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non-neural cells, such as fibroblasts and lymphocytes [4, 
5].

Tau protein is mainly localized in axons in the mature 
neurons, but other cellular localizations of Tau protein 
has also been reported e.g., in the nucleus (nucleolus) [6], 
mitochondria [7], at the plasma membrane [8], soma [9], 
dendrites [10], synapses [11] and extracellular vesicles 
[12]. This vast localization pattern of Tau protein sug-
gests that in addition to its main function as a regulator 
of microtubule dynamics, it has diverse pathophysiologi-
cal roles in the cell [6, 13].

Tau, a natively unfolded protein, largely soluble and 
exhibits a very less tendency for aggregation [14].Tau pro-
tein is encoded by MAPT, comprising of 16 exons located 
on 17q21 chromosome location [15]. In the human brain, 
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Abstract
Tau (Tubulin associated unit) protein is a major hallmark of Alzheimer’s disease (AD) and tauopathies. Tau is 
predominantly an axonal protein with a crucial role in the stabilization and dynamics of the microtubules. Since the 
discovery of Tau protein in 1975, research efforts were concentrated on the pathophysiological role of Tau protein 
in the context of the microtubules. Although, for more than three decades, different localizations of Tau protein 
have been discovered e.g., in the nuclear compartments. Discovery of the role of Tau protein in various cellular 
compartments especially in the nucleus opens up a new fold of complexity in tauopathies. Data from cellular 
models, animal models, and the human brain indicate that nuclear Tau is crucial for genome stability and to cope 
with cellular distress. Moreover, it’s nature of nuclear translocation, its interactions with the nuclear DNA/RNA and 
proteins suggest it could play multiple roles in the nucleus. To comprehend Tau pathophysiology and efficient Tau-
based therapies, there is an urgent need to understand whole repertoire of Tau species (nuclear and cytoplasmic) 
and their functional relevance. To complete the map of Tau repertoire, understanding of various species of Tau in 
the nucleus and cytoplasm, identification if specific transcripts of Tau, isoforms and post-translational modifications 
could foretell Tau’s localizations and functions, and how they are modified in neurodegenerative diseases like AD, is 
urgently required. In this review, we explore the nuclear face of Tau protein, its nuclear localizations and functions 
and its linkage with Alzheimer’s disease.
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Tau has six main isoforms which are generated by alter-
native splicing of exons 2, 3, and 10 [1, 16]. Tau isoforms 
vary depending on the number of N-terminal 29-residue 
inserts and presence or absence of microtubule binding 
domain (R2) [16]. Tau isoforms vary in terms of expres-
sion of R domains (R1, R2, R3, and R4) consisting of 
31–32 distinct and similar amino acid motifs. Isoforms 
that express the R2 domain are known as 4R while those 
lacking the R2 are designated as 3R. Primarily, Tau iso-
forms are denoted as 0N3R, 0N4R, 1N3R, 1N4R, 2N3R, 
2N4R, however they are also known by the residue num-
ber or the clone name [1, 17].

Since the discovery of Tau protein, research efforts 
were concentrated on it’s role in the context of microtu-
bules, even though, multiple localizations of Tau protein 
have been reported [18]. Tau is highly abundant in neu-
ronal axons [19], but under various pathophysiological 
conditions, it can also be found in the soma [9], the den-
drites [10], and the nucleus [10, 20].

