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Abstract
Recent studies suggest that increased cerebrospinal fluid (CSF) phospho-tau is associated with brain amyloid 
pathology rather than the tau pathology. However, confirmation using gold standard neuropathological 
assessments remains limited. This study aimed to determine background pathologies associated with aberrant 
CSF p-tau181 and amyloid-beta 1–42 (Aβ42) in Alzheimer’s disease (AD) and other neurodegenerative diseases. 
We retrospectively studied all patients with antemortem CSF and postmortem neuropathologic data at our 
institution. Comprehensive neuropathologic assessments were conducted for all patients, including Thal phase, 
Braak NFT stage, and CERAD score for AD. CSF concentrations of p-tau181 and Aβ42 were compared between AD 
neuropathological scores at autopsy by one-way ANOVA stratified by other pathologies. A total of 127 patients 
with AD (n = 22), Lewy body disease (n = 26), primary tauopathies (n = 30), TDP-43 proteinopathy (n = 16), and other 
diseases (n = 33) were included. The age at lumbar puncture was 76.3 ± 9.1 years, 40.8% were female, and median 
time from lumbar puncture to autopsy was 637 (175–1625) days. While Braak NFT 0–II was prevalent without 
amyloid pathology, Braak NFT ≥IV was observed exclusively in patients with amyloid pathology. Stratified analyses 
showed that CSF p-tau181 was slightly but significantly higher in patients with high Thal phase or CERAD score 
even in those with Braak NFT 0–II at autopsy. In patients with amyloid pathology, CSF p-tau181 was significantly 
and more profoundly elevated in those with Braak NFT ≥III at autopsy. CSF Aβ42 was lower in patients with high 
amyloid pathological scores. However, 34% with Thal ≤ 2 and 38% with CERAD ≤ sparse also showed decreased 
Aβ42. Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) were overrepresented in this 
group. These results neuropathologically confirmed previous studies that CSF p-tau181 levels were slightly elevated 
with amyloid pathology alone and were even higher with tau pathology, and that CSFAβ42 can be decreased in 
PSP/CBD.
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Introduction
Alzheimer’s disease (AD) is neuropathologically charac-
terized by the presence of extracellular amyloid-beta (Aβ) 
plaques and hyperphosphorylated tau in neurofibrillary 
tangles (NFT) in the brain. While varying degrees of 
amyloid plaques or transentorhinal NFT can be observed 
without symptoms, neocortical expansion of NFT is 
observed only in patients with a certain degree of amy-
loid pathology and is associated with brain atrophy and 
cognitive symptoms [1, 2].

In the CSF, decreased Aβ 1–42 (Aβ42) and increased 
phosphorylated tau (p-tau) are observed, and these 
biomarkers have been validated for the diagnosis of 
AD [3]. Changes in these biomarkers in relation to AD 
neuropathologic changes have been validated repeat-
edly [4–14]. The measurement of mid-region CSF tau 
phosphorylated at threonine 181 (p-tau181) is cov-
ered by insurance in Japan and in other countries and 
is widely conducted. While the current research frame-
work assumes that these biomarker changes in Aβ42 and 
p-tau directly reflect the presence of Aβ or tau pathology, 
respectively [15], pathological evidence in this regard is 
insufficient and several questions remain.

First, the pathological background of increased CSF 
p-tau has been questioned in recent years. Longitudinal 
studies have shown that increased CSF p-tau is observed 
soon after Aβ abnormality and long before the detec-
tion of increased tau PET signals; therefore, it is now 
widely considered that CSF p-tau is more likely related to 
increased phosphorylation or secretion of tau from neu-
rons associated with brain amyloid pathology [16–19]. 
However, many previous studies have shown that CSF 
p-tau is also associated with brain tau pathology and that 
previous human neuropathologic evidence was insuf-
ficient considering the possibility of confounding fac-
tors that may influence the known relationship between 
amyloid and tau pathology [20]. Second, although many 
previous studies have reported that CSF Aβ42 can also 
be decreased in patients with neurological diseases 
other than AD, such as dementia with Lewy bodies 
(DLB), progressive supranuclear palsy (PSP), and corti-
cobasal degeneration (CBD) [9, 21–25], it is not known 
whether these decreases could be explained as being due 
to concomitant amyloid pathology. A hypothesis-driven 
analysis using a large autopsy-confirmed cohort with a 
balanced distribution of AD neuropathologic changes 
[20] may address these questions.

