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We read with interest the work by Park and colleagues, 
which attempted to elucidate the composition of neu-
ronal intranuclear inclusions (NIIs), central to the pathol-
ogy of neuronal intranuclear inclusion disease (NIID) 
[1]. NIID is a clinically heterogeneous neurodegenerative 
disorder characterised by these intranuclear eosinophilic 
ubiquitinated inclusions in both neuronal and non-neu-
ronal cells [2]. Using different proteomic approaches to 
study compositionally biased regions, which have tra-
ditionally been elusive to analysis due to their inherent 
insolubility, the authors identified hornerin, a serine-rich 
protein, to be a major component of the inclusions [1].

The molecular aetiology of NIID had remained unre-
solved for decades since its first pathological charac-
terisation until recently, when a GGC repeat expansion 
in the 5’UTR of the human-specific NOTCH2NLC gene 
mainly associated with disease in the East Asian popu-
lation was discovered [3, 4]. This abnormal expansion 

of GGC repeats has since heralded a new disease entity 
of polyglycine disorders [5], with evidence for canonical 
translation of the repeat into a pathogenic polyglycine-
containing protein that co-localises with p62-positive 
NIIs in NIID [6]. However, NIID is genetically heteroge-
neous, with the GGC repeat expansion in NOTCH2NLC 
being rare in Europeans [7].

Thus, Park and colleagues rightfully assessed NII com-
position in the post-mortem brain of an individual of 
European (Finnish) ancestry with juvenile-onset NIID, 
not associated with the NOTCH2NLC repeat expansion 
[7, 8], to gain further insight into the currently unknown 
molecular mechanism of disease within European indi-
viduals. While hornerin deposits were detected within 
the inclusions, a heterozygous missense variant in the 
hornerin (HRNR) gene exon 3: NM_001009931.3: c.3023 
G > C, p.(Ser1008Thr) was the only variant found on 
whole exome sequencing, although in silico analysis and 
a Finnish allele frequency of 0.001748 (within gnomAD 
v.3.1.2 [9]) deemed it to be unlikely pathogenic.

In order to investigate the genetic basis, extrapolat-
ing from the formation of hornerin within the inclusions 
of the one European case by Park et al. [1], we screened 
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for HRNR variants in a large series of ten additional 
historical cases of pathologically confirmed NIID in 
patients of European ancestry (confirmed on genotypy-
ing), in whom the causative GGC repeat expansion in 
NOTCH2NLC was not found (Table 1) [7]. Furthermore, 
we also reviewed HRNR variants in an European patient 
with antemortem diagnosis of NIID associated with 
GGC repeat expansion in NOTCH2NLC [7] as well as 
confirmation in the index case reported by Park and col-
leagues [7]. We used polymerase chain reaction (PCR) to 
amplify the 446 base pair region of HRNR containing the 
index variant using conditions by Park et al. [1] followed 
by Sanger sequencing to review the targeted sequence 
(Additional file 1: Methods).

The previously reported p.(Ser1008Thr) variant in 
HRNR was verified in DNA extracted from heart tissue of 
the index case using this approach. However, none of the 
other ten pathologically confirmed NIID cases harboured 
the same reported HRNR variant (Table 1) despite shar-
ing the common characteristic of an absent pathogenic 
NOTCH2NLC repeat expansion and pathological pres-
ence of NIIs. Out of these cases, three further European 

NIID cases diagnosed pathologically through post-mor-
tem brain examination (Cases 3, 9 and 11 in Table 1) were 
found to have two variants in HRNR: a missense variant 
(c.3236 G > A, p.(Glu1054Lys)) and a synonymous vari-
ant (c.3346 C > T) (Fig. 1). However, in silico analysis and 
prevalent European population frequencies [9] (0.1336 
and 0.1362 for the missense and synonymous variants 
respectively) suggest that these are unlikely to be patho-
genic candidates (Fig. 1). As expected, for the patient in 
which NOTCH2NLC repeat expansion was found to be 
associated with NIID (Case 12), no HRNR variants were 
detected on Sanger sequencing. Moreover, the expression 
of HRNR is not enriched within the central nervous sys-
tem with low human brain region-specific expression, as 
exemplified in the Genotype-Tissue Expression (GTEx) 
project [10].

Taken together, these findings support those of Park 
and colleagues, albeit in a larger cohort of NOTCH2NLC-
negative NIID in patients of European ancestry. The 
molecular basis of disease in these cases, which are genet-
ically distinct from East Asian NIID cases, is unlikely to 
be secondary to single nucleotide variation within HRNR. 

Fig. 1 Characteristics of variants detected in HRNR in neuronal intranuclear inclusion disease (NIID). a Table showing in silico predictions 
of all variants detected across 12 NIID samples. Sorting Intolerant from Tolerant (SIFT) (https:// sift. bii.a‑ star. edu. sg/) predicts if a substitution 
at the amino acid level affects protein function with scores ranging from 0 to 1. A variant is predicted damaging to protein function if the score 
is ≤ 0.05 and tolerated if the score is > 0.05. Polymorphism Phenotyping version 2 (PolyPhen‑2) (http:// genet ics. bwh. harva rd. edu/ pph2/) 
is a tool that predicts the possible effect of an amino acid substitution on protein function, with scores ranging from 0 (most probably benign) 
to 0.999 (most probably damaging). b The c.3023 G > C variant detected in Case 5, but not in any other cases, verifies the findings from Park 
and colleagues[1]. This variant of interest is highlighted in the chromatogram. c Missense variant c.3236 G > A and synonymous variant c.3346 c > T 
found in cases 3, 9 and 11. These variants of interest are highlighted in the chromatogram

https://sift.bii.a-star.edu.sg/
http://genetics.bwh.harvard.edu/pph2/
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It should be noted that while the identification of hor-
nerin as a major component of NIIs in this Finnish case 
[8] is of interest in providing further molecular insight 
into the pathogenesis of NOTCH2NLC repeat-negative 
NIID, further direct identification of NII composition in 
other such molecularly undetermined cases [7] is essen-
tial in moving towards establishing the underlying aetiol-
ogy. The identification of a common genetic explanation 
for European NIID has thus far remained elusive due to 
the lack of large pedigrees, a likely complex variant that 
has eluded conventional sequencing techniques, paucity 
of antemortem diagnostic clues (as seen in East Asian 
NIID) and the clinical and genetic heterogeneity of dis-
ease. As such, the overarching clue to driving a molecular 
diagnosis may lie in the accurate pathological characteri-
sation of such disorders, as attempted by Park and col-
leagues [1], in order to decipher convergent mechanisms 
for pathogenesis.
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