Subcellular fractionation of murine brain tissue has 
been performed to identify distinct localization patterns 
for Tau isoforms [21]. The isoform 0  N is enriched in 
cell bodies and axons with a slight staining in nuclei and 
dendrites. The isoform 1 N is predominantly detected in 
the soluble nuclear fraction (neuronal nuclei). It is also 
detectable in cell bodies and dendrites, but not in axons. 
The isoform 2  N is highly expressed in cell bodies and 
axons, with a detectable expression in dendrites and a 
very low signal in nuclei [21]. This data indicate signifi-
cant differences in the expression of Tau isoforms in the 
murine brain that likely reflect different neuronal func-
tions. However, the localization pattern of nuclear Tau is 
different between human and murine cell-types [22, 23], 
which might be the one reason that transgenic mice mod-
els do not recapitulate full spectrum of AD pathology. 
Interestingly, these murine Tau isoforms do not contain 
any nuclear localization signal (NLS) for their transport 
from the cytoplasmic to the nuclear compartment [21]. 
Furthermore, Tau exists in different conformations in the 
nucleus, and specific epitopes are accessible to different 
antibodies in a compartment-dependent manner [23]. 
Understanding of complete spectrum of nuclear Tau spe-
cies and their mode of nucleocytoplasmic transport may 
shed light on the nuclear face of Tau under pathophysi-
ological conditions.

The multiple localizations of Tau protein suggest con-
dition- and subcellular microenvironment-dependent 
interactions of Tau protein [24, 25] with different sub-
cellular compartments e.g., nucleus. This suggests 
that Tau is a multifunctional protein and its role in 
pathophysiology of the neurons needs to be regularly 
reviewed in the light of emerging discoveries. Here, we 
discuss the nuclear face of Tau at different levels start-
ing from nuclear lamina down to the nucleolus, and 

how its nuclear face contributes to neurodegeneration in 
Alzheimer’s disease.

Nuclear lamina and Tau
Tau is a multifunctional protein and precise function of 
which depends on its localization. The localization of 
Tau protein to the inner side of the nuclear lamina [26, 
27] and regulation of nuclear pore complex emphasizes a 
crucial role of Tau [28, 29] protein in maintaining nucleus 
integrity. The oligomeric form of Tau directly binds to 
lamin B receptor and lamin proteins, which lose their sol-
ubility upon oligomerization and also their nuclear mem-
brane localization, ultimately leading to disruption of the 
nucleocytoplasmic interface [30]. Tau regulates nuclear 
Lamin B1 expression [31, 32]. Tau-dependent reduction 
of Lamin B1 leads to disruption of nuclear lamina [33]. 
The expression of full-length Tau or its truncated variant 
(Asp421-truncated Tau) in SH-SY5Y cells leads to forma-
tion of nuclear envelope indentations [34].

In Huntington’s disease and frontotemporal dementia, 
nuclear envelope indentations are filled with rod-like Tau 
deposits [35–37]. Likewise, Transgenic mice expressing 
mutant P301L-Tau shows disruption of NL [27]. One of 
the deleterious consequences of disruption of nuclear 
lamina is impairment of nucleocytoplasmic transport, 
which has been related to both overexpression of Tau and 
pathological Tau [27, 32, 38, 39]. The first indication of 
nuclear Tau in Alzheimer’s disease came from transmis-
sion electron microscopy (short paired helical filaments) 
in frontal lobe of AD cases [40]. Alterations in nuclear 
lamina are a characteristic of aging [41]. Indeed, muta-
tions in the lamin A/C protein leads to the ‘’accelerated 
aging disorder Hutchinson-Gilford progeria syndrome’’ 
[42]. Alterations in nuclear lamina have been reported in 
AD brains [28, 32], where neurons exhibit a more com-
plex structure of nuclear lamina.

Modifications in the nuclear lamina can initiate altera-
tions in the DNA organization, through modification of 
nucleocytoplasmic transport. Iinteractions of Tau pro-
tein with the nuclear envelope contribute to defects in 
RNA and protein nucleocytoplasmic transport [27, 43]. 
Controlled nucleocytoplasmic exchange of cellular bio-
molecules—such as mRNA and rRNA, transcription reg-
ulators, nuclear and cytoplasmic proteins—is crucial for 
key functions of cell survival e.g., stress response, signal 
transduction and proteostasis [44–46]. How alterations 
in the nuclear lamina contribute to all these crucial pro-
cesses (directly or indirectly) under health and disease 
require further investigations.

