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Abstract 

Mitosis is a critical criterion for meningioma grading. However, pathologists’ assessment of mitoses is subject to signifi‑
cant inter‑observer variation due to challenges in locating mitosis hotspots and accurately detecting mitotic figures. 
To address this issue, we leverage digital pathology and propose a computational strategy to enhance pathologists’ 
mitosis assessment. The strategy has two components: (1) A depth‑first search algorithm that quantifies the math‑
ematically maximum mitotic count in 10 consecutive high‑power fields, which can enhance the preciseness, espe‑
cially in cases with borderline mitotic count. (2) Implementing a collaborative sphere to group a set of pathologists 
to detect mitoses under each high‑power field, which can mitigate subjective random errors in mitosis detection 
originating from individual detection errors. By depth‑first search algorithm (1) , we analyzed 19 meningioma slides 
and discovered that the proposed algorithm upgraded two borderline cases verified at consensus conferences. This 
improvement is attributed to the algorithm’s ability to quantify the mitotic count more comprehensively compared 
to other conventional methods of counting mitoses. In implementing a collaborative sphere (2) , we evaluated 
the correctness of mitosis detection from grouped pathologists and/or pathology residents, where each member 
of the group annotated a set of 48 high‑power field images for mitotic figures independently. We report that groups 
with sizes of three can achieve an average precision of 0.897 and sensitivity of 0.699 in mitosis detection, which 
is higher than an average pathologist in this study (precision: 0.750, sensitivity: 0.667). The proposed computational 
strategy can be integrated with artificial intelligence workflow, which envisions the future of achieving a rapid 
and robust mitosis assessment by interactive assisting algorithms that can ultimately benefit patient management.
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Introduction
Meningioma is the most common primary brain tumor, 
accounting for approximately 40% of central nervous sys-
tem (CNS) neoplasms in the United States [1]. Accord-
ing to the 2021 WHO classification of tumors of the 
CNS, (WHO CNS 5 Blue Book), the mitotic count (MC), 
calculated in 10 consecutive high-power fields (HPFs, 
1HPF=0.16mm2 ) from areas of the highest mitotic activ-
ity on H&E slides, is one critical criterion for meningi-
oma grading [2]. Nonetheless, pathologists’ evaluation of 
MC varies due to obstacles in pinpointing hotspot areas, 
first, and detecting mitosis events within these areas 
[3–5]. Therefore, it is essential to create a more robust 
solution to ensure a reliable MC assessment for grading 
of meningiomas, which is important in clinical manage-
ment and prognosis [6–8].

Besides histologic examination of the H&E slides, 
immunohistochemistry (IHC) staining has been used to 
assist with more accurate MC. For example, a prolifera-
tion index, derived from Ki-67 IHC, has been employed 
as a tool to correlate with the mitotic activity [9–11]. 
However, the Ki-67 proliferation index cannot fully 
replace the mitotic count, likely due to variation in stain-
ing among institutions, subjectivity of percentage assess-
ment, and the absence of a clear threshold cutoff [12]. 
More recently, other IHCs such as Phosphohistone-H3 
(PHH3) immunostains – effective in detecting both G2 
and mitosis phases [13] – proved to be a reliable indica-
tor for mitosis reading [14–17]. However, the PHH3 is 
not an acceptable criterion in the WHO criteria and thus, 
is mainly used in research studies.

It is noteworthy that the WHO CNS 5 Blue Book has 
incorporated molecular alterations as an alternative path-
way for diagnosing grade 3 meningiomas, described as 
harboring a  TERT promoter mutation and/or homozy-
gous loss of CDKN2A/B [2]. Recent works on methyla-
tion profiling can also classify grade 3 meningiomas [18]. 
However, there are no clear molecular criteria for the 
majority of WHO 1 and 2 meningiomas, which con-
stitute over 97% of meningiomas [1]. While the current 
WHO CNS guideline may not be the best predictor of 
tumor outcome, it is still not clear whether DNA copy 
number analysis, methylation profiling, or other factors 
are the better predictor of tumor recurrence and aggres-
sive behavior [19–22]. Further investigation in methyla-
tion profiling and other molecular alterations along with 
clinical studies are still required to correlate with new 
approaches of tumor grading and classification.

As of 2023, histologic examination and evaluation of 
mitotic activity by pathologists  still remain an impor-
tant element for meningioma grading, considering 
its cost effectivity. However, this process is prone to 
a high level of variation because of two factors: (1)  lack 

of standardized protocols for selecting 10 consecutive 
HPFs, resulting in differences in evaluated areas [3, 23]; 
and (2)  inconsistencies in detecting mitosis within the 
selected 10 HPFs, stemming from controversy in mitosis 
verification, the small size, often low prevalence in grade 
1 and most of grade 2 tumors, and heterogeneous distri-
bution of mitotic figures [4, 5, 24].

