
Tumour DNA extracts previously examined with Nano-
pore sequencing and methylation microarrays were 
sequenced with an enzyme-based parallel methyla-
tion sequencing panel, covering approx. 390’000 oCpGs 
(Twist Bioscience, USA) [26] on an Illumina platform 
according to the manufacturer’s protocols (Twist Biosci-
ence, USA and Illumina Inc., USA). Sequencing resulted 
in fastq files that were analysed with the nfcore-meth-
ylseq bwa-meth/Methyldackel branch (Suppl. File 1), 
resulting in tab-separated value bedGraph files. In the 
resulting bedGraph, counts of methylated (#M) and non-
methylated (#N) reads are listed per CpG site together 
with a rounded methylation ratio. In a Python script, 
the methylation ratio was recalculated (#M/(#N+#M)) 
at higher precision and divided by 100 to match the data 
scale of methylation array output from minfi (numbers 
between 0 and 1). Next, the ratios of oCpG sites were iso-
lated. oCpGs not covered by the sequencing panel were 
assigned a methylation value of 0.49 to match microarray 
datasets. Methylation values were stored in a binary float 
format (detailed in the microarray section and Suppl. File 
1).

Methylation-based classification through unsupervised 
machine learning
For microarray data, the 25’000, 50’000, or 75’000 most 
variably methylated probes are selected by standard devi-
ation-based ranking, excluding non-informative signals 
from dimension reduction. NanoDiP, which runs as the 
server back-end on our public EpiDiP server, recalcu-
lates the UMAP plot for all tumour methylome datasets 
(approx. 30’000 at the time of submission) as soon as new 
microarray files are uploaded. As an alternative, installing 
and running the NanoDiP software locally (including a 
preconfigured virtual machine; Suppl. File 1) enables free 
choice (through the UI) of the number of most differen-
tially methylated microarray probes to be fed into dimen-
sion reduction. From nanopore-derived sequencing data, 
oCpGs are extracted from aligned, methylation-called 
reads and joined with respective oCpGs of microarray-
based reference data without probeset optimization; then 
UMAP is executed. A software flowchart for UMAP plot-
ting is included in Suppl. File 1.

Throughout this manuscript, a Python 3.7 implemen-
tation of UMAP (Suppl. File 1) was used. In the refer-
ence dataset, at least 8, but typically > 20 cases per entity 
were present. We therefore considered the closest 15 
annotated neighbours in the UMAP plot for classifica-
tion (Fig.  1A) throughout this manuscript as well as in 

our in-house diagnostic routine; however, users are free 
to tune this parameter. The methylation class (MC) for 
each case was derived from the most abundant MC of 
the nearest neighbours in the UMAP plot. Besides high-
lighting the nearest UMAP neighbours, our diagnostic 
report provides a summary of the entities in pie chart 
format (Fig. 1B) along with a chromosomal copy number 
plot (Fig. 1C). Similarly, UMAP scoring and copy number 
profiling based on nanopore sequencing data are com-
puted. Respective reports can be generated ad hoc dur-
ing and after nanopore sequencing, allowing preliminary 
UMAP plot inspection in time-critical situations (Fig. 2).

UMAP score performance testing
UMAP scoring-based brain tumour classification
A subset of 798 cases from our diagnostic routine that 
resulted in bona fide integrated diagnoses covered by the 
v11b4 brain tumour classifier reference set GSE90496 [2] 
were selected for benchmarking.

A series of independent UMAP plots were generated 
using 50, 100, 500, 1’000, 5’000, 10’000, 15’000, 20’000, 
25’000, 50’000, and 75’000 most variably (top) differen-
tially methylated probes (TDMP). TDMPs of 400’962 
oCpGs were determined by standard deviation-based 
ranking [23]. These UMAP plots were generated for data-
sets in the EpiDiP data lake, mostly derived from TCGA, 
GEO (including GSE90496, n = 2’801), and in-house diag-
nostic cases (2017 to mid-2022, n = 18’433). The resulting 
plots were overlaid with the brain tumour MC annota-
tion for the 2’801 cases of GSE90496. The remaining 
cases (n = 15’632) were considered non-annotated. The 
15 nearest annotated neighbours for each of the 798 test 
cases were determined and the predominant MC consid-
ered the UMAP-derived diagnosis. To better reflect the 
clinical setting concerning treatment decisions, we sim-
plified the supplied MC annotation of GSE90596 into 
methylation superclasses (SC). To this end, we grouped, 
e.g., the various subtypes of glioblastoma, IDH wildtype, 
into a single superclass (Suppl. File 1). All MC results 
were translated into SCs. The matching fraction for each 
TDMP count was summarised. In parallel, the v11b4 
brain tumour methylation classifier [2], kindly provided 
by DKFZ (Heidelberg Germany), was installed locally (R 
3.6.3 / x86_64) and executed. For each case, the topmost 
calibrated score (without cut-off) was considered the 
v11b4-based diagnosis. Both UMAP-and v11b4-based 
MCs and SCs were compared to the MCs / SCs repre-
senting the integrated diagnosis. Results were counted as 
either matches or mismatches.

