LETTER TO THE EDITOR

Open Access

Letter to the editor on: Hornerin deposits in neuronal intranuclear inclusion disease: direct identification of proteins with compositionally biased regions in inclusions by Park et al. (2022)

Huihui Luo¹, Emil K. Gustavsson^{2,3}, Hannah Macpherson^{2,4}, Natalia Dominik¹, Kristina Zhelcheska¹, Kylie Montgomery^{2,3}, Claire Anderson^{2,3}, Wai Yan Yau⁵, Stephanie Efthymiou¹, Chris Turner⁶, Michael DeTure⁷, Dennis W. Dickson⁷, Keith A. Josephs⁸, Tamas Revesz⁹, Tammaryn Lashley⁹, Glenda Halliday^{10,11,12}, Dominic B. Rowe¹³, Emily McCann¹³, Ian Blair¹³, Andrew J. Lees^{9,14}, Pentti J. Tienari^{15,16}, Anu Suomalainen^{17,18,19}, Laura Molina-Porcel^{20,21}, Gabor G. Kovacs²², Ellen Gelpi²³, John Hardy^{4,14,24,25,26}, Matti J. Haltia²⁷, Arianna Tucci²⁸, Zane Jaunmuktane⁹, Mina Ryten^{2,3}, Henry Houlden¹ and Zhongbo Chen^{2,3,29*}

Keywords Neuronal intranuclear inclusion disease, Hornerin, Repeat expansion disorders

We read with interest the work by Park and colleagues, which attempted to elucidate the composition of neuronal intranuclear inclusions (NIIs), central to the pathology of neuronal intranuclear inclusion disease (NIID) [1]. NIID is a clinically heterogeneous neurodegenerative disorder characterised by these intranuclear eosinophilic ubiguitinated inclusions in both neuronal and non-neuronal cells [2]. Using different proteomic approaches to study compositionally biased regions, which have traditionally been elusive to analysis due to their inherent insolubility, the authors identified hornerin, a serine-rich protein, to be a major component of the inclusions [1].

The molecular aetiology of NIID had remained unresolved for decades since its first pathological characterisation until recently, when a GGC repeat expansion in the 5'UTR of the human-specific NOTCH2NLC gene mainly associated with disease in the East Asian population was discovered [3, 4]. This abnormal expansion

*Correspondence: Zhongbo Chen zhongbo.chen@ucl.ac.uk Full list of author information is available at the end of the article of GGC repeats has since heralded a new disease entity of polyglycine disorders [5], with evidence for canonical translation of the repeat into a pathogenic polyglycinecontaining protein that co-localises with p62-positive NIIs in NIID [6]. However, NIID is genetically heterogeneous, with the GGC repeat expansion in NOTCH2NLC being rare in Europeans [7].

Thus, Park and colleagues rightfully assessed NII composition in the post-mortem brain of an individual of European (Finnish) ancestry with juvenile-onset NIID, not associated with the NOTCH2NLC repeat expansion [7, 8], to gain further insight into the currently unknown molecular mechanism of disease within European individuals. While hornerin deposits were detected within the inclusions, a heterozygous missense variant in the hornerin (HRNR) gene exon 3: NM 001009931.3: c.3023 G > C, p.(Ser1008Thr) was the only variant found on whole exome sequencing, although in silico analysis and a Finnish allele frequency of 0.001748 (within gnomAD v.3.1.2 [9]) deemed it to be unlikely pathogenic.

In order to investigate the genetic basis, extrapolating from the formation of hornerin within the inclusions of the one European case by Park et al. [1], we screened

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativeco mmons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data Table 1 Demographics, clinical presentation and pathological findings of cases of neuronal intranuclear inclusion disease (NIID) examined, with resulting analysis for HRNR variants