The recent advancements in digital pathology and arti-
ficial intelligence (AI) technologies have shown promise 
in assisting pathologists in mitosis examination: A study 
of Aubreville et  al.  demonstrated that AI could outper-
form pathologists in localizing mitotic hotspots from 
digitized pathology slides [23]. AI-assisted systems have 
been developed to calculate and recommend hotspots 
equivalent to 10 consecutive HPFs for pathologists [25, 
26]. The use of AI can save pathologists’ effort in search-
ing for mitoses under high magnification, leading to 
improved sensitivities [25, 27], agreement rates [28], and 
confidence [26] in identifying mitotic figures. However, 
the current AI approaches have two major limitations: 

1. AI-assisted systems typically calculate mitosis hot-
spots as circle [29], square [25] or rectangular [26, 
27, 30, 31] regions, which may not completely align 
with the actual distribution of mitosis in tumors. As 
a result, the number of mitoses included in these 
recommended hotspot areas might be fewer, as the 
morphology of these hotspots lacks flexibility and 
nuance.

2. The current mitosis AI is trained on data from lim-
ited sources, such as specific patients, hospitals, and 
scanners [30–33]. Consequently, the AI may not 
achieve optimal performance when confronted with 
new and diverse data [34–36]. The pathologists per-
forming histological analysis are still indispensable 
under such situations.

This work overcomes the limitations of current compu-
tational methods for mitosis quantification and detection 
by introducing a strategy that harnesses the precise-
ness of the computer algorithm and the collective intel-
ligence of human pathologists. The first element of the 
strategy aims to enhance quantification, consisting of a 
computer algorithm called “depth-first search” (DFS). It 
can calculate the mathematically maximum possible MC 
in 10 consecutive HPFs of a slide, along with their cor-
responding locations. By analyzing 19 fully-annotated 
meningioma slides, we demonstrate that the DFS algo-
rithm can identify 4.29 more and 3.32 more mitoses in 
10 consecutive HPFs on average, compared to mitoses 
counted in linear and rectangular HPF arrangements, 
respectively. As a result, the elevated mitoses counted by 
the proposed DFS algorithm led to potential upgrades 
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of two cases compared to the previous diagnoses veri-
fied by consensus conferences. The second element of 
the computational strategy targets to improve mitosis 
detection by leveraging the collective expertise of a group 
of pathologists. This approach involves letting a certain 
number of pathologists annotate mitoses independently 
and generating a final judgment through a majority vote. 
To validate this element, we hosted a user study involving 
41 pathologists and pathology residents, where each par-
ticipant independently annotated mitoses based on their 
own judgments in 48 selected HPFs of meningiomas. We 
evaluated the correctness of annotations from each par-
ticipant, as well as the majority voting decisions gener-
ated from randomly-sampled subgroups. We report that 
groups of three pathologists and/or pathology residents 
can achieve an average precision of 0.897 and sensitiv-
ity of 0.699 in mitosis detection, which is higher than an 
average pathologist, who had a precision of 0.750 and a 
sensitivity of 0.667.

Materials and methods
Meningioma specimen preparation and mitosis annotation
All specimens were collected from the department of 
Pathology and Laboratory Medicine, University of Cali-
fornia, Los Angeles. A total of 22 slides were selected 
based on the size of the tissue on the H&E slide and the 
availability of the corresponding Ki-67 IHC slide. These 
slides were from 12 patients (6 males, 6 females, age 
range between 39 and 79  years), including two WHO 
grade 1, six WHO grade 2, and four WHO grade 3 men-
ingiomas. The grade 2 and grade 3 tumors for each slide 
were based on mitotic counts. Other criteria for upgrad-
ing to a grade 2 or 3 tumor were absent. None of these 
cases had available molecular testing such as CDKN2A/B 

and/or TERT promoter status. The specimens were col-
lected between October 2019 and December 2021. The 
formalin fixed paraffin embedded blocks were sectioned 
at 6 µm thickness and stained with H&E followed by 
whole slide scanning (at 400× total scanning resolution 
with a 20× objective; Leica Aperio CS2). The same slide 
was then destained and immunostained with PHH3 anti-
body (1:200, Cell Marque, 369A-16) followed by rescan-
ning of the slide with the same settings used in the first 
scan.

A two-step image transform approach was used to 
align PHH3 and H&E whole slide images (WSIs) to assist 
pathologists in verifying mitoses on H&E. All image 
alignment procedures were performed on PHH3 WSIs, 
while the H&E slides remained unaltered. Of the 22 pairs 
of WSIs, the H&E WSI from one pair was mainly out-of-
focus, and two pairs failed to align the PHH3, leaving the 
remaining 19 WSIs for further annotation (Fig. 1(a)).

H&E and PHH3 image tiles with a size 
of one HPF  (size=1600× 1600 pixels, or 
0.4mm× 0.4mm = 0.16mm2)1 were extracted from WSIs 
without overlapping (Fig.  1(b)). Two postgraduate year 
3 (i.e., three years in training) pathology residents inde-
pendently annotated the mitoses in each HPF using a 
web-based interface (Fig.  1(c-d)), which can show H&E 
and PHH3 HPFs side-by-side. The resident-annotated 
images were then reviewed by a neuropathologist (M.H.) 
with the same annotation interface. The neuropathologist 
provided the final judgment on the mitosis annotation 