To demonstrate robustness of UMAP plotting, we 
repeated UMAP plotting on our public EpiDiP platform 
with a snapshot from Jan. 10th, 2024 (n = 31’248 IDAT 
files, 450 K, 850 K, and 935 K formats). This set includes 
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public uploads since 2019. Details of this benchmarking 
experiment are provided in Suppl. File 1.

UMAP scoring with a pan-cancer dataset
With the introduction of EpiDiP in 2019, our routine 
application of methylation-based diagnostics expanded 
into extra-CNS and non-sarcomatous tumour spectra. 
We have reviewed integrated diagnostic reports for cases 
not covered by the brain and soft tissue tumour classi-
fiers [2, 16] within the validation cohort obtained since 
mid-2021. 156 cases were analysed by microarray-based 
methylation and copy number profiling, e.g., to deter-
mine the origin in cancers of unknown primaries, the 

lineage of lymphomas, melanomas, or to assess MLH1 
promoter methylation in various cancers. Of note, only 
cases in which diagnosis was confirmed irrespective of 
methylation arrays, e.g. through clinical follow-up or 
additional molecular testing, were considered.

DNA read lengths, nanopore sequencing speed
On R9.4.1 flow cells average read lengths typically 
ranged between 5 and 10 kilobases, irrespective of prior 
sample preservation in cytology media and mail trans-
fer at ambient temperature. Our in-house process time-
line (for details see Suppl. File 1) requires approximately 
90 min from tissue arrival to final report. Increased read 

Fig. 1  PDF report generated in NanoDiP based on microarray data. (A) Zoom in on the UMAP plot to the 15 nearest annotated neighbour cases. (B) 
Annotation counts encountered in A). (C) Copy number profile generated with Conumee. The depicted case is a diffuse glioma, H3 p.G34 mutant (CNS 
WHO grade 4), harbouring an EGFR amplification and homozygous deletion of the CDKN2A/B gene loci
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lengths have led to decreased data acquisition time. 
Irrespective of read lengths, we have set a threshold of 
150 megabases in diagnostic samples which typically 
reveals 5000 to 10,000 oCpGs. While recently released 
R10 pore chemistry is supported in our latest NanoDiP 
release, R10 has (at the time of writing) only been tested 
with retrospective samples where it enabled classifica-
tions comparable to those obtained with R9 pore chem-
istry (original matched R9/R10/EPIC V1 data from a 

glioblastoma, IDH-wildtype, included in demonstration 
VM for evaluation, Suppl. File 1).

Results
EpiDiP/NanoDiP is an open-source software suite for 
rapid methylome-based tumour classification and copy 
number profiling in a standardised manner. Its graphi-
cal user interface (GUI) does not require any program-
ming or data analytic skills. In fact, during our in-house 
routine diagnostics, it is operated solely by laboratory 

Fig. 2  PDF report generated intraoperatively in NanoDiP based on nanopore data from a breast cancer brain metastasis. (A) General run information. (B) 
Zoom in on the UMAP plot to the closest 15 annotated neighbour cases. (C) Annotation counts encountered. (D) Copy number profile generated from 
read counts
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technical staff. Our software can be adjusted to meet 
laboratory-specific needs through the integrated devel-
opment environment (IDE). To ensure 24/7 diagnostic 
availability, EpiDip/NanoDiP runs on robust, resource-
efficient, portable hybrid edge computing platforms.