Therefore, this study aimed to investigate whether 
increased CSF p-tau is related to amyloid pathology, 
tau pathology, or both, and whether CSF Aβ42 can be 

decreased in the absence of amyloid pathology in certain 
disease pathologies.

Methods
Standard protocol approvals, enrollment, and patient 
consent
This retrospective study was approved by the Institu-
tional Review Board of the Tokyo Metropolitan Institute 
for Geriatrics and Gerontology (approval number: R22-
086). Written informed consent was obtained from the 
patients’ families before the autopsy. This study was per-
formed in accordance with the tenets of the Declaration 
of Helsinki.

Participants and setting
We retrospectively reviewed all patients who had under-
gone CSF biomarker testing at our institution from 
January 1995 to June 2023. Our institution is located in 
a suburban area of Tokyo, Japan, and provides commu-
nity-based general and emergency services for the older 
adult population, including patients with dementia or 
neurodegenerative diseases. AD biomarkers were mea-
sured in all patients who had undergone a lumbar punc-
ture, regardless of suspicion of clinical AD. Of the 4,832 
patients who underwent CSF analysis during this period, 
all patients autopsied at our institution were included in 
this study. In addition to those who died at our hospital, 
patients who consented and registered for brain donation 
to the Brain Bank for Aging Research (BBAR) and subse-
quently died elsewhere were also autopsied at our insti-
tution. BBAR registrants include, but are not limited to, 
patients with AD.

Biomarker measurements
CSF was obtained through a standard lumbar punc-
ture. The first tube was sent for cell counting and rou-
tine biochemical testing, and subsequent CSF samples 
were collected directly into polypropylene tubes and 
stored at -30  °C until measured and at -80  °C for fur-
ther storage. CSF concentrations of Aβ42 were mea-
sured using enzyme-linked immunosorbent assay 
(ELISA) (INNOTEST®, Fujirebio Europe N.V., Gent, 
Belgium). CSF concentrations of mid-region t-tau and 
p-tau181 were measured using ELISA (INNOTEST® or 
Finoscholar®, Nipro Corp., Osaka, Japan, an assay with 
identical characteristics distributed in Japan [26]) in 
accordance with the manufacturer’s protocol. The insti-
tutional cut-offs for p-tau181, 50.0 pg/mL; t-tau, 300 pg/
mL; and Aβ42, 500 pg/mL, have previously been estab-
lished [9, 27]. ApoE phenotyping was performed using 
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isoelectric focusing, followed by Western blotting using 
serum or postmortem brain tissue.

Neuropathologic evaluation
All patients, regardless of clinical diagnosis, underwent 
a thorough neuropathologic evaluation according to 
our BBAR protocol [28–31] in accordance with current 
guidelines. Briefly, the brain was divided in half, and one 
half was fixed in 20% buffered formalin for 1 to 2 weeks. 
The other half was frozen for future research, but rep-
resentative portions were sampled before freezing and 
fixed in 4% paraformaldehyde for 48 h for diagnosis [28]. 
Representative anatomic areas were sampled, embedded 
in paraffin, and 6  μm-thick sections were used. Stain-
ing included Gallyas-Braak silver impregnation, and 
immunostaining was visualized with DAB using primary 
antibodies against human β-amyloid (12B2, dilution 
1:50 with formic acid for antigen retrieval; IBL, Gunma, 
Japan), phosphorylated tau (AT8, dilution 1:1,000; Inno-
genetics, Ghent, Belgium), phosphorylated α-synuclein 
(pSyn#64, dilution 1:20,000 with formic acid for antigen 
retrieval; a gift from T. Iwatsubo, Japan; now available for 
purchase from FUJIFILM Wako Pure Chemical Corp, 
Osaka, Japan), and phosphorylated TAR DNA-binding 
protein 43 (TDP-43) (pSer409/410, dilution 1:10,000 with 
microwave in Dako target retrieval solution [pH 6.0] for 
antigen retrieval; a gift from M. Hasegawa, Japan; now 
available for purchase from Cosmo Bio, Tokyo, Japan).