Nuclear speckles and Tau
Nuclear speckles (NSs) are membrane less organelles, 
which are sites of splicing factor storage and modifica-
tions, and are closely linked with RNA metabolism [47]. 
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Nuclear Tau aggregates colocalize with nuclear speck-
les, and alter their composition and dynamics, in cel-
lular models and in mouse brains [48]. In Alzheimer’s 
disease, pathological Tau drives ectopic accumulation of 
SRRM2, a core scaffold protein of nuclear speckles [49]. 
This depletion of SRRM2 may lead to altered splicing, 
transcription and translation, ultimately affecting neuro-
nal physiology [50]. Two other nuclear speckles proteins 
MSUT2 and PABPN1 are also depleted from nucleus in 
cases of severe Alzheimer’s disease [51]. Furthermore, It 
has been reported that Tau aggregates particularly grow 
with endogenous mitotic interchromatin granules and 
cytoplasmic speckles [52] containing SRRM2 and PNN 
proteins. These evidence support the hijacking hypoth-
esis for pathological-Tau in association with RNA to 
deplete critical workers from the nucleus (nuclear fac-
tors), affecting the biology of RNA in the nucleus. A simi-
lar sequestration of RNA binding proteins (e.g. TDP-43 
and FUS) in cytosolic condensates, in amyotrophic lat-
eral sclerosis has been associated with impaired nuclear 
RNA-processing [53–55]. Thus, the sequestration of 
RNA binding proteins and RNAs into pathological aggre-
gates may signify a common pathophysiological feature 
in multiple neurodegenerative disorders affecting diverse 
cell types, with the depletion of crucial RNA process-
ing factors from the nucleus, altering RNA processing, 
ultimately leading to altered gene expression. The iden-
tification of exact mechanism of speckle hijacking could 
highlight important aspects of Tau pathophysiology. 
Rescuing the SRRM2 splicing function by restoring its 
nuclear localization in the presence of Tau aggregates 
may mitigate neurodegeneration. The disruption of dele-
terious cytosolic Tau-RNA condensates using bait RNAs 
may restore nuclear localization of important nuclear 
factors. Clearly, urgent investigations are required to 
explore these hypotheses and their utility for therapeutic 
interventions.

Nucleolus and Tau
Nuclear studies have shown a crucial role of Tau protein 
in nucleolar structure conformation [4, 56]. Tau colo-
calizes with crucial nucleolar factors such as nucleo-
lin, upstream binding transcription factor, and TIP5 in 
cellular models and human brain tissues [56, 57]. It has 
been found that nucleolar chaperons are reduced in dif-
ferent AD brain regions including nuclear Tau [58]. 
Tau enhances interactions of nuclear proteins like T 
cell intracellular antigen 1 (TIA1) with ribonucleopro-
teins, suggesting a role for it in rRNA gene metabolism 
[57]. The Tau protein localizes in the nucleolar organizer 
region (pericentromeric heterochromatin) and at the 
dense fibrillar regions as shown by immunofluorescence 
[22, 59, 60].

Tau can interact with both ribosomes and rRNA 
through its association with RNA binding proteins [61, 
62]. In tauopathies, the interaction between Tau and 
ribosomes is pronounced [61], suggesting an impairment 
of its functioning. Translocation of phodphorylated-
Tau into the nucleus results in nucleolar dispersion and 
p53-dependent apoptosis, both of which contributes to 
neurodegeneration [63].

Recently, non-phosphorylated Tau (at residues Ser 
195, 198, 199 and 202) has been described as a bona fide 
nucleolar protein in neuronal cell lines and human brain 
tissue [57]. An association between Tau and TIP5 (a main 
player of heterochromatin stability and ribosomal DNA 
transcriptional repression) in SHSY5Y cells and human 
brain tissue [57] suggests a crucial role of Tau/TIP5 in the 
stabilization of repressive epigenetic marks on the ribo-
somal DNA. However, further investigations are required 
to study the precise role of Tau in nucleolar remodel-
ing complex. Furthermore, nucleolar stress (induced by 
glutamate) redistributes nucleolar non-phosphorylated 
Tau in a similar way to other nucleolar factors e.g. fibril-
larin, and induce a nuclear influx of phosphorylated Tau 
(Thr231) which shows a distinct localization from fibril-
larin and nucleolar Tau [57]. These findings suggest that 
different species of Tau are present in the nucleus and 
play specific roles depending on type of cellular distress.

