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Abstract
Neurovascular unit mural cells called ‘pericytes’ maintain the blood-brain barrier and local cerebral blood flow. 
Pathological changes in the hippocampus predispose to cognitive impairment and dementia. The role of 
hippocampal pericytes in dementia is largely unknown. We investigated hippocampal pericytes in 90 post-
mortem brains from post-stroke dementia (PSD), vascular dementia (VaD), Alzheimer’s disease (AD), and AD-VaD 
(Mixed) subjects, and post-stroke non-demented survivors as well as similar age controls. We used collagen 
IV immunohistochemistry to determine pericyte densities and a mouse model of VaD to validate the effects 
of chronic cerebral hypoperfusion. Despite increased trends in hippocampal microvascular densities across all 
dementias, mean pericyte densities were reduced by ~25–40% in PSD, VaD and AD subjects compared to those 
in controls, which calculated to 14.1 ± 0.7 per mm capillary length, specifically in the cornu ammonis (CA) 1 region 
(P = 0.01). In mice with chronic bilateral carotid artery occlusion, hippocampal pericyte loss was ~60% relative 
to controls (P < 0.001). Pericyte densities were correlated with CA1 volumes (r = 0.54, P = 0.006) but not in any 
other sub-region. However, mice subjected to the full-time environmental enrichment (EE) paradigm showed 
remarkable attenuation of hippocampal CA1 pericyte loss in tandem with CA1 atrophy. Our results suggest loss of 
hippocampal microvascular pericytes across common dementias is explained by a vascular aetiology, whilst the EE 
paradigm offers significant protection.
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Introduction
Brain vascular injury is a major risk factor for demen-
tia. Longitudinal follow up studies in cognitively intact 
elderly stroke survivors suggests up to 50% will go on 
to develop delayed post-stroke dementia (PSD) [40, 41]. 
Using structural and arterial spin labelling magnetic reso-
nance imaging (MRI) methods, we previously found that 
medial temporal lobe atrophy is an important predictor 
of PSD [13, 15]. Hippocampal volumes were also reduced 
almost equally in PSD as in patients diagnosed with 
Alzheimer’s disease (AD) relative to both post stroke no-
dementia (PSND) and ageing control subjects [14]. Simi-
larly, moderate to severe medial temporal lobe atrophy 
was present in more than 40% of cognitively impaired 
patients with cerebral small vessel disease [2, 27].

Our previous pathological studies showed that volumes 
of hippocampal neurons in the cornu ammonis (CA) 1, 
CA2 and CA4 regions were reduced in PSD, vascular 
dementia (VaD) and AD as well as mixed AD plus VaD 
subjects relative to PSND and ageing controls [17, 18]. 
The hippocampal changes and atrophy are explained as 
occurring remotely from the primary stroke probably due 
to diaschisis. The focal loss and shrinkage of hippocampal 
subfield neurons was also correlated with memory scores 
in the general absence of substantial burdens of neuro-
degenerative pathology. These observations suggest there 
is a vascular basis for hippocampal neurodegeneration 
which concurs with the neuroimaging findings on hippo-
campal atrophy even in population-based incident VaD 
[44]. The atrophy may occur due to chronic hypoperfu-
sion affecting the hippocampal vasculature [25] produc-
ing neuronal or dendritic arbour loss with consequences 
to connectivity and function. Moreover, changes in hip-
pocampal haemodynamics may be critical in altering cel-
lular components [25]. However, it is unclear how other 
key cellular components of the neurovascular unit such 
as pericytes are modulated in cognitively stable stroke 
survivors or those who develop PSD and VaD. Capillary 
pericytes are particularly susceptible to ischaemic injury 
and associated with hippocampal blood brain barrier 
breakdown [20, 34]. Previous studies have used platelet-
derived growth factor (PDGF)-receptor β immunore-
activity to track pericyte coverage in various conditions 
[33] but the absence of more reliable markers has ham-
pered greater characterisation of pericytes.

We used a simple reliable method using collagen 
IV (COL4) immunohistochemistry to identify nucle-
ated pericytes and determined their status in PSD, VaD, 
AD and mixed dementia with vascular and Alzheimer 
pathologies in relation to capillary density and hippo-
campal atrophy. This study elucidated capillary peri-
cytes within specific hippocampal sub-regions and tested 
whether chronic hypoperfusion produced by bilateral 
carotid artery stenosis (BCAS) in mice produces similar 

hippocampal effects that can be modified by environ-
mental enrichment (EE). Our focus particularly on the 
hippocampus and its vasculature provides an interven-
tion target to mitigate common dementias.