Graphical frontend facilitates NanoDiP operation
NanoDiP has a web browser-based GUI (Suppl. File 1, 
user interface section) for the initiation of sequencing, 
flow cell integrity check, automatic run termination, and 
detailed logging. The GUI incorporates system status 
parameters, a laboratory information system for sample 
management, and sequencer control. In addition, it com-
prises live and post hoc data analysis including visualisa-
tion, copy number plotters for nanopore and microarray 
data with user-definable gene annotations, and UMAP 
plotters for nanopore, microarray, and 2nd generation 
methylation sequencing data. Static PDF reports as well 
as interactive plots for in-depth analysis of nearest neigh-
bours (e.g. exploration of their copy number profiles) can 
be generated during and after sequencing (Figs.  2 and 
3). In UMAP plots exported as interactive HTML files, 

copy number plots of reference samples can be read-
ily obtained from our EpiDiP website by clicking on the 
respective reference case. For advanced data privacy, 
respective copy number plots can alternatively reside on 
local storage systems or internal web servers, eliminating 
the need for an internet connection. The microarray-cen-
tred functionality of NanoDiP is also available through 
our public web service EpiDiP.

Low-coverage nanopore sequencing reveals diagnostic 
copy number profiles
Copy number profiling through binning and read count-
ing revealed copy number plots in all examined speci-
mens with bin sizes between 1 and 10  Mb (Fig.  4A). 
However, this coverage is too low to identify single-gene 
amplifications or deletions which are readily visible in 
microarray data (Fig. 4B). Nevertheless, arm-level altera-
tions (such as LOH 1p/19q, + 7/-10 glioblastoma signa-
tures, 9p deletions, and LOH 22q) are readily detectable 
at this resolution (Fig.  4A) even with long read lengths 
and consecutively low read counts, providing an addi-
tional layer for integrated diagnostics.

Fig. 3  NanoDiP software flow highlighting nanopore sequencer control and data analysis. Computing is shared between CPU (black) and GPU (red) 
cores depending on memory requirements and the possibility of making use of parallel programming
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Match between methylSeq and microarray methylation 
profiles
NanoDiP enables direct result comparison from differ-
ent methylation analysis strategies. In a proof-of-con-
cept experiment, MethySeq results were compared with 
microarray methylation profiles. An interactive UMAP 
plot for comparison is suitable for detecting concordance 
or discrepancy between different methylome analysis 
strategies. We found matching MC determination with 
the integrated diagnosis for all examined cases (7/7; 
100%). The close distances between the seven matching 
dataset pairs can be appreciated in an interactive UMAP 
plot (see Suppl. File 1). Thus, methylSeq qualifies as a ver-
itable alternative to microarrays.

Methylation-based classification through UMAP reaches 
diagnostic precision
A selection of 798 routine diagnostic cases with bona fide 
integrated diagnoses was analysed with the v11b4 brain 
tumour classifier [2]. The v11b4 classifier reached a con-
sensus of 87% (694/798) with the integrated diagnosis at 
the MC level and 98% (780/798) at the SC level. Despite 
large numbers of unannotated datasets in the plot, 
UMAP scoring of the 15 nearest annotated GSE90496 
cases matched the integrated diagnoses in up to 77% 
(615/798) when considering 1’000 TDMP at MC level 
and 92% (737/798) at SC level with 75’000 TDMP (Fig. 5). 
When considering between 10’000 and 75’000 TDMPs, 
the average consensus was 69% for MCs and 89% for 
SCs. For each annotation, the plot mostly contained 
unannotated datasets (15’632/18’433; 84%) besides the 
analysed case (1/18’433) and GSE90469 (2’801/18’433; 

Fig. 4  CNV plots of a Glioblastoma, IDH wildtype (CNS WHO grade 4), subtype RTK II. Note the ‘gain 7 / LOH 10’ signature and additional chromosomal 
alterations that can be appreciated from both the nanopore (A) and the corresponding microarray plots (B). Circumscribed alterations such as the EGFR 
gene amplification and complete CDKN2A/B deletion are frequently missed in the nanopore data, precluding meaningful single gene annotations in 
low-coverage sequencing-based copy number plots
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15%). Despite the large fraction of non-annotated cases 
in this experiment, diagnostic precision remained stable 
at a high level. Classification accuracy for brain tumours 
remains stable at 0.8 (MC match) and 0.95 (SC match) 
when iterating over sets with random removal of 300, 
3’000, and 11’000 from the present total of 32’148 cases 
(Suppl. File 1).