DNA and Tau
In the nucleus, Tau is involved in DNA protection and 
chromosome stability [4, 57, 64]. In vitro studies indicate 
that binding of Tau protein with DNA can increase the 
melting temperature of DNA [65] and protect it against 
heat shock induced double strand breaks, providing an 
evidence that nuclear Tau (non-phosphorylated) is cru-
cial to cope with early stress responses in continuous 
changing microenvironment of neurons [66]. Further 
research could investigate the molecular mechanisms 
underlying this protective function and its implications 
for neuronal resilience in the face of environmental 
stressors. Moreover, identifying pathways through which 
Tau interacts with heat shock response machinery can 
provide us with potentially novel targets for therapeutic 
interventions.

It has been shown that Tau knockout cortical neurons 
are more susceptible to heat stress-induced and hypo-
thermia-induced DNA breakage as compared to their 
wild-type counterparts [67]. In addition to its function in 
DNA protection, it has been shown to play a role in the 
modulation of gene expression. Exploring the regulatory 
mechanisms by which Tau influences gene transcription, 
can shed light on its role in neuronal homeostasis and 
its potential involvement in neurodegenerative diseases. 
Indirectly, Tau could affect the gene transcription by 
some compensatory changes in the gene expression [67]. 
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Investigating how the loss of Tau affects gene transcrip-
tion and whether compensatory mechanisms exist could 
offer insights into the broader consequences of nuclear 
Tau dysfunction.

To date, 14 genes have been identified, for which tran-
scription has been reported to be significantly increased 
after Tau depletion in quantitative real-time PCR and 
microarray analyses [68, 69]. Tau plays an important role 
as an epigenetic regulator of gene expression, an orga-
nizer of heterochromatin, a contributor to chromosomal 
stability, and processor or silencer of ribosomal RNA 
[69]. All these evidence suggest that Tau can regulate 
genomic functions in the nucleus. Considering the sig-
nificant regulatory role of the nucleus in the maintenance 
of cellular homeostasis and the presence of Tau in the 
nucleus of the AD brain, we focused on its nuclear role 
specifically in Alzheimer’s disease.

Considering the substantial impact of nuclear pro-
cesses on cellular balance and the observation of Tau in 
the brains of Alzheimer’s disease patients, it is plausible 
to propose that Tau’s nuclear functions have a distinctive 
role in AD. These functions could potentially underlie the 
alterations in gene expression, instability in chromosomal 
structure, and disruptions in protein synthesis seen in 
AD. A focused investigation into the precise implications 
of nuclear Tau in the context of AD may reveal valuable 
insights into the disease’s development and provide leads 
for therapeutic interventions.

Nuclear Tau and stress granules
Emerging evidence indicate that Tau protein is a regu-
lator of biology of RNA binding proteins [70]. Tau pro-
motes stress granule development and regulate the 
interactome of TIA-1, a main component of stress gran-
ules [13]. However, which species of Tau (nuclear or 
other?) participate in stress granule formation, remains 
enigmatic. As, TIA-1 protein, a classical marker of stress 
granules, upon stress exit from the nucleus to initi-
ate stress granule formation. Plausibly, nuclear Tau may 
also translocate to cytoplasm upon stress and contribute 
to stress granule formation, which has been reported as 
nidus of Tau misfolding [71, 72]. Investigation of precise 
species of Tau (nuclear or cytosolic) involved in stress 
granule formation may shed important light on dual role 
of nuclear Tau and its nidus of misfolding.