Materials and methods
Human subjects
Table 1 provides the demographic details and diagnoses 
of the total number of subjects used in this study. The 
PSND, PSD and VaD groups were derived from the New-
castle Cognitive Function After Stroke (CogFAST) study 
[1]. Dementia was clinically diagnosed and pathologically 
verified by post-mortem examination as either PSD, AD, 
VaD or AD-VaD (Mixed). Available radiological reports 
indicated typical features of dementia [23]. In addition, 
we assessed PSND subjects as well as ageing controls. 
The controls, aged 72–91 years, were obtained either 
from prior prospective studies or other brain donations 
to the Newcastle Brain Tissue Resource (NBTR). Apoli-
poprotein E (APOE) allele frequencies were determined 
in frozen samples from the NBTR essentially as described 
previously [3]. Ageing controls had no evidence of cog-
nitive impairment, clinical or pathological features of 
neurological or psychiatric disease. Local research eth-
ics committees at the Newcastle upon Tyne NHS Foun-
dation Hospitals Trust granted the necessary ethical 
approvals for this post-mortem research. Permission for 
using brains was also granted by informed consent from 
the individuals themselves when they had been still alive 
or from a next-of-kin family member. All brain tissues 
were obtained from the NBTR.

Brain tissues and neuropathological analyses
Neuropathological assessment was carried out as 
described previously [23]. We routinely used the fol-
lowing stains: Nissl and Luxol Fast Blue, haematoxylin 
and eosin (H&E), Bielschowsky’s and Gallyas. AD was 
clinically diagnosed on evidence of significant Alzheim-
er’s-type pathology incorporating Braak stages V–VI, 
moderate-severe CERAD [32] and high ABC scores, 
according to National Institute of Aging-Alzheimer’s 
Association guidelines [36], with the general absence of 
marked vascular pathology. The clinical diagnosis of vas-
cular dementia (VaD) was made by the appearance of the 
following features: lacunae, multiple, cystic or border-
zone infarcts, microinfarcts and small vessel disease, and 
could be pathologically confirmed as Braak stage ≤ IV [26, 
28]. Cases were classified as Mixed AD and VaD when 
there was an abundance of both AD pathology [36] and 
significant vascular pathology present (Table 1). Vascular 
pathology including cerebral amyloid angiopathy scores 
and white matter lesion (WML) grading were assessed as 
described previously [9, 47]. Control subject tissues dis-
played occasional ageing-related pathology but were still 
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classified as NPD or no pathological diagnosis (Table 1). 
Except for neuropathological examination (RNK, TMP), 
all subsequent morphological analyses were undertaken 
under operator-blinded conditions, with samples only 
identifiable as coded sequential numbers. Moreover, at 
least two positive and negative controls were included to 
monitor the quality of staining levels.

Immunohistochemistry methods
Formalin-fixed paraffin-embedded coronal sections at 
10  μm thickness cut from blocks of the whole hippo-
campus according to the Newcastle Brain Map [26, 42], 
which contained the CA1, CA2, CA3, CA4 and dentate 
gyrus (DG) hippocampal sub-regions were analysed. 
When sampling tissue, we ensured to select the hip-
pocampal regions free of any apparent infarcts or gross 
lesions. Immunohistochemistry was performed to exam-
ine alterations across numerous microvascular structures 
effectively as was described before [10, 22]. The follow-
ing antibodies were used to assess various cellular fea-
tures and verify pericytes in this study: Drebrin A (DA at 
1:400 dilution, Medical and Biological Laboratories Co., 
Ltd, Japan), F-actin binding protein localised in dendritic 

spines (post-synaptic), collagen IV (COL4 at dilution 
1:1000, C1926, Sigma-Aldrich, Branchburg, NJ, USA), a 
marker of the basement membrane in the vessels, plate-
let-derived growth factor receptor-β (PDGFR-β at 1:200 
dilution, clone 42G12, #AF385, R&D systems, Minneapo-
lis, MN, USA), a marker for pericytes, α-smooth muscle 
actin (αSMA at dilution 1:1000, Clone 1A4, Dako, Cam-
bridge, UK), a marker for mural cells, and glucose trans-
porter-1 (GLUT-1 at 1:200, PA1-21041, Fisher Scientific, 
Waltham, MA, USA), a marker of endothelial cells. Vec-
tastain ABC mouse kits (PK-6102, Vector Laboratories, 
Burlingame, CA, USA) and DAB were used to localise 
single immunohistochemical stains. Sections were then 
counter stained with haematoxylin to visualise landmarks 
across the tissue before mounting in DPX.