UMAP addresses a wide spectrum of methylation patterns
When examining methylation array data in UMAP plots, 
distinct clusters became apparent that share a low signal-
to-noise ratio in their copy number profiles. Annotation 
of such cases with the novel MC label (“degraded DNA, 
DNADEG”) serves as a robust quality control criterion in 
our institute (Fig. 6). Cases matching the DNADEG pat-
tern were rejected from further data interpretation with 
pre-trained models [2]. Such samples were subsequently 
annotated as “DNADEG”.

Additionally, the dimension reduction suggests a loss 
of cancer type-specific epigenetic signatures in cell lines 
(Fig. 7): When examining UMAP plots containing TCGA 
methylation data as well as microarray files from GEO, 
we observed that many of the published cell line methyla-
tion datasets cluster together. However, they form clus-
ters apart from their tumours of origin (see www.epidip.
org, *_cellc annotations). This finding may have impor-
tant implications for cell culture-derived epigenetic data 
interpretation.

UMAP plotting contributes to non-brain/non-sarcoma 
cancer diagnostics
We analysed 156 validation tumour biopsy specimens, 
mostly carcinoma metastases and primary tumours, cur-
rently not covered by either brain tumour or sarcoma ref-
erence datasets. In approximately 80% (n = 126) of these 
specimens, the UMAP-based data interpretation would 
have significantly contributed to the integrated diag-
nosis. Clinically relevant misinterpretation would have 
been rare 1.3% (n = 2), consisting in a methylation pat-
tern that grouped with other bona fide reference data but 
which clearly did not match the clinical situation, e.g. in 
highly undifferentiated cancers of clinically or molecu-
larly known types. 3.8% of specimens (n = 6) aligned with 
inflammatory and reactive signatures which made it 
impossible to determine the cancer’s origin. 7.1% (n = 11) 
of cases showed signs of degraded DNA or too low 
amounts of input material and aligned with MC DNA-
DEG. Another 7.1% (n = 11) cases showed methylation 
profiles not matching with established reference meth-
ylation datasets and hence remained uninterpretable. In 
sum, UMAP often provides essential diagnostic informa-
tion for neoplasias outside of pre-trained tumour spectra.

NanoDiP rapidly obtains and translates nanopore data into 
clinically relevant diagnoses
Following the introduction of diagnostic nanopore 
sequencing based on random forest classifiers in 2019 
[6, 17], we started to routinely record between 100 and 
gradually increased this to 150 megabases of genomic 
DNA reads. Since 2021, NanoDiP has been used to con-
trol sequencing, classify tumours by UMAP scoring, and 

Fig. 5  Performance of an unsupervised pan-cancer dimension reduction (UMAP) with partial, brain tumour-restricted reference annotation (GSE90496) 
against bona fide integrated diagnoses (based on clinical, histological, copy number, and sequencing data). 798 routine diagnostic cases were analysed. 
Between 50 and 75’000 most variably methylated array probes were considered (TDMP = top differentially methylated probes)
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generate copy number profiles [11]. Preliminary inte-
grated diagnoses were formulated from cryo-histology 
and nanopore data. From 493 runs, 377 had bona fide 
integrated diagnoses covered by our NanoDiP pan-can-
cer reference data. For these 377 cases, UMAP scores 
were compared to integrated diagnoses derived from 
histomorphology and microarray-derived methylomes. 
In 269 cases (71%) the UMAP-based diagnosis remained 
identical to the integrated diagnosis. When consider-
ing clinically relevant methylation SCs instead, a match 
occurred in 313 cases (83%). Most remaining mismatches 
were due to insufficient tumour cell content as judged 
from the low amplitudes of chromosomal copy num-
ber profiles and/or tumour methylation profiles masked 
by pronounced inflammatory changes. Nevertheless, 
in the majority of cases, nanopore sequencing provided 
important molecular information in an ultra-fast manner, 
streamlining subsequent diagnostic workup.