Fig. 1 Workflow for mitosis annotation. a H&E and aligned PHH3 WSIs were prepared. b H&E and PHH3 image tiles with a size of one HPF were 
cut from corresponding WSIs. c Two pathology residents annotated mitoses on H&E‑PHH3 HPF tiles independently using d the mitosis annotation 
interface. e A neuropathologist reviewed mitosis annotations from the two pathology residents and provided the final judgment for each one. f 
Mitosis annotations were transferred onto H&E WSIs for further analysis (each dot represents a mitosis annotation)

1 This work defines an HPF as a square. All HPFs mentioned  in this work 
had sizes of 0.16mm

2 , as defined in the 2021 WHO CNS 5 Blue Book [2]. 
Therefore, the edge of an HPF was 0.4mm, or 1,600 pixels ( 0.25µm/pixel for 
400× scans).
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using the criteria specified in  Additional file 1, Section 1 
(Fig. 1(e)). The resulting annotations were transferred to 
H&E WSIs (Fig. 1f ) and were used for the MC analysis.

Quantification of the hotspot mitosis count of WSIs
In each of the 19 annotated WSIs from Sect. 2.1, the MC 
in 10 HPFs was quantified with the following six differ-
ent methods. Methods 1 – 3 count MCs in consecutive 
10 HPFs and are compatible with the current definition 
of WHO CNS 5 Blue Book, while the HPFs in methods 
4 – 6 are not necessarily connected. Background and out-
of-focus regions were identified by a deep-learning algo-
rithm [37] and were excluded. Non-tumor regions were 
marked by a neuropathologist (M.H.) with Aperio Imag-
escope software (version 12.3.2.8013)2 and were not used 
for calculation. 

1. MC in 10 HPFs generated by depth-first search algo-
rithm (Proposed) This method arranges HPFs as a 
sequence of 10 connected HPFs that form a con-
nected path. Because the HPF view in digital pathol-
ogy is square, two HPFs that share at least one con-
nected edge are considered connected. The path 
should be traversed from the first HPF to the tenth, 
with the requirement that each HPF is visited exactly 
once. The path is calculated by our proposed DFS 
algorithm (see Appendix A for implementation), 
which consists of a recursive depth-first searching 
with backtracking. In a WSI, the algorithm compre-
hensively searches all possibilities of 10 connected 
HPF paths, satisfying the constraint mentioned above 
to guarantee that the resulting quantification of MC 
is the highest, mathematically.

2. MC in linear 10 HPFs This method quantifies the 
highest MC of 10 HPFs with the linear arrangement. 
The highest MCs in 10× 1 HPFs (vertical) and 1× 10 
HPFs (horizontal) are reported.

3. MC in rectangular 10 HPFs This method follows the 
previously reported algorithm [26] and quantifies the 
highest MC of 10 HPFs with the rectangular arrange-
ment. The highest MCs in 5× 2 HPFs (vertical) and 
2× 5 HPFs (horizontal) are reported.

4. Average MC per 10 HPFs This method quantifies the 
average number by dividing the total MC in tumor 
areas by the size of the tumors and multiplying by 10.

5. MC in random 10 HPFs This method [7] randomly 
samples 10 HPFs from each WSI 1,000 times (with-
out replacement). The distribution of MCs in each 
set of 10 sampled HPFs is reported.

6. MC in maximum 10 (not connected) HPFs The MC 
of each HPF in the entire WSI is ranked in descend-
ing order, and the MC of the top 10 HPFs is added 
together. This method represents the maximum pos-
sible MC that can be observed in 10 HPFs within a 
WSI.

Furthermore, the MCs yielded by methods 1 – 3 were 
compared to the WHO grades determined by the consen-
sus conferences. Here, we sought cases where upgrades 
in WHO grades could be according to the criterion of the 
MC alone.

User study for evaluating pathologists’ mitosis detection
A user study was conducted to evaluate the ability of 
pathologists and pathology residents to detect mitoses 
in meningioma at the magnification comparable to 1 
HPF. The study was approved by the Institutional Review 
Board of the University of California, Los Angeles 
(IRB#21-000139) and was conducted between February 
2023 and May 2023.

Forty-eight images, each equal to 1 HPF surface area, 
were selected by a neuropathologist (M.H.) from two 
H&E WSIs of meningothelial-transitional meningioma 
for each case (see Fig. 2(a) for example), based on five cri-
teria (see Additional file 1, Section 2). Random sampling 
was not used because approximately 89.1% of the area 
in the two WSIs did not include mitosis. The decision to 
limit the number of images to 48 was motivated by prac-
tical considerations: our preliminary finding suggested 
that annotating these 48 HPF images required about 
30 min for a pathologist, and increasing the number fur-
ther would not have been feasible due to the potential 
risk of causing fatigue among the participants.

Amongst 48 selected HPF images, eight did not include 
mitoses, while the remaining images had 88 mitoses, 
ranging from one to six per image. Note that the image 
set was skewed towards HPFs with one or more mitoses 
to observe pathologists’ correctness when detecting 
mitoses with various morphologies.

The participants were recruited by sending email 
invitations to the mailing list and snowball recruitment. 
In total, 41 participants from 11 institutions (Appendix 
B) in the United States (N=40) and Costa Rica submit-
ted their responses, including 19 neuropathologists/
neuropathology fellows (AP/NP), 10 pathologists/
pathology fellows (AP), and 12 pathology residents.