Animals and surgical procedures
Adult male C57BL/6J mice (~ 25  g), purchased from 
Charles River, UK, were housed in groups on a 12 h day 
and 12  h night cycle (6am–6pm, day; 6pm–6am, night) 
and were given access to food and water ad libitum. A 
total of 74 mice were randomly selected for either bilat-
eral common carotid artery stenosis (BCAS, n = 41) [21, 

Table 1 Demographic details of all the cases and controls
Variable Ageing Controls PSND PSD VaD Mixed AD
N 13 22 13 16 13 13
Mean Age, years (range) 80.1 (72–91) 83.5 (78–94) 87.3 (80–98) 86.9 (76–97) 85.9 (72–94) 83.3 (70–91)
Gender
(M:F%)

35:65 57:43 30:70 41:59 44:56 56:44

MMSE,
mean ± SEM

29 ± 1 27 ± 0.4 16 ± 1 13 ± 4 11 ± 2 7 ± 2

CAMCOG,
mean ± SEM

na 90 ± 1 66 ± 3 na na 39 ± 7

APOE ε2; ε4 allele frequencies (%) 16.7; 16.7 10.0; 25.0 13.3; 13.3 10.0; 0.0 0.0; 30.0 3.6; 39.3
CERAD,
mean (range)

0.5
(0–2)

1.7
(1–2)

1.3
(1–3)

1.0
(0–2)

2.9
(2–3) ‡

2.9
(2–3) ‡

ABC
Scores, mean

A0.5,
B1.2, C0.5

A0.5,
B1.2, C0.7

A0.5,
B1.2, C0.8

A0.6,
B1.2, C0.8

A2.5,
B2.6, C2.6

A3,
B3, C3

Braak Stage, mean
(range)

1.9
(0–4)

2.6
(1–4)

2.6
(1–4)

2.0
(0–4)

5.2
(5–6) ‡

5.6
(5–6) ‡

CAA- frequency (moderate- severe), % 6 15 18 17 9 39
Vascular pathology score, mean
(range)†

6.7
(0–10) †

13.5
(13–14)

13.3
(9–17)

13.2
(10–16)

11.0
(6–14)

10.8
(3–16)

WML
score, mean (range)

0.5
(0–2) †

2.5
(2–3)

2.4
(2–3)

2.9
(2–3)

2.9
(2–3)

1.8
(0–3)

White matter (WM) / Vascular lesions, moderate - severe 
(%)

18.0** 100 100 100 95 72

Numbers represent mean values (± SEM) and where given with the range of values in parentheses. The causes of death included bronchopneumonia (95%), cardiac 
arrest and carcinoma, renal failure and gastrointestinal bleed with no particular distribution pattern in any group. The post-mortem interval between death and 
tissue retrieval ranged 24–47 h for all the cases. There were no differences in the length of post-mortem delay between groups. Braak staging scores and Alzheimer’s 
Disease Neuropathologic changes [36] were different in mixed and AD cases compared to all other groups (‡P < 0.05). Mean vascular pathology scores (range) for 
PSND and PSD groups were 13.5 (13–14) and 13.3 (9–17) compared to 6.7 (0–10) for controls (†P < 0.05). These scores were derived as described previously, with white 
matter lesion (WML) pathology score assessed using the scale from Deramecourt et al. [9].. Mean WML Score was high in all post-stroke and dementia subjects 
compared to controls (†P < 0.01). WM/Vascular lesions had **P < 0.01 compared to all post-stroke and dementia subjects. Abbreviations: ABC: AD Neuropathology 
scoring system; AD: Alzheimer’s disease; APOE: apolipoprotein E; CAA: cerebral amyloid angiopathy; CAMCOG: Cambridge cognition examination; F: female; M: 
male; MMSE: Mini Mental state examination; N: number of subjects; na: not available; NPD: no pathological diagnosis; PSND: post-stroke non-demented; PSD: post-
stroke dementia; VaD: vascular dementia; WM: white matter
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46] or sham (n = 33) surgery. Data analyses were per-
formed under investigator blinded conditions by 2 or 
more observers. The surgical and animal housing proce-
dures were pre-approved by the Home Office, UK based 
upon ASPA: The Animals (Scientific Procedures) Act 
1986, UK and performed in accordance with the guide-
lines stipulated by the ethical committee of Newcastle 
University and also adhering to ARRIVE guidelines.

Enriched environment (EE) in BCAS mice
One week after surgery, the BCAS and sham mice were 
randomly assigned to six subgroups, three different levels 
of EE per main group for 12 weeks: standard housing no 
EE, limited exposure to EE and full-time exposure to EE. 
Standard housing denotes normal housing conditions, 
which incorporated a paper house and shredded tissue. 
EE cages had extra gadgets in addition to the standard 
housing e.g. running wheels, hanging chains, igloos, and 
a paper tunnel. Limited exposure to EE was performed as 
described previously [29]. Briefly, for the first four weeks, 
mice were transferred to the EE cages for 3 h daily in the 
morning from 9am to noon. From 5th week to 12th week 
after BCAS surgery, mice experienced EE for 3 h, 3 days 
a week. Full-time EE group was exposed to EE every day 
for 24 h over the entire 12 weeks [21].

