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Aβ accumulation. More recently, the field has seen the 
incorporation of xenografted human microglia [3–4] and 
neuron [4] AD mouse models, addressing the disparities 
between murine glial and neuronal cells and their human 
counterparts. These xenografted models create new 
opportunities to explore the functions of various genes 
identified in genetic studies, which may not be fully cap-
tured in conventional transgenic mouse models.

While the current Aβ deposition-based mouse models 
have significantly enriched our comprehension and con-
tributed to therapy and biomarker development, their 
phenotype hinges exclusively on the presence of specific 
mutations responsible for the genetic variant of AD. This 
focus on genetic factors has led to an oversight of the 
increasing recognition of environmental factors as piv-
otal drivers and/or accelerators of AD development and 
progression.

The environmental dimension of AD pathology
Environmental and lifestyle factors can promote periph-
eral inflammation, contributing to later cognitive decline 
[5–9]. Infections, even occurring years before dementia 
onset, elevate dementia risk through peripheral inflam-
matory and vascular pathways [10]. In addition, genome-
wide association studies link immune response regulation 
genes, both within and outside the CNS, to increased 
risk of developing AD [11]. Aging, the most significant 
risk factor for AD, is accompanied by increase in pro-
inflammatory markers in blood and tissues, or so called 
inflammaging [12]. Moreover, chronic diseases, such 
as obesity, diabetes and atherosclerosis are AD risk fac-
tors and are associated with a chronic pro-inflammatory 
state. Next to inflammatory events observed before the 
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by 2030. While recent FDA approvals for Aducanumab 
and Lecanemab have generated optimism, these therapies 
offer only partial relief by slowing cognitive decline [1–2], 
leaving us ill-equipped to face the looming AD epidemic. 
To better address AD, we must enhance our understand-
ing of its pathophysiology, with a focus on utilizing animal 
models that closely replicate the human condition.

While mice are the most commonly used model to 
study neurodegenerative disorders, they don’t naturally 
exhibit AD-like pathology with age. The use of geneti-
cally engineered mice mimicking amyloidosis and/or 
tauopathy, two key pathological hallmarks of AD, has 
made substantial contribution to the field. When focus-
ing on amyloidosis mouse models, these mice overex-
press the amyloid β (Aβ) precursor protein (APP) along 
with various familial AD (FAD)-related mutations in 
APP or presenilin 1 (PS1), such as Tg2576, APP/PS1, 
5xFAD and 3xTg-AD mice. However, these first-gener-
ation mouse models display characteristics unrelated to 
AD due to this (often cell type specific) APP overexpres-
sion. Second-generation knock-in mouse models, like 
AppNL−G−F mice, incorporated humanized sequences and 
clinical mutations within the mouse App gene, mitigat-
ing issues related to overexpression while still exhibiting 
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clinical onset of AD, patients often exhibit elevated lev-
els of inflammatory markers compared to age-matched 
neurologically healthy individuals [13]. This comprehen-
sive set of clinical findings underscores the role of envi-
ronmental factors that trigger peripheral inflammation, 
and subsequently affect AD pathology. Preclinical studies 
have elucidated how peripheral inflammation affects AD 
pathology. First, peripheral inflammation activates the 
innate immune system leading to circulating pro-inflam-
matory cytokines impacting brain neurons and glial cells. 
In addition, peripheral immune cells can infiltrate in the 
brain, inducing glial activation and increased Aβ deposi-
tion. In the absence of inflammatory stimuli, microglia 
maintain a resting state, vigilantly monitoring their sur-
roundings. However, prolonged activation disrupts their 
normal functions, leading to the release of cytokines and 
neurotoxic agents that contribute to neuronal cell death 
and impaired synaptic remodeling. Secondly, periph-
eral inflammation has shown to decrease Aβ clearance 
via impaired microglial Aβ phagocytosis and an LRP-1 
dependent decreased Aβ transport from brain to blood 
in addition to increased Aβ influx into the brain. Thirdly, 
peripheral inflammation compromises brain barrier 
integrity, potentially allowing entry of blood-borne, often 
pro-inflammatory, cytokines and immune cells. Finally, 
emerging evidence links AD to intestinal inflammation 
and altered gut microbiota as this may lead to gut barrier 
dysfunction, allowing the release of pro-inflammatory 
molecules and gut microbes into the periphery.

Clearly, combined clinical and preclinical evidence 
emphasizes the association between peripheral inflam-
mation and AD pathology. Environmental influences on 
AD require attention, prompting adjustments to mouse 
models considering these findings.

Bridging the gap: incorporating environmental 
factors such as repetitive peripheral inflammation 
in AD mouse models
A significant portion of AD research is centred on mouse 
models within specific pathogen-free (SPF) environ-
ments. While this controlled environment reduces the 
experimental variability, it falls short in accurately rep-
licating the environmental inflammatory conditions 
encountered by AD-inflicted patients. Additionally, the 
differences between SPF and conventionally housed mice, 
although often ignored or not reported in manuscripts, 
may contribute to variations in the reported onset timing 
of AD pathological hallmarks. As shown by preclinical 
studies discussed above, these peripheral inflammatory 
events affect crucial mechanisms behind the develop-
ment of AD pathology. To bridge this disparity, it is vital 
to introduce a mechanism that triggers repetitive periph-
eral inflammation in mice without compromising the 
aforementioned experimental precision.

Peripheral infections and gut dysbiosis appear to pri-
marily advance AD pathogenesis through general inflam-
mation and vascular pathways, emphasizing the greater 
significance of inducing generalized peripheral inflam-
mation in our AD mouse model, rather than focus-
ing on any specific pathogen. Thereto, we previously 
introduced an AD mouse model [14] in which we twice 
administered lipopolysaccharide (LPS) to ∼  5 months 
old AppNL−G−F mice to mimic multiple peripheral infec-
tion episodes or LPS leakage due to gut barrier dysfunc-
tion. This induction of repetitive peripheral inflammation 
led to increased Aβ deposition in the brain, heightened 
glial activation, and a more pronounced degree of neuro-
nal dysfunction. This mouse model is used in our recent 
research article which show a significantly worsened 
AD pathology in AppNL−G−F mice that lack an adaptive 
immune system in the presence of repetitive periph-
eral inflammation [15]. Conversely, in the absence of 
peripheral triggers, we only observed a tendency toward 
reduced AD neuropathology. This further underscores 
the crucial role of systemic inflammation in the develop-
ment of neuropathological characteristics and the impor-
tance of considering the impact of a too clean mouse 
environment, which does not accurately reflect the con-
tinuous immune challenges experienced in the human 
situation.

In conclusion, AD presents a multifaceted challenge 
that transcends genetic mutations. While mouse models 
exclusively based on genetic contributors have yielded 
valuable insights, it is essential not to underestimate 
the role of environmental factors, especially periph-
eral inflammation. To advance our understanding and 
develop effective treatments, a shift toward more com-
prehensive research models mirroring the full complexity 
of AD as it manifests in humans, is imperative.
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