Discussion
Clinical utility The development of EpiDiP/Nano-
DiP was motivated by the frequent diagnostic chal-
lenge in which tumours cannot readily be assigned to 
defined types using available supervised classifiers [32]. 
Moreover, for a wide range of neoplasms such as brain 
metastases or hematolymphoid malignancies, no com-
prehensive supervised classifiers, including their training 
data, have yet been made publicly available. In such situ-
ations, unsupervised DNA methylation data clustering 
may provide valuable diagnostic guidance. In contrast, 
we consider supervised approaches superior for differen-
tiating methylation sub-classes such as medulloblastoma 
G3 versus G4, or meningiomas [22, 31]. However, super-
vised classifier scores come with the inherent risk in data 
interpretation, that there will either be a match for one 
of the trained (enforced) entities or not. Importantly, in 
the appropriate clinical context, a cerebellar small-blue-
round-cell neoplasm might also represent the metastasis 
of small-cell lung cancer. As unsupervised machine learn-
ing enables a more holistic view of the digital methylome 

Fig. 6  UMAP dimension reduction reveals an alternative microarray quality assessment parameter for methylation data: Abnormal methylation microar-
ray signatures cluster in pan-cancer UMAP plots. Such datasets were annotated as DNADEG. Incoming samples having mostly DNADEG-annotated refer-
ence cases within their 15 nearest neighbours should be excluded from data interpretation. The inset (upper left) reveals a tight clustering of DNADEG 
cases. The red box is an example of a pop-up-on-mouse-hover annotation, revealing at a glance the microarray ID and annotation for each dot in the plot
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landscape, such challenging scenarios would be easily and 
quickly detected through the proposed layered approach. 
Specifically, the positioning of each case in the proximity 
of similar specimens often assists in narrowing down the 
list of plausible differential diagnoses. Even unannotated 
cases with only a clinical description or local reference to 

previously examined patients might pop up on a UMAP 
plot, hinting at potential similarities. Therefore, when-
ever possible, the use of available supervised classifiers 
should be complemented by unsupervised data cluster-
ing. In any case, diagnostic decisions should be made by 
(neuro-)pathologists, who need to adjust their individual 

Fig. 7  Public pan-cancer UMAP plot highlighting the loss of their original epigenetic signatures. (A) Tumour cell line reference datasets cluster together 
(100% of cases). Note that the cell line cluster lies apart from the respective tumour of origin clusters. Axes: UMAP 0,1. (B) Subplot magnification reveals 
an absence of tumour entity-specific clustering. Cell lines coloured according to their origin, comprising adrenal carcinoma, urothelial carcinoma, breast 
cancer, cervical squamous cell cancer, colon cancer, diffuse large B cell lymphoma, endometrial cancer, oesophagal cancer, glioblastoma IDH wildtype 
MES/RTK I/RTK II, hepatocellular carcinoma, cutaneous melanoma, uveal melanoma, mesothelioma, lung adenocarcinoma, lung squamous cell carci-
noma, ovarian cancer, pancreatic cancer, extra-adrenal paraganglioma, renal cell cancer, sarcomas, stomach cancer, germ cell tumours, renal cell cancers, 
and thymomas. An in-depth examination of the plot with regard to annotations and copy number profile visualisation is available at www.epidip.org 
and epidip.usb.ch
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confidence levels for the various methylation analysis 
approaches. In scenarios, where supervised classifiers or 
statically annotated reference sets do not converge on a 
histologically/genetically conclusive diagnosis, unsuper-
vised comparison with semi-annotated cases oftentimes 
hints at additional aspects to be worked up diagnostically, 
also enabling potential discovery of novel entities.

Diagnostic (neuro-)pathologists are routinely confronted 
with the clinically relevant task of matching metasta-
ses to potential primary tumours. Often, similarities in 
histological patterns and targeted sequencing data are 
considered evidence of clonal relationships. However, 
in situations of multiple pulmonary masses, it might be 
relevant to differentiate between independent primaries 
and systemic metastatic disease. In addition, many driver 
variants in lung cancers can be shared by other entities, 
so their presence would be insufficient to prove clonal 
relationships. Many lung cancers, e.g., exhibit a plethora 
of traceable, private copy number alterations. In such 
situations, combined methylation and copy number pro-
filing may not only be more cost-effective but also more 
comprehensive than targeted sequencing.