COL4-specific immunocytochemistry to quantify pericytes
In accord with our work on the white matter and cortex 
[10, 11], we refined COL4 immunohistochemistry as a 
readily applied method to determine densities of cap-
illary pericytes in disease and in experimental animal 
models. Tissue sections were immunostained with COL4 
antibodies and then counterstained with haematoxylin. 
Nucleated pericytes were typically identified as nod-
ules with “bumps” or “crescent” shaped cell bodies were 
counted manually along capillary profiles captured from 
more than 2500 images. The total number of pericyte cell 
bodies (> 2000) were then estimated for each case from 
8 to 25 frames per case, with a mean number also calcu-
lated per case (Supplementary File 1). We encountered 
10–17 nucleated pericyte cell bodies in each image, which 
ensured consistent counting methods. The pericyte soma 
was only included if it had the characteristic shape with 
a visible nucleus as identified by haematoxylin counter-
stain at 40X magnification. In preliminary experiments, 
we ensured bonafide pericytes were counted by demon-
strating overlap between COL4 and PDGFR-β immuno-
reactivties, which clarified that COL4 + ve “bumps” were 
pericyte somata and negative staining for GLUT1 [10, 
11]. We only quantified the pericyte cell density rather 
than pericyte cell coverage with processes because the 
aim was to assess potential alterations in pericyte nuclei 
and therefore pericyte cell status in dementia.

Image acquisition and analysis
Regions of interest (ROI) within the tissue sections were 
captured as images on a Zeiss Axioplan 2.0 microscope 
and relevant image capture software (Infinity Capture 
V4.6.0, Lumenera Corporation), taking care to avoid 
larger arterioles > 50  μm external diameter. Immuno-
histochemical staining was then quantified by using Fiji 
Image software [45]. We assessed the hippocampal sub-
region specific pericyte density per capillary length (cells/
mm) as well as the percentage vascular area stained for 
COL4 (% COL4/Area mm2), which was measured for 
each case from at least 10 ROI images. Measures of atro-
phy for each respective hippocampal sub-region area was 
also quantified as a percentage of the total hippocampal 
area (% area/ total hippocampal area). Moreover, the 
quality of immunoreactvities between individual sections 
and cases was tested using the integrated optical den-
sity, which displayed no significant differences in values 
between disease and control subjects. We additionally 
found there was a lack of association between the groups 
for the immunohistochemical staining of COL4 and 
length of fixation, or post-mortem interval. The % COL4 
area, capillary length and capillary diameter were all ana-
lysed manually using Fiji Image software [45]. All essen-
tial histopathological analyses were performed blind 
throughout to the operator.

Statistical analyses
Data were analysed by using GraphPad Prism and SPSS 
(V19.0, IBM) statistical software and were confirmed as 
normally distributed using the Shapiro-Wilk test. Differ-
ences between means of groups were first tested using 
the appropriate one-way ANOVA followed by Tukey’s 
post-hoc test or Kruskal-Wallis H test. Linear corre-
lations between the density of pericytes per capillary 
length (mm) and hippocampal sub-region atrophy (% 
sub-region volume/ total hippocampus volume) were 
performed using the Pearson’s correlation co-efficient, as 
was described previously [7]. Differences between groups 
were denoted as significant with a P value less than 0.05 
and the data represents mean ± SEM.

Results
Hippocampal pathology and atrophy in dementia
The mean age and gender distribution of all the dementia 
subjects with relevant pathological findings are provided 
in Table  1. The available MMSE and CAMCOG scores 
indicated subjects had evidence of dementia at least 6 
months prior to death. Figure  1 (A and B) shows high 
Thal scores and Braak stages in Mixed and AD groups 
compared to the vascular dementias, PSND and control 
groups. We found significant hippocampal formation 
atrophy [14] in the dementias and compared to con-
trols. We found reductions in the % CA1 area indicative 
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of atrophy in PSD (P < 0.001), VaD (P = 0.064), Mixed 
(P < 0.001) and AD (P < 0.001) subjects with the most 
severe changes occurring in PSD, Mixed and AD individ-
uals. As expected, the PSND subjects also exhibited slight 
CA1 atrophy compared to ageing controls (P = 0.01). 
Thus, hippocampal atrophy was mainly driven by a 
18–22% reduction in the CA1 region, which is the largest 
subfield of the hippocampal formation (Fig. 1C). In con-
trast, there was no evidence of significant change in size 
of the CA3 area (Fig. 1D) (P > 0.05) or the CA2, CA4 and 
DG regions (data not shown). Consistent with the neuro-
nal atrophy and cellular changes in the CA1 region [17], 
we also found that the dendritic spine marker Drebrin A 

immunoreactivites were reduced across all the dementias 
compared to PSND and controls groups (P < 0.01) (Sup-
plementary File 2).