le of onset Age at death bex Family history Country of origin Climical Diagnosis/ Main pa Presentation pre-biopsy and site	t Age at death Sex Family history Country of origin Clinical Diagnosis/ Main pa Presentation pre-biopsy and site	s at death Sex Family history Country of origin Clinical Diagnosis/ Main pa Presentation pre-biopsy and site	Sex Family history Country of origin Clinical Diagnosis/ Main pa Presentation pre-biopsy and site	Family history Country of origin Clinical Diagnosis/ Main pa Presentation pre-biopsy and site	Country of origin Clinical Diagnosis/ Main pa Presentation pre-biopsy and site	Clinical Diagnosis/ Main pa Presentation pre-biopsy and site	Main pa and site	of pathology	HRNR variant	Estimat numbe GGC rej NOTCH Allele 1	ed r of peats in 2NLC Allele 2
24 M Yes UK Young-onset parkinsonism Wir and dysautonomia intr imr	24 M Yes UK Young-onset parkinsonism Wir and dysautonomia intr imr	M Yes UK Young-onset parkinsonism Wir and dysautonomia intr imr	M Yes UK Young-onset parkinsonism Wir and dysautonomia intr imr	Yes UK Young-onset parkinsonism Wir and dysautonomia intr imr	UK Young-onset parkinsonism Wir and dysautonomia intr imr	Young-onset parkinsonism Wir and dysautonomia inti imi anc	Wic inti and	despread neuronal hyaline ranuclear inclusions munoreactive for ubiquitin 1 p62 (brain)	No variants detected	21	1
46 M Yes Australia Slowly progressive motor Eosi and sensory neuronopathy nucl with ataxia	46 M Yes Australia Slowly progressive motor Eosi and sensory neuronopathy nucl with ataxia	M Yes Australia Slowly progressive motor Eosi and sensory neuronopathy nucl with ataxia	M Yes Australia Slowly progressive motor Eosi and sensory neuronopathy nucl with ataxia	Yes Australia Slowly progressive motor Eosi and sensory neuronopathy nucl with ataxia	Australia Slowly progressive motor Eosi and sensory neuronopathy nucl with ataxia	Slowly progressive motor Eosi and sensory neuronopathy nucl with ataxia	Eosi nucl	nophilic neuronal intra- lear inclusions (brain)	No variants detected	22	28
s 67 F No Australia Unknown presentation Eosir inclu (brai	67 F No Australia Unknown presentation Eosir inclu (brai	F No Australia Unknown presentation Eosir inclu (brai	F No Australia Unknown presentation Eosir inclu (brai	No Australia Unknown presentation Eosir inclu (brai	Australia Unknown presentation Eosir inclu (brai	Unknown presentation Eosir inclu (brai	Eosir inclu (brai	nophilic intranuclear Isions in pyramidal cells N)	c.3236 G > A, p.(Glu1054Lys), synonymous c.3346 C > T	15	20
72 F No Australia Slowly progressive primary Cort lateral sclerosis cytic (brai	72 F No Australia Slowly progressive primary Cort lateral sclerosis cytic (brai	F No Australia Slowly progressive primary Cort lateral sclerosis cytic (brai	F No Australia Slowly progressive primary Corti lateral sclerosis cytic (brai	No Australia Slowly progressive primary Cort lateral sclerosis cytic (brai	Australia Slowly progressive primary Cort lateral sclerosis cytic (brai	Slowly progressive primary Corti lateral sclerosis cytic (brai	Corti cytic (brai	ical neuronal and astro- intranuclear inclusions n)	No variants detected	15	23
21 F Yes (monozygotic twin) Finland Ataxia, seizures, and extrapy- Inclus nerve ramidal symptoms and p and p tems,	21 F Yes (monozygotic twin) Finland Ataxia, seizures, and extrapy- Inclusion nerve ramidal symptoms and preve and preve tems, astroc	F Yes (monozygotic twin) Finland Ataxia, seizures, and extrapy- Inclus nerve ramidal symptoms and p and p tems,	F Yes (monozygotic twin) Finland Ataxia, seizures, and extrapy- Inclus' nerve ramidal symptoms and prand press, tems, tems, tems, astroc	Yes (monozygotic twin) Finland Ataxia, seizures, and extrapy- Inclus' nerve ramidal symptoms and prand press, tems, tems, astroc	Finland Ataxia, seizures, and extrapy- Inclus ramidal symptoms and p and p tems, astroc	Ataxia, seizures, and extrapy- Inclus ramidal symptoms and pr and pr tems, astroc	Inclusi nerve and pe tems, astroc	ion bodies in most cell types of central eripheral nervous sys- as well as in occasional ytes	c.3023 G > C, p.(Ser1008Thr) - confirmation of variant found in the same individual by Park et al.[1]	19	22
62 F Yes Spain Ataxia Intran sions i in wid of the for ubi	62 F Yes Spain Ataxia Intran sions i in wid of the for ubi	F Yes Spain Ataxia Intran sions i in wid of the for ubi	F Yes Spain Ataxia Intran sions i in vid of the for ubi	Yes Spain Ataxia Intran sions i in wid of the for ubi	Spain Ataxia Intran sions i in wid of the for ubi	Ataxia Intran sions i in wid of the for ubi	Intrani sions i in wid of the for ubi	uclear hyaline inclu- n neurons and glia espread areas brain immunoreactive quitin (brain)	No variants detected	15	25
84 F Yes Spain Dementia Intranu sions ir vide in wide of the t for ubic	84 F Yes Spain Dementia Intranu sions ir vide in wide of the t for ubic	F Yes Spain Dementia Intranu sions ir wide in wide of the t for ubic	F Yes Spain Dementia Intranu sions ir wide in wide of the t for ubic	Yes Spain Dementia Intranu sions ir wide in wide of the tor ubic	Spain Dementia Intranu sions ir wide in wide of the tor ubic	Dementia Intranu sions ir in wide of the t for ubic	Intranu sions ir in wide of the k for ubic	clear hyaline inclu- 1 neurons and glia spread areas 1 ain immunoreactive quitin (brain)	No variants detected	16	23
- F No USA Unknown presentation Patholo: in keepi	- F No USA Unknown presentation Patholo: in keepi	F No USA Unknown presentation Patholo: in keepi	F No USA Unknown presentation Patholo: in keepi	No USA Unknown presentation Patholo: in keepi	USA Unknown presentation Patholo; in keepi	Unknown presentation Pathologiin keepii	Patholo in keepii	gical changes na with NIID (brain)	No variants detected	17	23