Neuropathologic diagnoses and stagings were per-
formed according to internationally accepted neuro-
pathologic criteria for the diagnosis of AD [32, 33], Lewy 
body disease [31, 34, 35], PSP [36], CBD [37], frontotem-
poral lobar degeneration with TDP-43 proteinopathy 
[38], argyrophilic grain disease [30], and multiple system 
atrophy [39]. Those with spinocerebellar degeneration 
without α-synuclein pathology suggestive of multiple 
system atrophy were classified as spinocerebellar degen-
eration. Cerebrovascular disease was confirmed by mac-
roscopic and microscopic evaluation. The diagnosis of 
Creutzfeldt-Jakob disease was based on Western blotting, 
genetic analysis, and neuropathology [40]. For AD neuro-
pathology, Braak senile plaque and NFT stages [41, 42], 
the Consortium to Establish a Registry for Alzheimer’s 
Disease (CERAD) score [43], and Thal phase [44] were 
evaluated. Cerebral amyloid angiopathy staging was mod-
ified from a previous report [45] (0, none; 1, positivity 
confined to small vessel walls; 2, destruction of the small 
vessel wall and positivity extending to vascular smooth 
muscle; and 3, same as 2 plus resultant hemorrhage). The 
severity of Lewy body pathology was graded according 
to BBAR Lewy body stage as previously described [29, 
31, 46]. For each patient, the pathology that most likely 
explained the clinical syndrome was used as the neuro-
pathologic diagnosis to group patients. The control group 

was selected based on Thal phase 0–1, CERAD none, 
and no other significant pathological protein deposi-
tion (cerebrovascular changes were allowed except in the 
presence of documented dementia or parkinsonism).

Statistical methods
Statistical analyses were conducted using GraphPad 
Prism version 9 (GraphPad Software, San Diego, CA, 
USA) or R version 4.0.3 (R Foundation for Statistical 
Computing, Vienna, Austria) and a graphical interface 
EZR (Saitama Medical Center, Jichi Medical Univer-
sity, Saitama, Japan). Missing data were treated using 
pairwise deletion. Categorical variables are expressed 
as percentages. Differences between groups were evalu-
ated using Fisher’s exact test. Pairwise comparisons 
were performed using Holm’s method. Continuous 
variables with a normal distribution are presented as 
mean ± standard deviation, and continuous variables 
with a non-normal distribution are presented as medians 
(interquartile ranges). Differences between groups were 
evaluated using one-way analysis of variance (ANOVA), 
followed by post hoc analyses using a Dunnett test against 
the normal control or the lowest AD pathological score, 
or the Tukey test for analysis between multiple pathologi-
cal diagnoses. Violin plots were colored with gradation 
based on q-values (the difference between means divided 
by the standard error of difference) only when one-way 
ANOVA was significant. Analysis for CSF p-tau181 was 
stratified according to amyloid and tau stages, respec-
tively, to control for confounding. Pathological scores 
were grouped when necessary in reference to the ABC 
score in the NIA-AA guideline [32, 33] to ensure that 
each group had ≥ 4 patients. P-values < 0.05 were consid-
ered statistically significant for all analyses.

Multiple regression analysis was conducted for CSF 
p-tau181 with age, sex, the time interval from lumbar 
puncture to autopsy, APOE ε4 status (carrier or non-
carrier), and postmortem AD pathology scores as inde-
pendent variables. The performance of CSF p-tau181 to 
distinguish amyloid or tau pathology was assessed using 
receiver operating characteristic (ROC) analyses. Opti-
mal cut-offs were determined by maximizing the Youden 
index.