Hippocampal COL4-immunostained pericyte cell bodies
As robustly demonstrated previously in the frontal cortex 
and white matter [10, 11], the appearance of “bumps” on 
a log or “crescent” shaped structures in hippocampal cap-
illaries were COL4 immunopositive denoted as cell bod-
ies of capillary pericytes (Fig. 2A-D). Their localisation to 
the abluminal surface of capillaries with envelopment of 
the COL4 immunostained basement membrane identi-
fied pericytes with diameter 7–9 μm. Pericyte cell bodies 

Fig. 1 Hippocampal Pathology and Atrophy in Post-Stroke Dementia compared to other Dementias. A-B, Thal and Braak stage pathologies in different 
dementias compared to ageing controls and non-demented post-stroke survivors. There was significantly greater neurodegenerative pathology in Mixed 
(AD plus VaD) and AD cases (P < 0.01). C-D, Box plots showing hippocampal CA1 and CA3 areas relative to whole hippocampus in common dementias 
compared to ageing controls and non-demented post-stroke survivors. ANOVA and post-hoc tests showed that CA1 region atrophy across all dementias 
in PSD, VaD, Mixed and AD (P < 0.001). There was also a difference between PSD vs. PSND cases (P = 0.008). There were no significant differences in the CA3 
region (D) or in CA4 or DG (not shown). Abbreviations: AD, Alzheimer’s disease, CA, cornus ammonis; DG, dentate gyrus, Mixed, mixed dementia VaD and 
AD; NPD, neuropathological diagnosis; PSD, post-stroke dementia; PSND, post-stroke no dementia; VaD, vascular dementia
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were higher compared to prior findings in the human 
neocortex [11] with range at 12–16 per mm length within 
the microvascular network.

Considering our prior analysis of cortical morphologi-
cal changes within hippocampal cornu ammonis (CA) 
subfields, for this study we focused on the CA1 to CA4 
plus the DG, which are associated with pyramidal neu-
ron atrophy across different dementias [17, 18]. For the 
ageing controls, quantification of COL4 immunopositive 
pericyte cell bodies across the hippocampal sub-regions 
visualised with clear nuclei indicated that overall median 
densities were estimated to be 1280 cells per COL4 area 
mm2 and 12.8 cells per mm in capillary length. These 
estimates in the PSND group of stroke survivors without 
dementia were respectively 1120 and 11.2 per COL4 area 
mm2 and mm capillary length. This indicated a 12.5% 

reduction in the mean density per COL4 immunostained 
area and capillary length for PSND subjects relative to 
ageing controls. However, only the CA1 sub-region impli-
cated the greatest reduction difference between PSND 
and controls for all hippocampal areas, as the reduction 
increases to ~ 20% suggesting an apparent predilection 
for CA1. There was no significant correlation between 
the loss of pericytes and any of the neurodegenerative 
pathology scores or the frequencies of apolipoprotein E 
(APOE) ε4 alleles (Table 1).

Pericyte somata densities within hippocampal regions 
across different dementias with a varying extent of vas-
cular and neurodegenerative pathologies were found to 
be reduced (Fig. 2E). We found particularly for the CA1 
area that irrespective of the metric used for estimation: 
mean density of pericytes per mm capillary length or per 

Fig. 2 Quantification of hippocampal pericytes in dementias and ageing controls. A-D, Capillaries immunostained with COL4 showing pericytes identi-
fied by the morphology of ‘protrusion’ from the capillary walls surrounded by the COL4-positive membranes [10]. A, An original image at low power of 
the field containing 17 pericytes (yellow arrows). B-D, Images at higher power showing more detailed shape and size of capillary pericytes (black arrows). 
Only nucleated pericytes double positive for COL4 and haematoxylin were counted. E-F, Box plots showing number of pericytes per unit (mm) capil-
lary length in the whole hippocampal formation (D) and CA1 region. The distribution of individual data points is shown beside each box plot. Pericyte 
numbers decreased in all groups compared to control subjects E, ***P < 0.001 Control vs. PSND and PSD; F, P < 0.01 Control vs. PSND and dementias. Scale 
bars; A-D = 50 μm.
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COL4 mm2 area, pericytes were significantly reduced for 
the dementia groups of PSD (P = 0.004), VaD (P < 0.001), 
Mixed (P = 0.028) and AD (P = 0.003) compared to age-
matched elderly controls. Mean pericyte density in the 
CA1 per capillary length or capillary density for PSND 
subjects relative to controls was also decreased (P = 0.010) 
with apparent difference in pericyte density between 
PSND and PSD groups (Fig. 2F). We further noted lack of 
any notable changes for the % areas measured for COL4 
immunostained capillary profiles in any of the dementia 
types apart from the mixed group slightly increasing in 
CA1 capillary density (P = 0.009), which was largely con-
sistent with our prior findings in both the white matter 
and cortex [11, 22]. Additional analysis correlating the 
extent of CA1 atrophy against pericyte cell body num-
bers per capillary length (mm) did not reveal any strong 
associations across the PS survivors or dementia groups 
(P > 0.05) (Supplementary File 3).