It is important to note that a number of diagnostically 
challenging tumours subjected to methylation profil-
ing are likely to remain currently unclassifiable. Typical 
warning signs that prompt for cautious interpretation of 
UMAP results are the location of a case in between two 
or more reference case clusters and mismatches between 
present and expected copy number changes for the epi-
genetic tumour type. With EpiDiP, such cases can be que-
ried against our public resource platform which at the 
time of this writing comprises some 30’000 methylome 
datasets. In some instances, such unclear cases cluster 
together upon dimension reduction and may even share 
further similarities such as copy number variants. In 
any case, efforts to match available clinical information 
can be helpful in identifying what we call ‘digital twin 
tumours’, and in informing further molecular workup.

NanoDiP allows examiners to define custom refer-
ence datasets for UMAP plotting. While this feature 
facilitates fast incorporation of novel entities, careful 
use in diagnostic settings is advised, starting with inde-
pendent in-house reference and validation datasets. If, 
e.g. an uploaded tumour type is represented by less than 
15 reference cases, this needs to be considered when 
interpreting nearest neighbour pie charts. Further-
more, UMAP tends to cluster one-of-a-kind datasets to 
the best matching methylation class rather than plac-
ing them into unpopulated areas of the plot, which may 
lead to misclassification. While histological examination 
in combination with supervised classifiers significantly 
augments clinical diagnosis [32], UMAP analysis may 
further improve the interpretability of classifier results 
although it does not provide confidence scores. This, in 

particular, holds true for the ambiguous DNA methyla-
tion signatures which are often observed as a technical 
hindrance or due to insufficient DNA preservation. Such 
samples can be identified based on their similarity to the 
DNADEG methylation class. Furthermore, distinct copy 
number alterations such as EGFR or ERBB2 gene ampli-
fication could be ascertained by inspecting copy num-
ber profiles in conjunction with morphology, revealing 
both a high likelihood for a particular tumour type and 
potentially providing additional predictive information. 
Our approach of enabling examiners to annotate genes 
and loci of interest through a graphical user interface 
has - to our knowledge - not been implemented in any 
open-source methylation and copy number profiling tool 
(can be evaluated in demonstration VM, Suppl. File 1). 
Lastly, histologically unclear lesions, where differentials, 
e.g., include pure reactive changes vs. tumours masked by 
inflammation, can also be differentiated with high prob-
ability based on the presence or absence of chromosomal 
copy number changes [3, 6, 17].

Lastly, the epigenomic difference between tumour 
biopsies and derived cell lines across a large spectrum 
of human neoplasia is not novel [21]. Nevertheless, this 
striking functional alteration occurring rather uniformly 
across cell lines of different tissue origins should warrant 
a critical interpretation of epigenetic data from ex vivo 
cell cultures and could be monitored by tracking epigen-
etic drift across cultural passages, e.g. with NanoDiP.

Global applicability Native tissues may be preserved in 
cytological preservatives (see Supplementary file 1), for 
sample shipment at ambient temperature by regular mail. 
This approach enables fast methylation and copy number 
profiling in settings lacking NanoDiP infrastructure. Stor-
age of native tissue in standard cytology preservatives for 
up to 21 days did not impair methylome analysis. NanoDiP 
can guide diagnostic and patient management decision-
making, thereby reducing laborious histopathological as 
well as immunohistochemical workup and potentially 
even guiding targeted sequencing. Therefore, the nano-
pore-based strategy may significantly lower diagnostic 
costs [6, 17]. Even with shipping time included, tumour 
classification from remote is possible before FFPE-based 
histology and immunohistochemistry are available to 
local pathologists.
Edge computing concepts [25, 27] were central in the 
design of NanoDiP. They are reflected by code optimi-
zation to run on financially attractive, long-term sup-
ported CPU/GPU hybrid SoCs (Fig.  8A). NanoDiP 
provides a user-friendly graphical interface for control-
ling sequencing and data analysis. While, in urgent situ-
ations, preliminary data examination is already possible 
during sequencing runs, final tumour classification is 
rapidly obtained upon completion of sequencing. The 
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edge computing concept in the diagnostic laboratory 
eliminates the need for data transfer and thereby avoids 
potential patient privacy and security challenges. As an 
offline system, NanoDiP can run in mission-critical set-
tings in the absence of networking resources. As power 
requirements for SoCs are low (approx. 50 W), a battery 
power source would enable sequencing and data analysis. 
As an alternative to SoCs, particularly in countries with 
import restrictions on CPU/GPU SoCs (potential mili-
tary use), widely available CCM hardware is an equally 
cost-effective alternative (Fig.  8B). To make a proof-of-
concept to our statement, the more performant one of 
our two public EpiDiP mirror sites (epidip.usb.ch) runs 
on CCM hardware. While not as energy-efficient as 
SoCs, CCMs also feature a low power consumption (due 
to their intended purpose) while idling (< 100 W) and do 
not require hosting in a computing centre. The majority 
of available gpGPUs can be mounted on so-called mining 
rigs due to highly flexible power supplies and the absence 
of physical constraints. The sole limitation of these 
robust and energy-efficient mining mainboards is mem-
ory capacity. However, most CCMs support 32GB RAM, 
sufficient to run all features of NanoDiP. In sum, the edge 
computing-based NanoDiP concept decreases the time 
from sample receipt to result and can be set up in most 
institutions at a low cost. This enables building up own, 
private reference data lakes from sources of choice, e.g. 
in-house specimens or public repositories like GEO.