Each participant was instructed to visit our user-
study website with their own laptop or desktop com-
puter with recommended settings. On the website, 
participants watched an instruction video and were 
asked to answer multiple-choice questions about their 
occupation and sub-specialty (if applicable). Afterward, 

2 https:// www. leica biosy stems. com/ us/ digit al- patho logy/ manage/ aperio- 
image scope/

https://www.leicabiosystems.com/us/digital-pathology/manage/aperio-imagescope/
https://www.leicabiosystems.com/us/digital-pathology/manage/aperio-imagescope/
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they reviewed three tutorial images to become famil-
iar with the website interface and the task. Participants 
were informed that there may be zero to six mitoses in 
each of the 48 images and were instructed to annotate 
mitotic figures based on their daily practice experience. 
The 48 images were presented to each participant in 
random order (Fig.  2b). To prevent bias, participants 
were blinded to the mitosis annotations until they com-
pleted the study. Their annotations, survey responses, 
and time logs were recorded for further analysis.

Grouping pathologists’ annotations
The grouping process is based on the participants’ anno-
tations collected in Sect. 2.3: First, annotations from an 
odd number of k pathologists were randomly selected 
(Fig.  3(a)). Second, mitosis candidates that were anno-
tated by more than k/2 (i.e., > 50% ) participants were kept 
as the decision of the group (Fig.  3(b)). This approach 
assigns equal importance weight to each selected partici-
pant and emulates a majority voting process. As for the 

group size, we randomly selected from  the 41 partici-
pants without replacement and explored the group size 
from 3 to 37 (i.e., 3,5,7,9,..., 37). For each group size, we 
ran the grouping process 100 times for result evaluation.

Measurements and statistics
The correctness of  mitosis detection was measured by 
precision or positive predictive value (PPV, see Eq.  1) 
and sensitivity (recall, see Eq.  2), which was calculated 
according to the true-positive (TP), false-positive (FP), 
and false-negative (FN) counts. A TP indicates a mitosis 
present within 15µm (60 pixels) distance of a participant’s 
annotation. An FP stands for no mitoses present within 
15µm radius distance of a participant’s annotation. And 
an FN means no participant’s annotations present within 
15µm radius distance of a mitosis.

We report the precision and sensitivity of three con-
ditions: (1)  individual participant; (2)  decisions from 
groups that have sizes between 3 to 37; and, (3) an Effi-
cientNet-b3 Convolutional Neural Network AI model 

Fig. 2 a Representative HPF image used in the study, with mitoses noted by arrows, bar=100µm . b Interface screenshot of the user study website, 
where the HPF images were shown to participants for mitosis annotation in the random order

Fig. 3 Generating mitosis decisions with grouping annotations from a set of k pathologists. a Step 1 (group member selection): annotations 
were collected from an odd number of k pathologists. The k pathologists are selected randomly. b Step 2 (majority voting): candidates annotated 
by more than k/2 pathologists are kept as the final grouping mitosis decision
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[38, 39] trained from a part of mitosis annotations col-
lected in Sect. 2.1 (see Additional file 1, Section 3 for the 
training detail), as a reference. A bootstrapping method 
(10,000 times,  100% re-sampling with replacement) was 
used to describe the average and 95% confidence inter-
val for these criteria. For AI evaluation, we ran the AI 
on the 48 HPF images 100 times. In each test run, these 
HPF images were randomly flipped and/or rotated 
( 0◦, 90◦, 180◦, 270◦ ), and the Dropout layers in the AI 
model were enabled.

We further tested whether participants’ precision and 
sensitivity varied according to their experience level: 
a Kruskal-Wallis Test  was applied to test significance 
among three of the participants’ experience levels (i.e., 
AP/NP, AP, and pathology residents). A post-hoc Dunn’s 
test was used to show pair-wise difference between each 
experience level.

Finally, we introduced a metric called agreement rate 
as a measure of participants’ consistency in detecting 
mitoses: Given a nucleus, its agreement rate was defined 
as the percentage of participants that annotated it. We 
calculated the agreement rates for (1) all “ground truth” 
mitoses (i.e., annotated by the participants in Sect. 2.1), 
and (2) false-positive mitoses where more than three par-
ticipants agreed on to illustrate false-positive errors with 
higher agreement rates.

The image processing, AI inferencing, and statistics 
were performed in a local server with Intel W-2195 CPU 
with 128GB RAM and Nvidia RTX 3090 Graphics Pro-
cessing Unit. The server has a Python 3.6.8 environment, 
with Numpy version 1.19.5, OpenCV version 4.5.2, scikit-
image version 0.17.2, scipy version 1.7.3, scikit-learn ver-
sion 1.0.2, PyTorch 1.12.0, and Matplotlib version 3.5.2 
for figure making.