Pericyte densities per capillary length and capillary 
densities as well as region-specific density changes were 
also quantified for the CA2, CA3, CA4 and DG hippo-
campal subfields (Fig.  3A-D). However, no statistically 
significant changes were found in terms of contrast-
ing disorder mean values (Fig. 3A-D). Pericyte numbers 
per capillary length did tend to decrease in PSND and 
dementia groups in the CA2, CA3 and CA4 except the 
DG. Correlation analysis for each specific hippocampal 
sub-region showed there was no apparent relationship 
between region area and pericyte densities (P > 0.05 for 
all regions). Thus, in terms of analyses for subfields of the 
hippocampal formation, only the CA1 region was found 
to be most vulnerable and susceptible to density changes 
within capillary pericyte somata.

Hippocampal pericyte cell bodies in the BCAS model
As in the human hippocampus, we determined hip-
pocampal densities of capillary pericytes in a similar 
manner in the BCAS mouse model, which mostly reca-
pitulates VaD [23]. We have also previously shown that 
there is reduction in cerebral blood flow in the BCAS 
mouse model [23]. Capillary pericytes in the mice were 
4–5  μm in diameter and located 13–15 per mm length 
(Fig. 4A-C). We found selective CA1 reduction in volume 
(atrophy) in the BCAS mice after chronic cerebral hypo-
perfusion (P = 0.008) (Fig. 4D). In the mouse, mean hip-
pocampal capillary pericyte cell densities in sham animals 
were estimated to be 14 cells per mm vessel length in the 
order CA1 > CA2-3 > CA4 > DG (cf. Figures  4, 5 and 6). 
The density of CA1 pericytes measured per mm capillary 
length or per mm2 COL4 area was selectively reduced 
compared to the sham animals (P < 0.001) (Fig. 4E). Cor-
relation analysis of all the data from the BCAS and sham 
groups showed a strong positive relationship between 

Fig. 3 Quantification of hippocampal pericytes in the CA2, CA3, CA4 and 
DG regions across dementias. Box plots showing number of pericytes per 
unit (mm) capillary length in the CA2 (A), CA3 (B), CA4 (C) and DG (D). 
While there was variation in numbers of pericytes per region dependent 
on capillary densities there were no overall significant changes across the 
different dementia compared to controls (P > 0.05)
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Fig. 4 Assessment of capillary density, hippocampal volume and pericytes number in the hippocampus of BCAS mice. A-C, Representative images show-
ing pericytes in the mouse hippocampus (arrows) subjected to bilateral common carotid artery stenosis (BCAS) using collagen IV (COL4) immunostaining. 
Scale bar = 50 μm (A); 25 μm (B-C). D, Box plots showing mean volume of the hippocampus in each subfield. BCAS caused CA1 atrophy (P = 0.018). E, Box 
plots showing number of pericytes per unit capillary length (/mm) in the hippocampus. Pericytes loss was evident in CA1 subfield of the hippocampus 
after BCAS (P = 0.000). F, Graph showing correlation between number of pericytes per unit capillary length (/mm) in CA1 and CA1 volume of the hippo-
campus after BCAS. Pericytes number per unit capillary length was positively correlated with CA1 volume (Pearson’s r = 0.54, P = 0.006)

 



Page 9 of 14Hase et al. Acta Neuropathologica Communications           (2024) 12:29 

CA1 volume and numbers of pericyte per capillary mm 
length (P < 0.006) (Fig. 4F).