Results
Baseline characteristics
Of the 4,832 patients who underwent CSF biomarker 
analysis during the study period, autopsy results were 
available for 141 patients. We included 127 patients with 
at least one AD CSF biomarker result. Group characteris-
tics according to neuropathologic diagnosis are summa-
rized in Table  1. Age at lumbar puncture was 76.2 ± 9.0 
years and was similar between groups. The time interval 
from lumbar puncture to ELISA measurement was within 
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2 months. The time interval from lumbar puncture to 
autopsy was 623 (170–1,620) days, tending to be longer 
in the AD group and shorter in the TDP proteinopathy 
and ‘other’ groups. Aβ42, p-tau181, and t-tau results were 
available in 100%, 56.7%, and 99.2% of cases, respectively. 
Antemortem CSF Aβ42 levels were significantly lower, 
and p-tau181 and t-tau levels were significantly higher 
in patients with a neuropathologic diagnosis of AD than 
those with other diseases (Suppl. Figure 1).

The distributions of AD neuropathologic changes are 
summarized in Suppl. Figure 2. While Braak NFT stages 
I and II (transentorhinal stages) were frequently observed 
and stage III was occasionally observed with no or low 

amyloid pathology in this older adult cohort, Braak 
NFT stages IV, V, and VI were exclusively observed with 
advanced amyloid pathology.

CSF biomarkers according to AD neuropathologic scores
CSF Aβ42, p-tau181, and t-tau levels were compared 
between patients grouped according to postmortem AD 
neuropathologic changes, Thal phase, Braak NFT stage, 
and CERAD score. CSF Aβ42 was lower in patients 
with advanced pathology in all AD neuropathologic 
scores, Thal phases, Braak NFT stages, and CERAD 
scores (Fig.  1A). CSF p-tau181 and t-tau levels were 
higher in patients with advanced pathology in all AD 

Table 1 Group characteristics according to neuropathologic diagnosis
AD PD(D)/DLB Primary tauopathy TDP proteinopathy Other Multiple

comparison
p values

Total
n 22 26 30 16 33 127

Subtype (n) AD 22 DLB 11,
PDD 10,
PD 5

PSP 18,
CBD 4,
PiD 1,
DG/AGD 7

ALS ± FTD 12,
FTLD-TDP 4

CVD 11,
MSA 4
SCD 3,
CJD 2
other 13

Age at LP
(years)

77.9
 ± 7.9

77.9
 ± 7.3

78.1
 ± 6.3

76.3
 ± 5.9

72.2
 ± 12.6

0.045*
(F = 2.5)

76.2
 ± 9.0

LP to ELISA (days) 7
(2–20)

16
(9–27)

22
(8–54)

12
(7–55)

18
(9–41)

0.27
(F = 1.3)

17
(7–44)

LP to autopsy (days) 1107
(363–2538)

860
(177–1948)

556
(172–1277)

249
(183–446)

379
(80–1408)

0.66
(F = 0.6)

623
(170–1620)

Sex 
(female, %)

40.9% 42.3% 36.7% 62.5% 33.3% 0.41 40.9%

APOE ε4
carrier

59.1% 19.2% 20.7% 26.7% 12.9% 0.0047** 26.0%

ADNC
none 0 4 6 4 11 25
low 0 18 18 11 18 65
intermediate 8 4 6 1 4 23
high 14 0 0 0 0 14
CSF biomarkers
Aβ42
results

22/22
(100%)

26/26
(100%)

30/30
(100%)

16/16
(100%)

33/33
(100%)

1 127/127
(100%)

Aβ42
(pg/mL)

258
 ± 111

605
 ± 317

460
 ± 262

537
 ± 233

601
 ± 324

< 0.001†
(F = 6.7)

501
 ± 294

p-tau181
results

14/22
(63.6%)

16/26
(62%)

18/30
(60%)

12/16
(75%)

12/33
(36.4%)

0.73 72/127
(56.7%)

p-tau181
(pg/mL)

79.4
 ± 34.6

41.9
 ± 12.1

38.9
 ± 20.1

44.3
 ± 14.7

39.2
 ± 9.4

< 0.001†
(F = 10.1)

48.4
 ± 25.1

t-tau
results

22/22
(100%)

26/26
(100%)

30/30
(100%)

16/16
(100%)

32/33
(97.0%)

1 126/127
(99.2%)

t-tau
(pg/mL)