(1)Precision(PPV ) =
TP

TP + FP

(2)Sensitivity (Recall) =
TP

TP + FN

Results
Mitosis count in meningioma WSIs
A total of 4,133 mitotic figures were annotated with 
examples shown in Fig. 4(a). The 19 WSIs exhibit a wide 
range of total MCs, spanning from 8 to 623 per slide. Fig-
ure 4(b) presents the hotspot MCs of each WSI, quanti-
fied according to the six methods introduced in Sect. 2.2. 
The MCs quantified by the DFS are generally higher than 
those with rectangular or linear HPF arrangements: On 
average, DFS counted 4.29 and 3.32 additional mitoses 
than those with linear and rectangular HPF arrange-
ments, respectively.

Importantly, our proposed DFS algorithm identified 
two borderline cases where the meningioma grades may 
be higher than the original WHO grades from the con-
sensus conferences, based on the MC alone. Slide #5, 
previously signed-out as WHO grade 1 meningioma, 
could be upgraded to grade 2 due to the presence of 4 
mitoses in the DFS-counted 10 consecutive HPFs. Slide 
#19 was signed-out as WHO grade 2 meningioma, but 
could be upgraded to grade 3 based on the DFS finding of 
21 mitoses/10HPFs.

For all 19 WSIs, the MCs in maximum 10 (not con-
nected) HPFs exceed the WHO grade 1/2 threshold. The 
MCs in the randomly selected 10 HPFs (average=1.18 
mitoses/10HPFs) are approximately 16.1% lower than the 
average MC/10HPFs (average=1.37 mitoses/10HPFs), 
which indicates these two metrics are not always aligned.

Figure  4(c) displays the spatial distribution of mitosis 
locations in one example WSI (slide #11). It also shows 
the hotspot 10 HPFs identified by the DFS algorithm, and 
with linear/rectangular arrangements exhibiting roughly 
similar locations. Nonetheless, the MCs in these areas 
significantly differ due to the variation in HPF arrange-
ments: the MC in the DFS-calculated HPFs was 19. How-
ever, the rectangular arrangement had 14, and the linear 
arrangement only had 9 or 11.

Participants’ correctness of detecting mitoses
Overall, the 41 participants achieved an average preci-
sion of 0.750 (Standard Deviation (SD) 0.026, 95% Confi-
dence Interval (CI95) [0.698, 0.800]), sensitivity 0.667 (SD 
0.002, CI95 [0.626, 0.704]). Among the participants, the 

(See figure on next page.)
Fig. 4 a Example of annotated mitoses in the meningioma WSIs at different phases, including prophase, metaphase, anaphase‑telophase, 
and atypical mitoses, bar=10µm . b Hotspot MC per 10 HPFs in each WSI using five methods of quantification, namely the proposed DFS 
algorithm, linear 10 HPFs (i.e., 10× 1 and 1× 10 arrangements), rectangular 10 HPFs (i.e., 5× 2 and 2× 5 arrangements), average MC per 10 HPFs, 
and maximum possible MC in 10 (not connected) HPFs.  For the MC distribution in randomly‑sampled 10 HPFs: the box‑whisker plot shows 
the percentiles and medians, and the magenta error bars demonstrate the average and 95% confidence intervals. For each WSI, the WHO grade 
assigned at the consensus conference was included. c Mitosis distribution in slide #11, and the spatial distribution of 10 HPFs with the proposed 
DFS algorithm (MC=19), linear 10 HPFs (MC=9 or 11), and rectangular 10 HPFs (MC=14), bar=1mm 
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Fig. 4 (See legend on previous page.)
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top-23 were a neuropathologist and a neuropathology fel-
low, achieving a tied score with a precision of 0.905 and a 
sensitivity of 0.761 (TP: 67, FP: 7, FN: 21). In contrast, the 
AI model achieved an average precision 0.920 (SD 0.002, 
CI95 [0.916, 0.923]) and sensitivity 0.830 (SD 0.002, CI95 
[0.826, 0.833]). As shown in Fig. 5(a), the AI model exhib-
its both high precision and sensitivity, resulting a perfor-
mance better than human participants.

Participants made significantly fewer false-positive 
mistakes than false-negative ones ( p = 0.012 , effect size 
r = 0.277 , Wilcoxon rank sum test), indicating that they 

tended to achieve a higher precision than a higher sen-
sitivity: As shown in Fig.  5(a), 26 out of 41 participants 
achieved a higher precision than sensitivity (above the 
diagonal dashed line), while 15 out of 41 participants 
achieved a higher sensitivity instead (below the diagonal 
dashed line).

A Kruskal-Wallis test revealed a significant differ-
ence in participants’ precision ( p = 0.003 , η2H = 0.231 ) 
according to their experience level. Post-hoc Dunn’s 
test indicated a significant difference ( p = 0.002 ) in the 
precision between AP/NP participants and pathology 
residents (Fig. 5(b)). The average precision of the former 
group was 0.829 (SD 0.033, CI95 [0.763, 0.890]), while the 
latter had 0.619 (SD 0.043, CI95 [0.531, 0.701]), indicating 