In further subfield analysis comparing standard BCAS 
group versus those that had 3 h EE and full-time EE, we 
first found that CA1 volumes were retained similar to 
sham controls (Fig. 5) in BCAS animals exposed to 3h or 

full-time EE (Fig.  5A). Moreover, both the relative CA1 
capillary densities per mm length (or per CA1 area) were 
found to typically increase compared to the sham group 
by nearly 50% in the BCAS full treatment (P = 0.024) 
(Fig.  5B). Computing the capillary densities against 
pericytes numbers, we found remarkable recovery of 

Fig. 5 Quantification of pericytes per capillary length in the CA1 and CA2-3 regions in mice with BCAS. Box plots showing CA1 and CA2-3 volumes (A, 
D), vessel length (B, E) and the number of pericytes per unit (mm) capillary length (C, F). While there was variation in numbers of pericytes per region 
dependent on capillary densities there were no overall significant changes across the different dementia compared to controls (P > 0.05)
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pericytes in the EE animals, as a particularly strong effect 
in the full-time EE animals (Fig. 5C). CA1 pericyte den-
sities were greater in the BCAS full EE treatment group 
compared to the BCAS std animal (P = 0.011).

Additional analyses revealed that the CA2/3 sub-region 
showed a reduction in pericyte density per capillary 
length (or per density) in the BCAS std group compared 
to sham animals (P = 0.041) but these were attenuated to 
sham control levels in the 3  h EE and full-time EE ani-
mals (Fig.  5F). We also found that capillary densities 
were increased in the full-time EE group (P = 0.027) but 
not significantly changed in the BCAS standard or 3  h 
EE group compared to sham animals (Fig. 5E). This lat-
ter finding of increased capillary density was replicated 
in the DG (P < 0.0001) (Fig. 6) in the absence of pericyte 
density changes (Fig. 6C). We also found no correlation 

between DG volumes and density of pericytes in individ-
ual animals in any of the groups including sham (Supple-
mentary Fig. 4).

Discussion
Given our prior studies on the white matter and cere-
bral cortex [10, 11], in this study we estimated num-
bers of nucleated pericytes in hippocampal sub-regions 
across ageing-associated vascular and neurodegenerative 
dementias, and normal controls. Notably, we found that 
pericyte cell body densities were approximately 3-fold 
greater within the hippocampal allocortex compared 
to the frontal cortex. Thus, median pericyte cell bodies 
per mm capillary length in normal anterior human hip-
pocampus was 12.8 and those in the mouse was 14.0. 
To our knowledge, there are no previous estimations of 

Fig. 6 Quantification of pericytes per capillary length in the Dentate Gyrus (DG) in mice with BCAS. Box plots showing DG volume (A), vessel length (B) 
and number of pericytes per unit (mm) capillary length (C). While there was variation in numbers of pericytes per region dependent on capillary densities 
there were no overall significant changes across the different dementia compared to controls (P > 0.05)
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such pericyte cell numbers for the hippocampus. More 
importantly in this study, we found that (1) there is loss of 
pericyte somata per capillary length in the whole hippo-
campal formation in both vascular and AD dementias, (2) 
the loss is remarkably sub-region specific, particularly the 
CA1 being most affected in dementia, (3) CA1 capillary 
pericytes are also lost in stroke survivors free of dementia 
(PSND group) or possibly before they develop dementia. 
This latter finding suggests remote stroke injury impacts 
on CA1 loss, likely due to early microvascular or perfu-
sion changes modifying or remodelling the capillary net-
work. Although the trends in lower number of pericytes 
in other hippocampal regions including the CA2 and 
CA3 may reflect intact nuclei it is possible the dynamic 
pericyte cell processes are undergoing retraction or mod-
ification [19]. However, overall these findings underscore 
profound vulnerability of the CA1, which appears to drive 
the shrinkage of the entire hippocampal structure. Our 
observations are also compatible with previous studies in 
which PDGFR-β immunoreactivity and soluble PDGFR-β 
were used to assess pericytes [35], particularly the earlier 
observations by Montagne et al. [34] showing that blood-
brain barrier (BBB) breakdown in the CA1 region of the 
hippocampus worsened with mild cognitive impairment 
(MCI) and correlated with injury to BBB-associated peri-
cyte. Interestingly, a recent experimental study suggests 
there is direct neuronal activity-driven signalling from 
insulin-like growth factor 2 expressing pericytes to neu-
rons involved in learning and long-term memory [39]. It 
is plausible that that the CA1 loss of pericytes and of neu-
rons we described previously [17] in similar cases could 
be related but this did not hold for the dentate gyrus [39].

Consistent with our previous observations on neuro-
nal densities and arborisation [17, 18], we also found that 
irrespective of the type of pathology e.g. amyloid plaques, 
neurofibrillary tangles or microvascular changes within 
the hippocampal formation or remote to it there are 
similar losses in pericyte densities across dementias even 
though capillary densities remain unchanged or were 
increased. In view of the notable functions of the hip-
pocampus in learning and memory, our findings overall 
suggest protection of the cerebral circulation and perfu-
sion of the structure [25] by control of vascular risk fac-
tors is vital to prevent cognitive decline [8].