₽	Age of onset	Age at death	Sex	Family history	Country of origin	Clinical Diagnosis/ Presentation pre-biopsy	Main pathological findings and site of pathology	HRNR variant	Estimat numbe GGC re NOTCH	ed r of seats in 2NLC
									Allele 1	Allele 2
6	84	1	Z	0 Z	USA	Alzheimer's disease, ataxia	Intranuclear hyaline inclu- sions in neurons and glia in widespread areas of the brain (brain)	c.3236 G > A, p.(Glu 1054Lys), synonymous c.3346 C > T	15	19
10	69	ı	Σ	No	USA	Diagnosed clinically with NIID	Neuronal intranuclear inclu- sions (brain)	No variants detected	14	27
1	80	1	Σ	No	USA	Unknown presentation	Neuronal intranuclear inclu- sions (brain)	c.3236 G > A, p.(Glu1054Lys), synonymous c.3346 C > T	19	I
12	51	N/A	ш	0 Z	Ukraine	Recurrent encephalopathy and migraines	NOTCH2NLC repeat expan- sion positive NIID: Ante- mortem biopsy contains p62 positive intranuclear inclusions (skin)	No variants detected	6	92-106
All cc NOTC inves	ases were previo CH2NLC. Case 12 :tigated by Park a	uusly investigated 1 was the only case and colleagues [1,	for the found	e <i>NOTCH2NLC</i> GGC repeat exi d to have a GGC repeat expai	pansion with sizing of 1 nsion in <i>NOTCH2NLC</i> to	the repeat sequence through repe be associated with NIID, with rep	at-primed PCR [7]. NIID cases 1 to 11 eat sizing from Oxford Nanopore Tee	1 were not associated with repeat chnologies long-read sequencing	expansion . Case 5 is	i in che case

(pər	Age
(continu	of onset
ole 1	Age
Tak	≙

for *HRNR* variants in a large series of ten additional historical cases of pathologically confirmed NIID in patients of European ancestry (confirmed on genotypying), in whom the causative GGC repeat expansion in *NOTCH2NLC* was not found (Table 1) [7]. Furthermore, we also reviewed *HRNR* variants in an European patient with antemortem diagnosis of NIID associated with GGC repeat expansion in *NOTCH2NLC* [7] as well as confirmation in the index case reported by Park and colleagues [7]. We used polymerase chain reaction (PCR) to amplify the 446 base pair region of *HRNR* containing the index variant using conditions by Park et al. [1] followed by Sanger sequencing to review the targeted sequence (Additional file 1: Methods).