Fig. 5 a The precision‑recall scatter plot for each participant’s performance in detecting mitoses on the 48 HPF images from the user study. 
The blue line indicates the precision‑recall curve from AI and the marker ( × ) indicates AI’s operating point with the threshold cut‑off. The 
diagonal dashed line is the reference where the precision is equal to sensitivity. b The box‑whisker plot with the average and 95% confidence 
interval, showing the precision (PPV) values of the participant groups with different experience levels: AP/NP, AP, and pathology residents. AP/
NP participants achieved significantly higher precision than pathology residents (p=0.002, post‑hoc Dunn’s test). c Box‑whisker plot with 95% 
confidence intervals, showing the sensitivity (recall) values of the participant groups with different experience levels. No statistical significance 
was observed. d Bar plots illustrating the agreement rates of participants in identifying ground‑truth mitoses and false‑positive mitoses, 
with selected examples (bar=10µm ). The AI detections (both true‑positive and false‑positive) are shown as the diamond ( ♦ ) markers

3 The top-2 is defined by the F1 score, which is the geometry mean of preci-
sion and sensitivity.
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a 33.93% increase. No significance was observed among 
other comparison pairs. As for the sensitivity (Fig. 5(c)), 
the Kruskal-Wallis test did not show a significance due to 
participants’ experience level ( p = 0.715).

Figure  5(d) shows the distribution of participants’ 
agreement rates for 88 ground-truth and 97 false-pos-
itive mitoses that at least three participants had agreed 
on. Among the ground-truth mitoses, 64 out of 88 had 
agreement rates exceeding 50%, while only 2 out of 97 
false-positive mitoses achieved agreement rates above 
50%. This provides motivations to use the majority voting 
approach to reduce false-positive errors.

Grouping pathologists’ decisions and evaluation 
of correctness
Figure 6(a) presents the precision of decisions of groups 
sized between 3 and 37. The figure demonstrates that 
the grouping process can effectively mitigate random 
errors made by individual pathologists: Even groups of 
three participants achieved an average precision of 0.897 

(SD 0.006, CI95 [0.886, 0.908]). Compared to the preci-
sion an average participant (0.750), the groups of three 
participants demonstrated a 19.60% increase. Groups of 
five participants achieved an average precision of 0.925 
(SD 0.004, CI95 [0.918, 0.932]), which was slightly higher 
than the AI model (0.920, 0.54% increase), and the top-2 
individual participants (0.905, 2.21% increase). Groups of 
more than seven participants would have a higher preci-
sion in general, ranging from 0.945 (for groups of 7) to 
0.966 (for groups of 37).

The average sensitivity of groups of three participants 
was 0.699 (SD 0.007, CI95 [0.685, 0.713]), which was 
also higher than an average participant (0.667, 4.79% 
increase). Figure  6(b) shows the sensitivity scores for 
groups of varying sizes, ranging from an average of 0.699 
(for groups of 3) to 0.724 (for groups of 37). The sensitivi-
ties of grouped participants are lower the top-2 partici-
pants (0.761) and the AI model (0.830) in general.

Interestingly, the peak sensitivity of 0.852 was reached 
by a specific group of three participants, who also had 
a precision of 0.862. However, out of the 100 grouping 

Fig. 6 Box‑whisker plot with the average and 95% confidence interval for a precision and b sensitivity values of decisions derived from grouped 
participants
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experiments that involved sampling three participants, 
we observed only two groups that outperformed AI in 
terms of sensitivity.

Discussion
Mitosis is an important component in grading many 
brain tumors such as meningioma, IDH-mutant astro-
cytoma, oligodendroglioma, solitary fibrous tumor and 
ependymoma among others [2]. Additionally, mitosis can 
provide clues to modify a differential diagnosis toward a 
more accurate diagnosis. For instance, a subependymoma 
with few mitoses may prompt more careful examination 
for including an ependymoma-subependymoma in the 
differential [40]. Few scattered mitoses in a high-grade 
appearing IDH-wild type astrocytic tumor should add 
pleomorphic xanthoastrocytoma to the differential diag-
nosis beside glioblastoma usually demonstrating brisk 
mitotic activity [2]. Accurate mitosis quantification and 
detection is important but time-consuming – it can be 
challenging especially in large and heterogeneous speci-
mens, where few highly proliferative foci, present in only 
one slide, are easily missed.

To our best knowledge, this is the first study to com-
prehensively analyze MC quantification approaches and 
observe the “grading migration” [41] through a new com-
puter algorithm for mitoses counting. However, it should 
be underscored that the aim of the study is not highlight-
ing the errors of pathologists. Instead, this work dem-
onstrates the potential of using computer algorithms to 
precisely quantify MCs following the WHO guidelines. 
The algorithm can offer more flexibility in arranging HPFs, 
which may be challenging for human pathologists, even in 
digital interfaces. Furthermore, this study is also unique in 
its evaluation of pathologists’ ability for mitosis detection 
with the largest number of participants so far, compensat-
ing for previous studies that had limited participants and 
highlighted the inter-pathologist variation in detecting 
mitotic events events [4, 24]. Because of its large partici-
pant size, this work demonstrates that a higher precision 
and more robust mitosis detection can actually be achieved 
by the majority voting from a group of pathologists.