577
 ± 354

146
 ± 87

140
 ± 118

231
 ± 136

266
 ± 255

< 0.001†
(F = 16.4)

261
 ± 261

Abbreviations Aβ42, amyloid-beta 1–42; AD, Alzheimer’s disease; ADNC, AD neuropathologic change; AGD, argyrophilic grain disease; ALS, amyotrophic lateral 
sclerosis; APOE, apolipoprotein E CBD; corticobasal degeneration; CJD, Creutzfeldt-Jakob disease; CSF, cerebrospinal fluid; CVD, cerebrovascular disease; DG, 
dementia with grains; DLB, dementia with Lewy bodies; ELISA, enzyme-linked immunosorbent assay; FTD, frontotemporal dementia; FTLD-TDP, frontotemporal 
lobe degeneration with TDP-43 pathology; LP, lumbar puncture; MSA, multiple system atrophy; PD(D), Parkinson’s disease (with dementia); PiD, Pick’s disease; PSP, 
progressive supranuclear palsy; p-tau181, tau phosphorylated at threonine 181; SCD, spinocerebellar degeneration; TDP-43, TAR DNA-binding protein 43; t-tau, total 
tau. * Post-hoc Tukey test showed no significant difference between groups. ** Pairwise comparison showed a significantly higher frequency in AD compared to 
Other group, and a higher trend in AD compared to Primary tauopathy group (p = 0.065) and PD(D)/DLB group (p = 0.063). † Plots and results of post-hoc comparisons 
are shown in Supplementary Fig. 1
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neuropathologic scores, Thal phases, Braak NFT stages, 
and CERAD scores (Fig. 1B, C).

Associations between CSF tau and amyloid or tau 
pathology stratified according to other pathology
Given the known strong relationship between amyloid 
and tau pathology, which was also confirmed in our 
cohort (Suppl. Figure 2), we conducted stratified analyses 
for p-tau181 to control for confounding between amyloid 
and tau pathology. Even in the subgroup of patients with 
a low Braak NFT stage (0–II) at autopsy, CSF p-tau181 

was slightly but significantly higher in patients with high 
amyloid pathology scores compared with those without 
amyloid pathology (Fig. 2A). The difference in CSF t-tau 
showed no significance in the same analysis (Fig.  2B). 
When stratified according to the postmortem CERAD 
score, CSF p-tau181 tended to be higher with a high 
Braak NFT stage (III) in patients with a low CERAD score 
(none or sparse), and was significantly higher with high 
Braak NFT stages (≥III) in patients with high CERAD 
scores (moderate or frequent) (Fig.  2C). The difference 
in CSF t-tau was significant only in those with a high 

Fig. 1 CSF AD Biomarkers according to AD Neuropathologic Scores. (A) CSF Aβ42 levels compared between patients grouped by AD neuropathologic 
scores at autopsy. (B) CSF p-tau181 levels compared between patients grouped by AD neuropathologic scores at autopsy. (C) CSF t-tau levels compared 
between patients grouped by AD neuropathologic scores at autopsy. Note Horizontal lines represent pre-determined cut-off values
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CERAD score and was significantly higher in Braak NFT 
stages ≥V (Fig. 2D). The distribution plots and regression 
line between p-tau181 and t-tau showed different trends 
related to postmortem brain pathology, suggesting higher 
CSF p-tau181 levels in moderate or frequent CERAD 
scores and Braak NFT stage ≥III (Fig. 3).

Based on these findings, a multiple regression analy-
sis was conducted with CSF p-tau181 as the dependent 
variable and age, sex, time interval from lumbar punc-
ture to autopsy, APOE ε4 status (carrier or noncar-
rier), CERAD none-sparse or moderate-frequent, and 
Braak NFT stage ≤II or ≥III as independent variables. 
CSF p-tau181 levels were log-transformed for normal 

distribution. CERAD none-sparse or moderate-fre-
quent (t = 2.79, P < 0.01) and Braak NFT stage ≤II or 
≥ III (t = 4.71, P < 0.001) both remained significantly 
associated with CSF p-tau181 levels and were the only 
variables that remained significant.