With NanoDiP, nanopore sequencing data are acquired 
in a standardised manner, base-called, mapped to a 
human reference genome, methylation-called, methyla-
tion-profiled, and copy-number-plotted on a standalone 

computer. By avoiding the frequently updated (i.e., 
changing) UI provided by ONT and instead control-
ling the sequencing through the MinKNOW API, our 
workflow is specifically adjusted for autonomous opera-
tion by laboratory technicians. The option of automated 
sequencing run termination upon reaching a defined 
number of high-quality bases makes NanoDiP a walk-
away solution (recently adopted by ONT). By defining 
a reference dataset, tumour typing relies on selected 
microarray methylation information of bona fide ref-
erence cases, all in parallel on the same computer. No 
data transfer to an external computer infrastructure is 
required, ensuring the highest possible data confidential-
ity. NanoDiP directly provides the examiner with inter-
active plots and interpretable reports in the context of 
pan-cancer or subgroup-specific reference datasets. The 
possibility to choose between different annotated refer-
ence datasets and visualise unclassified data in the con-
text of annotated cases makes NanoDiP well-suited as 
an assistive system rather than a fully automated diag-
nosis-generating tool. For increased security and sta-
bility we advocate for offline use by running NanoDiP 
behind a firewall on separate routing hardware/software 
(we use routers running OpenWrt) with network access 
restricted to the local intranet for institution-internal 
backups, export of reports, and transfer of sequencing 
data to alternative workflows such as NanoDx [17] or 
Sturgeon [28].

Diagnosticians do not necessarily require exten-
sive (bio)informatics knowledge to interpret the data 
which, as opposed to supervised machine learning 
(ML) approaches, leaves room for interpretation within 

Fig. 8  Cost- and space-effective, energy-efficient and portable edge computers for NanoDiP. A: Nvidia ORIN CPU/GPU hybrid SoC 32GB developer kit 
(1) with USB3-attached Mk1B (2) and P2 Solo (3) sequencers. B: Minimalistic cryptocurrency mining mainboard (1) with attached Mk1B sequencer (2) and 
multiple PCIe connectors in robust USB3 plug format (3) to attach one or more gpGPUs (4) and NVMe modules through riser boards (5) for up-scaling. 
CPU, RAM, NVMe, and power supply were removed to improve visibility. Components are designed to be mounted on open frames. Scale bar: 5 cm
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clinical, radiological, and histopathological contexts. Our 
software is provided as open-source. Therefore, with 
minimal effort, institution-specific reference datasets can 
be assembled and used for the interpretation of many 
(tumour/tissue) spectra. Adding software features is 
facilitated through a Jupyter Notebook IDE. For laborato-
ries solely relying on microarray data, our public EpiDiP 
service and the offline UMAP plotter in NanoDiP provide 
freedom of data interpretation not offered by supervised 
ML systems. Our approach establishes a direct sample-
to-tumour-subtype classification on financially attrac-
tive edge computers, with as low as ∼ 5% of the electric 
power needed relative to a high-performance computing 
infrastructure. Of note, unsupervised UMAP plotting 
does not require a training process or specific adjustment 
prior to use for classification. UMAP is computationally 
lightweight and GPU-augmentation has been established, 
therefore being a prime choice for edge computing 
approaches despite the fact that alternative, potentially 
more accurate approaches exist. In sum, NanoDiP runs 
entirely on low-power, low-cost systems as opposed to 
the majority of supervised systems, in particular for their 
training process [17, 28].