While new molecular methods such as chromosomal 
microarray analysis [42], next generation sequencing 
[43], and methylation profiling [20] provide better under-
standing of tumor biology and behavior, they are time-
consuming, costly and unavailable in many countries 
[44]. This technology gap generates an urgent need for 
developing AI-assisted solutions to analyze the mitotic 
count based on the histologic analysis. The AI pathol-
ogy assistant is instantly present, cost-effective, and 
available  24/7, especially for  institutions where trained 
neuropathologists are less available. In this study, for 

example,  the average time for pathologists to annotate 
the 48 HPF images was about 24  min 32  s ( SD = 91.63 
seconds, CI95=[21  min 56  s, 27  min 55  s]). In contrast, 
it only took about 1  min 33  s ( SD = 6.08 seconds, CI95
=[1 min 24 s, 1 min 41 s]) for a computer (see Sect. 2.5 
for hardware configuration) to  finish the mitosis detec-
tion by AI. It is noteworthy that such computer speed can 
be further accelerated by parallel computing, where clus-
ters of computers split the task and work individually in 
parallel. In the future, the AI shall examine the entire set 
of slides, detect almost all mitotic figures, and generate a 
detailed report showing mitosis hotspots.

Since 2012, a considerable amount of literature has 
built mitosis datasets for AI development [30–34, 45], 
although there is still a lack of mitosis datasets in men-
ingiomas. A widely-adopted approach for mitosis-detec-
tion AI includes two steps: an initial AI model screening 
potential candidates, followed by a step-2 for verification 
by AI [30, 31, 46, 47]. This work follows this approach 
and introduces the first mitosis AI specifically trained 
based on mitoses in meningiomas, and compares the cor-
rectness of mitosis detection between humans and AI 
though a user study of 41 participants. We discovered 
that the AI could outperform pathologists in sensitivity. 
Although few pathologists achieved higher precision, AI 
maintained high precision and sensitivity simultaneously, 
which contributed to a higher overall performance.

 Although AI has demonstrated impressive performance, 
human-based quality assurance must be introduced: 
mitotic figures identified by AI still need to be checked for 
accuracy, especially in substandard samples with cautery 
and other processing artifacts. To demonstrate this work-
flow of human pathologists’ supervision of AI, we have 
designed and implemented a prototype that can integrate 
the computational approach proposed in this study.

Figure  7(a) illustrates the prototype’s functionality, 
where users can activate the “Show ROI Recommenda-
tion” (ROI: region of interest) feature to visualize hot-
spot areas quantified by the DFS algorithm. Users have 
control over the number of DFS-quantified hotspots 
displayed (ranging from 1 to 5) as well as the sensitivity 
setting of AI. Upon selecting a DFS-calculated hotspot 
for further examination, the system guides the user to 
examine each HPF within the hotspot at higher magnifi-
cation (Fig. 7(b)), with AI-detected mitoses boxed by the 
system. The prototype assists pathologists in maintain-
ing consistency in the selection of hotspot areas found by 
the DFS algorithm and also allows them to see potential 
mitoses marked by AI in the high-sensitivity setting. To 
achieve a high precision, one can let a group of patholo-
gists examine the slide with the prototype independently. 
Therefore, the combined high sensitivity by AI and high 
precision by pathologists can ultimately achieve a higher 
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overall performance.  Even with AI as an assistant, it is 
the human pathologist who provides the adjudication for 
each mitosis, and mechanisms to prevent humans from 
blindly trusting AI should be introduced and evaluated in 
the future.

Limitations and future work
This work covers two aspects of mitosis quantification 
and mitosis detection. This subsection discusses the limi-
tations in each aspect and suggests potential future direc-
tions for improvement.

For the experiment of the MC quantification: 

1. Cohort size This study could have benefited by 
including other independent cohorts from different 
institutions, which need more resources not available 
at this time. To potentially address this, we extended 
the validation of the DFS algorithm to two additional 
public datasets with full-slide mitoses annotations in 
canine mammary carcinoma [31] and canine cutane-
ous mast cell tumors [30]. In both datasets, the DFS 
algorithm consistently demonstrated an ability to 
yield higher MCs compared to linear ( ∼ 13 more) and 
rectangular ( ∼ 8 more) HPF arrangements (see, Addi-
tional file 1 Section 6). While these results should not 
be directly compared to meningiomas due to varying 
mitosis prevalence rates across different tumor types, 
this preliminary finding sheds light on the potential 
of the DFS algorithm to enhance the MC quantifica-
tion in various tumor contexts, providing a founda-
tion for future large-cohort studies.

2.  Selection of slides In this study, only one to two slides 
were sampled from each patient, which could inevita-

bly introduce bias to the MC quantification and sub-
sequent grading analyses, because other slides might 
have a higher mitotic rate. Ideally, at least one tissue 
section/block/slide is recommended for every tumor 
cm. Therefore, future studies can include entire set of 
slides from each patient to ensure a comprehensive 
analysis.

 For the user study evaluating the mitosis detection: 

1. Limited test images The use of only 48 selected HPF 
images in the user study introduces potential biases 
and may influence the findings, and the duration of 
the study is relatively brief (about 30  min in total). 
Since pathologists are used to the H&E stain in their 
own institutions, they usually need more time to get 
used to H&E slides from another institution with 
different performance. Therefore, future work can 
focus on measuring pathologists’ mitosis identifica-
tion with more images from multi-z-axes WSIs and 
standardized H&E stains.