Nuclear Tau and aging
The levels of different isoforms of Tau protein could 
change in different types of neurons during the devel-
opment, aging or diseases (tauopathies) in mammals. In 
some diseases, there is a toxic gain of function of altered 
Tau, due to the hyperphosphorylation or aggregation 
[73, 74]. These phenotypic changes are mainly found 
in aging organisms. Aging is a risk factor for several 

neurodegenerative diseases like Alzheimer’s disease or 
Parkinson’s disease. With aging, there is an increase of 
neuronal vulnerability to oxidative damage, that could 
modify Tau protein [75, 76] facilitating its aggregation 
[77, 78]. An age-dependent accumulation of Tau aggrega-
tion has been reported in a C. elegans model [79]. Also 
during aging, mitochondrial changes in the brain occur 
[80]. Abnormal binding of a mitochondrial protein, DRP1 
(involved in mitochondrial fission) to Tau protein pro-
mote neurodegeneration through mitochondrial dys-
function [81].

Previous studies have shown a decrease in soluble Tau 
with increased aging [82] in resected human brain tissue 
as well as in post-mortem brains [83]. On the contrary, 
phosphorylated Tau (Thr 212) increases during aging, 
in the nucleolus and pericentromeric heterochromatin 
of pyramidal neurons in the CA1 region, with the maxi-
mum accumulation in senescent cells [26]. However, 
this phosphorylated form of Tau decreases in AD, at its 
later stages [26]. Since Thr212 is a direct target of kinase 
GSK3β [84], and the activity of GSK3β increase during 
aging, and AD pathology [84–86], the increased nuclear 
phosphorylated Tau with aging may be attributed to the 
increase of GSK3β [6].

Elevated intron retention, an alternative splicing pro-
cess in which introns remain within mature mRNA tran-
scripts, has also been associated with aging brains and 
the development of Alzheimer’s disease [87–89]. Specifi-
cally, the retention of intron 11 results in the translation 
of a novel truncated Tau11i isoform. These Tau11i pro-
teins aggregate in granular-like formations within the 
temporal lobes of AD patients. It is of significant impor-
tance to uncover the mechanisms governing these dis-
tinct splicing events, understand how Tau11i proteins 
contribute to the formation of pre-tangles, and elucidate 
their role in the pathogenesis of AD [90].

Tau can be secreted into the extracellular space and can 
be transferred to the neighboring cells [91] e.g. neurons, 
astrocytes, and microglia, in a prion-like fashion. Partic-
ularly, an age-dependent spread of Tau protein has been 
observed in mouse brain. Aged animals show enhanced 
spreading of Tau in the hippocampus and neighboring 
cortical regions with accumulation of prominent mis-
folded Tau in entorhinal cortex [92]. All these evidence 
indicate that alterations in Tau protein levels (propor-
tions), post-translational modifications, and spreading 
occur with aging. Future investigations addressing the 
heterogeneity of Tau species and their PTMs with age, 
and under different stressful conditions could highlight 
important aspects of Tau pathophysiology in normal 
aging and tauopathies.
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Nuclear Tau in Alzheimer’s disease
Tau accumulation is a major pathological marker in 
several neurodegenerative diseases. Recently, it was 
found that hyper-acetylation of Tau at residue 174 (Tau-
K174ac) increases its nuclear accumulation which is 
triggered by DNA damage signalling or SIRT6 shortage 
[69]. In Alzheimer’s disease, genomic instability has been 
reported, and SIRT6’s role in this context may have impli-
cations for disease progression. Targeting the acetylation 
of Tau at residue 174 or restoring SIRT6 levels could mit-
igate Tau accumulation and potentially offer therapeutic 
strategies for Alzheimer’s disease. Research may focus 
on how this acetylation event influences Tau pathology 
and developing interventions aimed at modulating these 
factors. Presence of higher nuclear Tau (Tau-K174ac), 
increased nucleolin and decreased SIRT6 levels have 
been reported in the AD cases [93]. The Tau-K174ac tox-
icity has been attributed to its nuclear accumulation and 
nucleolar dysfunction [93]. In a recent study, the role of 
nuclear Tau (AT8 epitope) has been reported in the onset 
of Alzheimer’s disease. There was decreased immunore-
activity in senile neurons, as compared to younger one’s 
[94]. Furthermore, the findings from this study suggest 
nuclear Tau’s involvement in the abnormal activation of 
cell cycle in differentiated cells [94].