ROC analyses using the entire sample showed that 
CSF p-tau181 had an area under the curve (AUC) of 
0.81 (95% confidence interval [CI] 0.70–0.92) for pre-
dicting CERAD moderate-frequent and an AUC of 
0.86 (95% CI 0.75–0.96) for predicting Braak NFT ≥III 
at autopsy, both at similar cut-off levels of 45.9 and 
46.0 pg/mL, respectively. Limiting the analysis to Braak 
NFT stage ≤II to predict CERAD moderate-frequent 

Fig. 2 CSF p-tau181 and t-tau according to AD Neuropathologic Scores Stratified according to other Pathology. (A) In a subgroup of patients with a low 
Braak NFT stage (≤II) at autopsy, antemortem CSF p-tau181 was slightly but significantly higher in patients with high amyloid pathologic scores compared 
with those with no amyloid pathology. (B) The difference in CSF t-tau between patients grouped by amyloid pathologic scores in a subgroup of patients 
with a low Braak NFT stage (≤II) was not significant. (C) Stratified according to the severity of amyloid pathology, CSF p-tau181 tended to be higher with a 
high Braak NFT stage (III) in patients with a low CERAD score and was significantly higher with a high Braak NFT stage (≥III) in patients with a high CERAD 
score. (D) In patients with a high CERAD score, CSF t-tau was significantly higher with high Braak NFT stages (≥V) at autopsy in patients only among those 
with a high CERAD score
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showed a similar optimal cut-off of 45.9 pg/mL (AUC 
0.69, 95% CI 0.50–0.89), while limiting the analysis 
to CERAD moderate-frequent to predict Braak NFT 
stage ≥III showed a higher cut-off of 63.9 pg/mL with 
100% specificity (AUC 0.83, 95% CI 0.69–0.96).

Characteristics of decreased CSF Aβ42 in patients without 
postmortem amyloid Pathology
While CSF Aβ42 was significantly lower in patients 
with high amyloid pathology scores, a significant num-
ber of patients with low amyloid pathology scores also 
had CSF Aβ42 below the cut-off (Fig.  1A; Suppl. Fig-
ure  3). Notably, 44% with Thal phase 0 and 42% with 
no neuritic plaques on CERAD had CSF Aβ42 levels 
below the cut-off (Suppl. Figure  3). None had amy-
loid angiopathy stage ≥ 2 on a scale of 0–3. Although 
various neuropathological diagnoses were observed 
in patients with decreased CSF Aβ42 levels and low 
amyloid pathology scores at autopsy, we found that 
primary tauopathy was overrepresented in our cohort, 
consisting mainly of PSP and CBD (Suppl. Figure  4). 

Compared with age-matched controls without sig-
nificant brain pathology at autopsy, CSF Aβ42 was 
significantly lower in patients with a pathological 
diagnosis of PSP/CBD and tended to be lower in those 
with DLB/Parkinson’s disease with dementia (PDD) 
(Suppl. Figure  5). CSF Aβ42 was not associated with 
the severity of Lewy pathology (Suppl. Figure 6). While 
decreased CSF Aβ42 was associated with amyloid 
pathology scores in DLB/PDD (Fig.  4A, B), decreased 
CSF Aβ42 was not associated with amyloid pathology 
scores in PSP/CBD (Fig. 4C, D).

Antemortem measurements of both Aβ42 and 
Aβ40 via the currently used Lumipulse assay using 
the LUMIPULSE system (FUJIREBIO INC., Tokyo, 
Japan) were available for a single patient. While CSF 
Aβ42 was decreased below the cut-off, CSF Aβ40 was 
also low and the Aβ42/Aβ40 ratio was within the nor-
mal range [47] (Suppl. Figure 7). Neuropathologically, 
amyloid pathology was limited (Thal phase 2, CERAD 
none) and the neuropathological diagnosis was CBD 
(Suppl. Figure 7).