2. One z-plane in WSI scanning All specimens were 
scanned with only one z-plane instead of multiple, 
due to the limitation of instrumentation. In light 
microscopy, pathologists can adjust the z-focus, 
which can aid in judging the authenticity of a mitosis. 
Hence, the missing z-axis might cause pathologists 
to achieve a lower sensitivity, which, unfortunately, 
makes the sensitivity values reported in this work 
inevitably speculative.

3.  Generalizability of AI The AI used in this study was 
developed based on a single meningioma dataset, 
and the bench-marking of its performance on other 

Fig. 7 An AI‑assisted prototype that conceptualizes the augmented pathology. a DFS‑quantified mitosis hotspots are calculated based 
on AI‑detected mitoses according to a sensitivity setting. The user can adjust the number of hotspots and adjust the AI sensitivity with the sliders 
on the right side of the interface. b Once a user selects a DFS‑quantified hotspot, the prototype can guide the user to see each HPF inside, where it 
can mark a box surrounding each AI‑detected mitosis candidate with the highest sensitivity. Multiple pathologists may visit the same hotspot areas 
recommended by the prototype to ensure the highest precision
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tumor datasets is, unfortunately, out of the scope of 
this study and thus considered as future work.

4. Participant selection There was also a potential bias 
in the participants, because the majority of partici-
pants are from the United States. To address this, we 
have provided public access to the user study website 
(https:// mg- label er. vercel. app) and encourage readers 
of interest to participate.

Conclusion
This work presents a computational strategy that leverages 
digital pathology to enhance the quantification and detec-
tion of mitosis. The strategy consists of two key compo-
nents: (1) a depth-first search algorithm that quantifies the 
mathematical maximum mitosis count in 10 consecutive 
HPFs, enabling more precise grading, especially in cases 
with borderline mitotic figures; and (2)  a collaborative 
approach that groups pathologists to detect mitoses under 
each HPF, reducing random errors from individual assess-
ments and thus increasing assessment robustness. The 
integration of our computational strategy with AI promises 
a more efficient and robust mitosis assessment by patholo-
gists, which holds the potential to create more accurate 

reports when mitoses count is critical for tumor grading, 
and ultimately, benefits patient management.

Appendix A depth‑first search algorithm 
to calculate sum of mitosis count in highest 10 
consecutive HPFs
Locations of all mitosis annotations (whether they were 
annotated by pathologists or detected by AI) of a WSI 
are needed in order to run the DFS algorithm. Firstly, 
the WSI was split into non-overlapping HPF tiles. Then, 
a matrix of MC for each HPF in the WSI, denoted as 
WSI, was built. The coordinate of each element in WSI 
matrix represents the location of a HPF, and the value 
represents the MC in this HPF. The algorithm Find-
MaxMC is the main function, and algorithm Search 
is the helper function. To caulcate with DFS, the WSI 
matrix should be passed to FindMaxMC function, and 
it will return two values: (1) maxSum: the highest MC 
in 10 consecutive HPFs, and (2) maxPath: the locations 
of these 10 HPFs.

Algorithm 1 Find the max MC in 10 consecutive HPFs of a WSI

https://mg-labeler.vercel.app
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Algorithm 2 Depth‑first search helper function

Appendix B summary of participants’ affiliations
See Table 1

Abbreviations
CNS  Central nervous system
WHO  World Health Organization
WHO CNS 5 Blue Book  The 2021 WHO classification of tumors of the CNS 

(5th edition)
MC  Mitotic count
IHC  Immunohistochemistry
PHH3  Phosphohistone‑H3
AI  Artificial intelligence
WSI  Whole slide image
HPF  High‑power field
DFS  Depth‑first search
AP/NP  Neuropathologists/neuropathology fellows
AP  Pathologists/pathology fellow
TP  True‑positive
FP  False‑positive
FN  False‑negative
SD  Standard deviation
CI95  95% Confidence interval
ROI  Region of interest

Table 1 Participants’ affiliations in the user study

Institution Number of 
Participants

Kansas University Medical Center 18

UCLA / Ronald Reagan UCLA Medical Center 6

Baylor College of Medicine / Texas Children’s 6

Brown University / Rhode Island Hospital 3

University of California, San Francisco 1

Mayo Clinic 1

University of Pennsylvania / Penn Medicine 1

USC / Los Angeles General Medical Center 1

Loma Linda University 1

UTHealth Houston 1

Other (Unspecified / not in United States) 2

Total 41
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Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40478‑ 023‑ 01707‑6.

Additional  file 1: Summary of supplementary documents.

Additional  file 2: De‑identified information sheet of mitosis count sum‑
mary for each WSI.

Additional  file 3: Mitosis count in 10 HPFs with the DFS, linear, and rec‑
tangular arrangements, with regard to the shift in the coordinate origins.

Additional  file 4: Mitosis annotations (ground truth) of the 48 
HPF images in the user study.

Additional  file 5: Performance report of a typical AI prediction on the 48 
HPF images.

Additional  file 6: Performance report of the top‑2 participants that 
achieved the best performance in the user study (1/2).

Additional  file 7: Performance report of the top‑2 participants that 
achieved the best performance in the user study (2/2).
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