Nulcear translocation of Tau occurs via importin-α/β 
pathway [29]. Hyperphosphorylated Tau in the nucleus 
interferes with important cellular processes such as 
nucleocytoplasmic transport and mislocalisation of 
nuclear factors, contributing to cell death [27, 29, 95]. 
Further investigation could explore the specific mecha-
nisms through which Tau disrupts these processes and 
its implications in neurodegenerative diseases, such as 
Alzheimer’s disease.

It is also of great importance to consider that the role 
of nuclear Tau in neurodegenerative diseases could be 
through stress-dependent inhibition of nuclear Tau func-
tion because of aggregation and hyperphosphorylation 
[57, 96]. Research could examine how stress-related fac-
tors impact nuclear Tau’s functionality and whether this 
contributes to disease pathogenesis. Phosphorylation 
and aggregation of Tau protein are among the major 
post translational modifications responsible for the 
formation of paired helical filaments (PHFs) and neu-
rofibrillary tangles (NFTs) [97]. The binding of hyper-
phosphorylated Tau to the DNA alters its conformation 
and integrity leading to nucleosomal disorganization and 
altered gene expression [98]. Interestingly a recent study 
demonstrated a significantly increased Ca2+ nuclear 
concentration with the hyperphosphorylation of Tau. 
This may propagate a self-perpetuating loop to cause 
neurodegeneration [99]. Phosphorylation and aggre-
gation of Tau, leading to the formation of paired heli-
cal filaments and neurofibrillary tangles, could be a key 

mechanism through which Tau disrupts nuclear func-
tions. Investigating the impact of hyperphosphorylated 
Tau on DNA conformation, nucleosomal organization, 
and gene expression could provide insights into its role in 
neurodegeneration.

Moreover, the role of Tau protein as a chromatin modi-
fier in Alzheimer’s disease and aging has been discovered. 
As compared to the younger neurons the aged neurons 
have increased levels of AT100 (p-The212-Ser214) immu-
noreativity in the dentate gyrus and hippocampal CA1 
region [26, 100]. As the age progresses, positivity zone 
increases in intensity and frequency specifically near the 
nuclear membrane and nucleolus [101]. As the AD pro-
gresses, depletion of nuclear Tau is more evident with 
maximum depletion at late stages. At the late AD stage, 
AT100 immunopositivity can exclusively be found in 
the neurofibrillary tangles (NFTs) [58]. At initial stages, 
Tau exits the neuronal nucleus completely [58, 102] and 
causes global chromatin relaxation which consequently 
leads to abnormal transcription of various heterochro-
matin genes and dysregulation of euchromatin gene [31, 
103]. Research may delve into the molecular pathways 
linking Tau’s nuclear exit with chromatin alterations and 
the subsequent transcriptional dysregulation. This infor-
mation can eventually provide a great insight into fac-
tors causing abnormal transcription of heterochromatin 
genes which could further be intervened to stop these 
abnormalities in terms of therapeutic interventions.

The ultimate transcriptional silencing leads to decon-
densation of heterochromatin at perinuclear and peri-
centromeric regions [26, 27]. With the AD progression, 
disrupted nucleo-cytoplasm transport results in the mis-
localization of many nuclear proteins in the cytoplasm 
[27, 95]. Investigating the specific genes affected by this 
silencing and their role in AD pathogenesis can offer 
insights into disease mechanisms.