Criticism [20] of the current WHO CNS tumour clas-
sification [30] has challenged the central role of meth-
ylation and copy number profiling in diagnosing brain 
tumours. In particular, the case has been made that 
resource-limited low- and middle-income countries 
would not readily benefit from scientific advances in 
the field, since microarray infrastructure for methylome 
profiling is neither available nor affordable in many geo-
graphical regions. Nevertheless, the current WHO CNS 
tumour classification has defined methylome profil-
ing as an essential criterion for the diagnosis of certain 
brain tumour types. Both the critical letter [20] and the 
current WHO classification [30] have not considered the 
potential of nanopore sequencing [6, 17, 28] as an afford-
able, mobile molecular data acquisition technology that 
enables methylation and copy number profiling nearly 
anywhere in the world. While initial work relied on data 
analysis with high-performance compute clusters [5], at 
least for the training process [28], our approach provides 
an integrated solution to derive methylation-based clas-
sification from intraoperative, native biopsies within two 
hours at minimal cost. The workflow presented here not 
only runs on affordable computer hardware but also com-
bines sequencing control with data analysis so that nei-
ther molecular biological nor computer science expertise 
is required for operation. The entire setup comprising the 
computer, datastore, and sequencer has a physical foot-
print the size of a shoe box (Fig. 8A) and low power con-
sumption, which is key to running it on portable power 
sources such as batteries, solar panels or fuel-driven 
generators. Ready-to-use SoC-based NanoDiP platform 

could hence be mailed to (and installed at) almost any 
institution. The NanoDiP computer can be operated 
remotely through an encrypted internet connection, 
which has been particularly helpful during the establish-
ment phase in institutions without prior experience. A 
demonstration virtual machine (VM) provided alongside 
this manuscript (Suppl. file 1) enables colleagues with 
a working environment to explore its potential benefit 
despite the hardware limitations of a VM. The VM will 
significantly facilitate the local installation process.

Our open-source digital pathology resource EpiDiP/
NanoDiP highlights the added value of examining unsu-
pervised ML to complement existing supervised ML 
strategies for defined tumour spectra, optimising inte-
grated diagnoses. Benchmarking against a supervised 
random forest classifier reveals acceptable precision 
while widening the diagnostic horizon in an unprece-
dented manner.

Limitations Fast product development cycles with fre-
quent updates in methylome data acquisition software/
technology impair harmonised downstream analysis. 
Despite the fact that efforts towards technology-inde-
pendent data formats are currently underway, future use 
of our software will likely require respective adaptations. 
This is a widely known adverse phenomenon in the field, 
affecting the applicability of most previously published 
methylome-diagnostic workflows [5, 6, 8, 9, 12–14, 17, 24, 
28] unless they are constantly re-adjusted to respective 
methodological changes.
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Data availability
A fully functional demonstration instance of NanoDiP in the form of a 
VirtualBox™ for processing 450 K/EPICV2 methylation array and preprocessed 
nanopore sequencing data is available through the two EpiDiP mirror sites: 
https://www.epidip.org, https://epidip.usb.ch. If https is unavailable, http may 
be used alternatively. The source code along with installation instructions is 
available at: https://github.com/neuropathbasel/nanodip, https://github.com/
neuropathbasel/nanodip_dependencies,
https://github.com/neuropathbasel/nanodip_dev (for R10 and EPIC V2),
https://github.com/neuropathbasel/epidip (legacy website code), https://
github.com/neuropathbasel/methylseqscripts. Herein are contained 
download mechanisms that will provide access to processed reference data 
which can be utilised with NanoDiP. A pan-cancer reference data are also 
included in the demonstration VM (Suppl. File 1). The www.epidip.org and 
epidip.usb.ch websites process uploaded IDAT microarray data (450 K, EPIC 
V1 and V2) free of charge and incorporate them in an overarching UMAP 
plot. EPIC V1 and R9 / R10 Nanopore datasets for testing purposes have been 
included in the demonstration VM (Suppl. File 1). Raw nanopore datasets 
from our routine diagnostics may not be shared as they may contain sensitive 
genetic information. MethylSeq datasets are available from the authors upon 
reasonable request (large data size).
All source code including reference data is provided for non-commercial 
use only. Usage in diagnostic settings occurs at the sole responsibility of the 
treating physician.
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