The previously reported p.(Ser1008Thr) variant in *HRNR* was verified in DNA extracted from heart tissue of the index case using this approach. However, none of the other ten pathologically confirmed NIID cases harboured the same reported *HRNR* variant (Table 1) despite sharing the common characteristic of an absent pathogenic *NOTCH2NLC* repeat expansion and pathological presence of NIIs. Out of these cases, three further European

NIID cases diagnosed pathologically through post-mortem brain examination (Cases 3, 9 and 11 in Table 1) were found to have two variants in HRNR: a missense variant (c.3236 G>A, p.(Glu1054Lys)) and a synonymous variant (c.3346 C > T) (Fig. 1). However, in silico analysis and prevalent European population frequencies [9] (0.1336 and 0.1362 for the missense and synonymous variants respectively) suggest that these are unlikely to be pathogenic candidates (Fig. 1). As expected, for the patient in which NOTCH2NLC repeat expansion was found to be associated with NIID (Case 12), no HRNR variants were detected on Sanger sequencing. Moreover, the expression of HRNR is not enriched within the central nervous system with low human brain region-specific expression, as exemplified in the Genotype-Tissue Expression (GTEx) project [10].

Taken together, these findings support those of Park and colleagues, albeit in a larger cohort of *NOTCH2NLC*negative NIID in patients of European ancestry. The molecular basis of disease in these cases, which are genetically distinct from East Asian NIID cases, is unlikely to be secondary to single nucleotide variation within *HRNR*.

Fig. 1 Characteristics of variants detected in *HRNR* in neuronal intranuclear inclusion disease (NIIL). **a** lable showing in silico predictions of all variants detected across 12 NIID samples. Sorting Intolerant from Tolerant (SIFT) (https://sift.bii.a-star.edu.sg/) predicts if a substitution at the amino acid level affects protein function with scores ranging from 0 to 1. A variant is predicted damaging to protein function if the score is \leq 0.05 and tolerated if the score is > 0.05. Polymorphism Phenotyping version 2 (PolyPhen-2) (http://genetics.bwh.harvard.edu/pph2/) is a tool that predicts the possible effect of an amino acid substitution on protein function, with scores ranging from 0 (most probably benign) to 0.999 (most probably damaging). **b** The c.3023 G > C variant detected in Case 5, but not in any other cases, verifies the findings from Park and colleagues[1]. This variant of interest is highlighted in the chromatogram. **c** Missense variant c.3236 G > A and synonymous variant c.3346 c > T found in cases 3, 9 and 11. These variants of interest are highlighted in the chromatogram

It should be noted that while the identification of hornerin as a major component of NIIs in this Finnish case [8] is of interest in providing further molecular insight into the pathogenesis of NOTCH2NLC repeat-negative NIID, further direct identification of NII composition in other such molecularly undetermined cases [7] is essential in moving towards establishing the underlying aetiology. The identification of a common genetic explanation for European NIID has thus far remained elusive due to the lack of large pedigrees, a likely complex variant that has eluded conventional sequencing techniques, paucity of antemortem diagnostic clues (as seen in East Asian NIID) and the clinical and genetic heterogeneity of disease. As such, the overarching clue to driving a molecular diagnosis may lie in the accurate pathological characterisation of such disorders, as attempted by Park and colleagues [1], in order to decipher convergent mechanisms for pathogenesis.

Abbreviations

- NIL Neuronal intranuclear inclusions
- NIID Neuronal intranuclear inclusion disease
- PCR Polymerase chain reaction

Supplementary Information

The online version contains supplementary material available at https://doi. org/10.1186/s40478-023-01706-7.

Additional file 1. Supplementary Methods.

Acknowledgements

The authors thank the participants and their families for their generous donations, without which this work would not have been possible.

Author contributions

HL, HH and ZC conceived and designed the study. HL, EKG, HM, ND, KZ, KM, CA, WYY and SE performed experimental analyses for the study. ZJ and MJH provided pathological interpretation. CT, JH, TR, TL, MD, DWD, KAJ, EG, GGK, GH, DBR, IB, LMP, EM, PJT, ASW, NCF, NWW, AJL, and MJH all provided pathological samples, or patient data. ZC, HH, MR and AT supervised the project. All authors discussed the results and contributed to the final manuscript.