Fig. 3 The Association between CSF p-tau181 and t-tau Stratified according to AD neuropathologic scores. (A) The distribution plots and Deming regres-
sion line showed different trends between CERAD scores lower than or equal to sparse and CERAD higher than or equal to moderate, suggesting a higher 
CSF p-tau181 in CERAD higher than or equal to moderate. (B) In a subgroup of patients with CERAD higher than or equal to moderate, the distribution 
plots and regression line showed different trends between Braak NFT stage ≤II and Braak NFT stage ≥III suggesting a higher CSF p-tau181 in Braak NFT 
stages ≥III
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Discussion
In this study, we confirmed neuropathologically that CSF 
p-tau181 levels were associated with both amyloid and 
tau pathology, even after stratification according to other 
pathology. While CSF Aβ42 was decreased in association 
with increasing amyloid pathology, a significant number 
of patients without amyloid pathology also had decreased 
CSF Aβ42.

CSF p-tau181 was increased in association with amy-
loid pathology even in the absence of tau pathology 
expansion. It has been well established that CSF p-tau181 
is elevated in patients with AD [3]. While it seems natu-
ral to assume that elevated CSF p-tau181 is associated 

with tau pathology in the brain, recent evidence sug-
gests that elevated CSF p-tau181 is more likely associated 
with increased phosphorylation or secretion of tau from 
neurons associated with amyloid pathology [16–19]. To 
further neuropathologically confirm this current notion 
in human patients, we compared CSF p-tau181 levels 
between patients grouped in relation to amyloid-related 
pathological scores stratified according to tau pathology 
in a relatively large cohort with various degrees of AD 
neuropathologic changes. Our results clearly showed 
that CSF p-tau181 was mildly but significantly elevated 
in patients with high amyloid pathological scores, even 
in those with limited tau pathology to the transentorhinal 
region (Braak NFT stage 0–II) at autopsy.

Fig. 4 The association between CSF Aβ42 and Postmortem Amyloid Pathologic Scores in DLB/PDD and PSP/CBD. The study was performed in 21 patients 
with DLB/PDD (DLB, n = 11; PDD, n = 10) and 22 patients with PSP/CBD (PSP, n = 18; CBD n = 4). (A) A significant difference in CSF Aβ42 was observed 
between patients grouped according to postmortem Thal phase in DLB/PDD and tended to be lower in the highest Thal phase. (B) CSF Aβ42 was 
significantly lower in patients with frequent neuritic plaques in terms of the CERAD score at autopsy in DLB/PDD. (C, D) The difference in CSF Aβ42 was 
nonsignificant between patients grouped according to postmortem Thal phase or CERAD score in PSP/CBD. Decreased CSF Aβ42 below the cut-off was 
frequently observed in patients with a low Thal phase and CERAD score at autopsy. Note Circles, upward triangles, downward triangles, and squares rep-
resent data from patients with DLB, PDD, PSP, and CBD, respectively

 



Page 9 of 12Kurihara et al. Acta Neuropathologica Communications           (2024) 12:48 

Moreover, CSF p-tau181 was even higher in patients 
with amyloid pathology plus Braak NFT ≥III. The corre-
lation between CSF p-tau181 and t-tau in patients with 
high amyloid and tau pathology scores also suggested that 
CSF p-tau181 was not only an amyloid marker but also 
related to tau pathology ± neurodegeneration. A recent 
study investigating the relationship between plasma p-tau 
species and AD neuropathologic changes also suggested 
that p-tau181 levels are associated with both amyloid and 
tau pathology [48]. A recent study using a highly sensi-
tive tau PET tracer, namely, 18F-MK6240, also showed 
a large CSF p-tau181 increase from PET-based Braak 
stage ≥III [49]. Our results and recent studies suggest 
that CSF p-tau181 is associated not only with amyloid 
but also with tau pathology. In other words, considering 
the chronological relationship between amyloid and tau 
pathology, CSF p-tau181 starts to be mildly elevated with 
the progression of amyloid pathology and continues to be 
more elevated with the expansion of tau pathology.