The crucial role of Tau protein on the regulation of 
genome has been validated by microarray hybridization 
(ChiP-on-chip) assays and genome-wide immunoprecipi-
tation (ChiP) [104]. Nuclear depletion of Tau contributes 
to an impairment of perinuclear heterochromatin in AD 
[26]. Exploring the mechanisms by which this impair-
ment relates to AD-related epigenetic changes and its 
consequences on gene expression can provide us with 
valuable information for better disease interventions 
for diagnostics and therapeutics. A strong interaction of 
Tau with intergenic and intronic parts of DNA, coding 
for long noncoding RNA (lncRNA), has been reported 
[104]. Investigating the specific lncRNAs involved, their 
functions, and their role in the regulation of chromatin 
and gene expression may uncover novel pathways in AD 
pathogenesis. Tau and lncRNAs both regulate transcrip-
tion of chromatin and gene expression indirectly, these 
processes are remarkably deregulated in AD [105, 106]. 
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Nucleolar depletion of Tau disturbs the tRNA synthesis 
and destabilizes rDNA loci [64]. Altogether nuclear Tau 
is essential for transcriptional regulation, NAD’s stability, 
and regulated functioning of the nucleolus [26].The role 
of Tau in nuclear pore complex dysfunction points out its 
probable contribution towards Tau-induced neurotoxic-
ity in AD and tauopathies. Investigating the mechanisms 
through which Tau disrupts nuclear pore complex func-
tion and its implications for cellular homeostasis can 
provide insights into disease progression. The nuclear 
functions of Tau and their disruption in AD is summa-
rized in Fig. 1.

Conclusions
Since the discovery of Tau protein in 1975, research 
efforts were concentrated on the role of Tau protein 
in pathophysiology in the context of the microtubules 
dynamics and stabilization, even though, for more than 
three decades, different localizations of Tau protein have 
been discovered e.g., in the nuclear compartments. Dis-
covery of the role of Tau protein in various cellular com-
partments especially in the nucleus opens up a new fold 
of complexity in tauopathies. Perturbations in the Tau 
protein (as happens in AD and other tauopathies) could 
alter its multiple functions in the nucleus enhancing 

genome vulnerability and neurodegeneration. Its inter-
action with several nuclear components strongly sug-
gests that it could play multiple functions in the nucleus, 
although more investigations are required to find out a 
precise role of Tau in these processes. Nuclear tau heck-
les nuclear speckles leading to RNA splicing defects, 
nucleo-cytoplasmic transport deficits, chromatin orga-
nization disturbances and nucleolar organization defi-
cits. A through identification of different species of Tau 
(nuclear and cytosolic), their mode of nucleo-cytoplas-
mic transport, neuronal microenvironment-mediated 
post-translational modifications of Tau protein are cru-
cial aspects to understand the whole repertoire of Tau 
and its nidus of aggregation. Furthermore, to find out 
effective Tau-based therapies, there is an urgent need to 
understand precise functional relevance of these diverse 
cellular localizations of Tau protein and how it is altered 
during neurodegeneration.

Abbreviations
AD  Alzheimer’s disease
CSF  Cerebrospinal fluid
NFT  neurofibrillary tangles
NSs  nuclear speckles
MAPT  microtubule associated protein Tau
MAPs  microtubule-associated proteins
NL  Nuclear Lamina

Fig. 1 Role of nuclear Tau in Alzheimer’s disease. Nuclear Tau is involved in genome stability and maintenance of nucleo-cytoplasmic transport. Deple-
tion of nuclear Tau leads to conformational changes in the heterochromatin and makes DNA vulnerable to damage, disturbs rRNA synthesis and ribo-
nucleotide pool balance. The cytosolic Tau aggregates sequester nuclear factors leading to their depletion from the nucleus. Tau-mediated Impairment of 
nuclear pore complex disrupts nucleo-cytoplasmic transport, ultimately contributing to Tau-induced neurotoxicity (Created with https://www.BioRender.
com)
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PHF  paired helical filaments
p-Tau  phosphorylated Tau
Tau  tubulin associated unit
T-Tau  total Tau
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