Funding

This work was funded by Leonard Wolfson Foundation grant 157793 and Medical Research Council grant MR/S01165X/1. ZC was funded by a Leonard Wolfson Clinical Research Fellowship (Grant number 157793). ZJ is supported by the Department of Health's NIHR UCLH/UCL Biomedical Research Centre's funding scheme. AT is a Medical Research Council Clinician Scientist (MR/ S006753/1). MR is supported through the award of a Tenure Track Medical Research Council Clinician Scientist Fellowship (MR/N008324/1).

Availability of data and materials

The datasets used and/or analysed during the current study available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

The study was approved by UCL Queen Square Institute of Neurology Institutional Review Board.

Consent for publication

The participants have provided consent for publication of data.

Competing interests

The authors have no financial and non-financial competing interests to declare.

Author details

¹Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK. ²Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK. ³NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK. ⁴Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK.⁵The Perron Institute for Neurological and Translational Science, Perth, Australia. ⁶The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK. ⁷Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA. ⁸Neurodegenerative Research Group, Mayo Clinic, Rochester, MN, USA. ⁹Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK. ¹⁰Neuroscience Research Australia, Sydney, Australia. ¹¹School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia. ¹²Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia. ¹³Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.¹⁴Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, Wakefield Street, London, UK. ¹⁵Department of Neurology, Helsinki University Hospital, Helsinki, Finland. ¹⁶Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. ¹⁷Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, 00290 Helsinki, Finland. ¹⁸Neuroscience CenterHiLife, University of Helsinki, 00290 Helsinki, Finland. ¹⁹HUSlab, Helsinki University Hospital, 00290 Helsinki, Finland. ²⁰Alzheimer's Disease and Other Cognitive Disorders Unit. Neurology Service, Hospital ClínicFundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomediques August Pi I Sunyer (FRCB-IDIBAPS), University of Barcelona, Barcelona, Spain.²¹Neurological Tissue Bank of the Hospital Clinic-IFRCB-IDIBAPS-Biobank, Barcelona, Spain.²²Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada. ²³ Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria.²⁴Dementia Research Institute at UCL. Oueen Square Institute of Neurology, UCL, London, UK. ²⁵NIHR University College London Hospitals Biomedical Research Centre, London, UK.²⁶Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China. ²⁷Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland. ²⁸William Harvey Research Institute, Queen Mary University of London, London, UK.²⁹Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, University College London, Queen Square House, London WC1N 3BG, UK,

Received: 20 November 2023 Accepted: 6 December 2023 Published online: 02 January 2024

References

- Park H, Yamanaka T, Toyama Y, Fujita A, Nirasawa T, Murayama S et al (2022) Hornerin deposits in neuronal intranuclear inclusion disease: direct identification of proteins with compositionally biased regions in inclusions. Acta Neuropathol Commun 10(1):1–17
- Sone J, Mori K, Inagaki T, Katsumata R, Takagi S, Yokoi S et al (2016) Clinicopathological features of adult-onset neuronal intranuclear inclusion disease. Brain 139(12):3170–3186
- Sone J, Mitsuhashi S, Fujita A, Mizuguchi T, Hamanaka K, Mori K et al (2019) Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease. Nat Genet 51(8):1215–1221
- Ishiura H, Shibata S, Yoshimura J, Suzuki Y, Qu W, Doi K et al (2019) Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease,

oculopharyngodistal myopathy and an overlapping disease. Nature Genet 51(8):1222–1232

- Liufu T, Zheng Y, Yu J, Yuan Y, Wang Z, Deng J et al (2022) The polyG diseases: a new disease entity. Acta Neuropathol Commun 10(1):79
- Boivin M, Deng J, Pfister V, Grandgirard E, Oulad-Abdelghani M, Morlet B et al (2021) Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: the polyG diseases. Neuron 109(11):1825–35.e5
- Chen Z, Yan Yau W, Jaunmuktane Z, Tucci A, Sivakumar P, GaglianoTaliun SA et al (2020) Neuronal intranuclear inclusion disease is genetically heterogeneous. Ann Clin Transl Neurol 7(9):1716–1725
- Haltia M, Somer H, Palo J, Johnson WG (1984) Neuronal intranuclear inclusion disease in identical twins. Ann Neurol 15(4):316–321
- Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q et al (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581(7809):434–443
- Aguet F, Brown AA, Castel SE, Davis JR, He Y, Jo B et al (2017) Genetic effects on gene expression across human tissues. Nature 550(7675):204–213

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:

- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