The BCAS mice experiments also remarkably showed 
that the hippocampal CA1 was most vulnerable with 
variable pericyte changes in other sub-fields. Chronic 
cerebral hypoperfusion caused by BCAS is non-invasive 
and therefore the changes in capillary structure and peri-
cyte population appear entirely driven by likely haemo-
dynamic alterations and perfusion deficits [24]. Similar 
findings compared to both those in human post-mortem 
tissue and BCAS mice were additionally prevalent with 
reduced hippocampal pericyte densities in a non-human 

primate model of chronic hypoperfusion induced by 
three vessel occlusion (Ndung’u M, Hase Y, Kalaria RN, 
unpublished observations). Thereby implicating that aber-
rant hippocampal pericyte somata changes in density are 
equally conserved across three distinct species and mod-
els of vascular-related or neuropathological dementia 
disorders.

Our most profound finding was the effect of EE on the 
hippocampal formation after BCAS. Outstandingly, full-
time EE restored or attenuated effects on atrophy of the 
hippocampus as well as pericyte density per mm capil-
lary length after chronic cerebral hypoperfusion. This 
finding emphasises how certain interventions are pro-
tective and beneficial for neurodegeneration and recur-
rent stroke injury that may act via neural and glial growth 
factors [21, 23, 30]. The question whether hippocampal 
function or pathophysiology can be modified in age-
ing and age-associated neurodegenerative and vascular 
dementias has been a topic of much research and discus-
sion [16]. The role of physical activity or EE in improv-
ing hippocampal function and brain plasticity has been 
debated [12, 43] but, recent findings in various rodent 
models of degenerative disease are promising [31]. Our 
observations also support previous findings in patients 
with MCI that high intensity resistance exercise is capa-
ble of not only promoting better cognition, but also pro-
tecting dementia vulnerable hippocampal subfields from 
degeneration for at least 12 months post-intervention 
[5]. This could be explained by the hippocampal-specific 
cerebral blood flow effect of moderate post-exercise [38] 
although exercise-related vascular plasticity is highly 
variable among older adults indicating that other factors, 
such as the vascular network patterns in the medial tem-
poral lobe may modify exercise-related benefits [49].

In individuals who develop cognitive impairment or 
dementia, the mechanism may be instigated by primary 
or focal endothelial damage which progresses [37]. It is 
plausible that a vicious cycle is set up whereby detach-
ment of perivascular cells such as pericytes are exposed 
to blood-derived proteins which then creates a toxic 
environment on the abluminal side of the capillary net-
work resulting in other cellular changes including clas-
matodendrosis and microglial activation [21]. Previous 
in vivo two-photon imaging studies in the adult mouse 
cortex have shown that pericyte somata were immobile 
but the tips of their processes underwent extensions or 
retractions over days to cover bare regions of the capil-
lary segment after selective ablation of single pericytes 
[4]. While removal of single pericyte soma in rodents 
does not affect focal BBB function, the absence of greater 
numbers of pericytes induces microvessel leakage and 
microvessel regression [35, 50] and almost the opposite 
scenario occurs when pericytes are implanted [48] in that 
cerebral blood flow is enhanced.
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Our study has a few limitations. First, we did not assess 
pericyte numbers by 3D stereology but used a robust 
established method using wide screening with multiple 
sections in many cases. Our preliminary experiments 
demonstrated that it was unnecessary since we had previ-
ously shown that the qualitative changes described using 
2D measurements are similar to those obtained with 3D 
stereology [6], which is immensely cumbersome for a 
large number of samples. While further labour-intensive 
work could reveal precise numbers and turnover of peri-
cytes, we think our estimates of pericyte numbers are 
close to reality. The pertinent finding here is that despite 
an apparent lack of profound changes in capillary densi-
ties, hippocampal capillary pericyte somata were fewer 
in subjects who developed dementia. The availability of 
more specific markers of pericytes would also have been 
useful to corroborate our findings on the mechanics 
of pericyte cell impairment or turnover and determine 
if these are decreased intracellularly prior to complete 
degeneration in the persistently hypoperfusive state 
within the deeper structures of ageing-related dementias.

In summary, we found mostly CA1 region-specific loss 
of numbers of capillary pericytes in the hippocampus in 
ageing-associated dementia disorders. Pericyte cell loss 
is likely associated with age-related disintegration of the 
neurovascular unit of the hippocampus that impairs BBB 
function. These findings were replicated in the BCAS 
model of chronic cerebral hypoperfusion also associated 
with tissue volume loss. Remarkably, however, BCAS 
mice exposed to full-time EE exhibited restoration of not 
only CA1 structure volume and capillary density but also 
pericyte numbers. Our observations suggest that changes 
in tissue perfusion and local cellular needs modify cap-
illary pericyte cell responses, which can be restored by 
appropriate interventions.
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