A revised NIA-AA clinical criteria for AD in draft pro-
poses to classify tau biomarkers into several categories, 
including none, medial temporal lobe, and neocortical, 
rather than the current dichotomy of positive vs. nega-
tive. This categorization should be important for estimat-
ing the effect of AD pathology on clinical symptoms. The 
degree and extent of tau pathology may also be impor-
tant to estimate the response to disease-modifying thera-
pies [50]. However, these classifications are based on tau 
PET findings, and fluid p-tau is listed only as an early-
stage amyloid biomarker based on binary interpretation. 
Increased t-tau may indicate neocortical expansion of tau 
pathology, although caution should be exercised because 
t-tau can be increased in several other conditions, includ-
ing stroke, head trauma, or Creutzfeldt-Jakob disease 
[51]. Our study results suggest that the establishment 
of two or more cut-offs for CSF p-tau may be straight-
forward and have the potential to differentiate between 
patients into three groups; amyloid-negative, amyloid-
positive but tau pathology limited in the transentorhi-
nal region (Braak NFT 0–II), and amyloid-positive plus 
extensive tau pathology (Braak NFT ≥III).

While the predefined single cut-off for the diagno-
sis of AD was 50.0 pg/mL, based on our stratified ROC 
analyses, the cut-off was 45.9 pg/dL for differentiating 
amyloid-negative from amyloid-positive individuals and 
63.9 pg/mL for differentiating tau pathology limited to 
the transentorhinal region from extensive tau pathol-
ogy in amyloid-positive individuals. These values should 
differ between measurement platforms and need to be 
directly confirmed in the currently used fully automated 
immunoassays, but could be close to 54.3 and 83.1 pg/mL 
for the Lumipulse assay, and 16.3 and 24.2 pg/mL for the 
Elecsys assays based on previous Passing–Bablok regres-
sion lines [52, 53].

While CSF Aβ42 was lower in patients with high amy-
loid pathology scores at autopsy, as previously reported 
[5, 6, 8, 11, 12], a substantial proportion of patients with 
decreased CSF Aβ42 had low amyloid pathology scores at 
autopsy. Although the neuropathologic diagnosis varied 
widely, patients with PSP and CBD were overrepresented 
in our cohort among those with decreased CSF Aβ42 
and low amyloid pathology scores at autopsy. While 
decreased CSF Aβ42 in patients with DLB/PDD [9, 22] 
was associated with concomitant amyloid pathology, 
known as the common form [54] as previously reported 
[21], decreased CSF Aβ42 in patients with PSP/CBD 
[23, 24] was not associated with amyloid pathology. It 
has been reported that decreased CSF Aβ42 in PSP may 
be associated with disease severity, which may lead to a 
decrease in total APP-derived peptides including both 
Aβ42 and Aβ40 [24]; therefore, using the current stan-
dard approach of using the CSF Aβ42/40 ratio [55] (as in 
the patient in Supplementary Fig. 7) may be more specific 
to evaluate brain amyloid pathology in PSP/CBD, as has 
been recently suggested [56].

This study had some limitations. First, although the 
number of patients was relatively large for a study 
directly comparing antemortem CSF with postmortem 
pathology, the sample size was not sufficiently large to 
control for other confounders. Second, the time interval 
between lumbar puncture and autopsy is always a limita-
tion in this type of study. However, because the pathology 
was likely less advanced at the time of lumbar puncture, 
we consider the main conclusion of the study that CSF 
p-tau181 can be increased without significant tau pathol-
ogy being sustained. Third, although we employed widely 
used standard pathological scores, differences within the 
same scores may have had additional effects. Additional 
analyses without ceiling effects, such as quantitative mea-
surement of different forms of amyloid plaques, may be 
useful to test this hypothesis. Fourth, we used the results 
of manual ELISA, which may have increased the techni-
cal variation in the results compared with current auto-
mated methods. Fifth, we only obtained measurement 
results of CSF mid-region p-tau181 for p-tau, whereas 
the relationship between p-tau and amyloid or tau is 
known to differ between p-tau species [16, 19, 57].

Conclusion
We neuropathologically confirmed that CSF p-tau181 
was associated with both amyloid and tau pathology. 
CSF p-tau181 levels were slightly elevated with amyloid 
pathology alone and even higher with expansion of tau 
pathology. Decreased Aβ42 was observed in the absence 
of amyloid pathology in patients with neurological dis-
eases such as PSP/CBD. These findings contribute to a 
better understanding of CSF AD biomarkers in relation 
to neuropathologic changes.
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