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Abstract 

In IDH-mutant astrocytoma, IDH2 mutation is quite rare and biological mechanisms underlying tumor progression 
in IDH2-mutant astrocytoma remain elusive. Here, we report a unique case of IDH2 mutant astrocytoma, CNS WHO 
grade 3 that developed tumor progression. We performed a comprehensive genomic and epigenomic analysis 
for primary and recurrent tumors and found that both tumors harbored recurrent IDH2R172K and TP53R248W mutation 
with CDKN2A/B hemizygous deletion. We also found amplifications of CDK4 and MDM2 with PDGFRA gain in the recur-
rent tumor and upregulated protein expressions of these genes. We further developed, for the first time, a xenograft 
mouse model of IDH2R172K and TP53R248W mutant astrocytoma from the recurrent tumor, but not from the primary 
tumor. Consistent with parent recurrent tumor cells, amplifications of CDK4 and MDM2 and PDGFRA gain were found, 
while CDKN2A/B was identified as homozygous deletion in the xenografts, qualifying for integrated diagnosis of astro-
cytoma, IDH2-mutant, CNS WHO grade 4. Cell viability assay found that CDK4/6 inhibitor and PDGFR inhibitor potently 
decreased cell viability in recurrent tumor cells, as compared to primary tumor cells. These findings suggest that gene 
alterations that activate retinoblastoma (RB) signaling pathways and PDGFR may drive tumor progression and xeno-
graft formation in IDH2-mutant astrocytoma, which is equivalent to progressive IDH1-mutant astrocytoma. Also, our 
findings suggest that these genomic alterations may represent therapeutic targets in IDH2-mutant astrocytoma.
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Introduction
Since the discovery of IDH1 mutation in gliomas [30], 
IDH1 mutation has been considered one of the most fun-
damental genetic alterations in diffuse lower-grade glio-
mas (LGGs). In IDH-mutant gliomas, the vast majority 
of mutations are at codon 132 of IDH1 and mostly hete-
rozygous substitution from arginine to histidine (R132H) 
[35, 46]. Astrocytoma typically harbors IDH1, TP53, and 
ATRX mutations [4, 20]. In general, IDH1-mutant astro-
cytomas have better prognosis than IDH1/2-wildtype 
gliomas. However, most IDH1-mutant astrocytomas 
eventually develop a malignant phenotype [25]. Several 
studies have uncovered molecular mechanisms of malig-
nant transformation in IDH1-mutant astrocytoma [5, 33, 
37, 42]. For instance, we have demonstrated that addi-
tional “tertiary mutations”, such as PDGFRA and MYCN 
amplification, promoted patient tumor progression and 
xenograft formation in IDH1-mutant astrocytoma. We 
also found that xenograft formation was correlated with 
poor prognosis in IDH1-mutant astrocytoma patients 
[42]. Using genetically engineered mouse models, Philip 
et  al. reported that  IDH1R132H cooperated with PDGFA 
and loss of Cdkn2a, Atrx, and Pten to promote high-
grade astrocytoma in vivo [31]. These data indicate that 
acquired pathogenic gene alterations promote tumor 
progression in IDH1-mutant astrocytoma, resulting in 
dismal outcomes.

In mammalian cells, IDH1 is located in the cytoplasm, 
while IDH2 is in the mitochondria. IDH2 mutation is 
commonly found in acute myeloid leukemia [45]. On 
the other hand, IDH2R172 mutation was also identified in 
astrocytoma, with less than 3% frequency [9]. Another 
study analyzed 811 glioma samples and identified only 
3 of 266 (1.1%) astrocytomas harbored IDH2-mutation 
[44]. These findings suggest that IDH2-mutation is quite 
rare in astrocytoma. Both mutant IDH1 and IDH2 inhibit 
this enzymatic activity and instead produce 2-hydroxy-
glutarate (2-HG) from α-KG. 2-HG induces the global 
DNA and histone methylation phenotype by blocking 
α-KG dependent dioxygenases and promote gliomagene-
sis [12, 14, 29]. Therefore, IDH2 mutation is considered as 
equivalent to IDH1 mutation and IDH2-mutant gliomas 
are conventionally analyzed along with IDH1-mutant 
gliomas. However, the molecular mechanisms of malig-
nant progression are poorly understood in IDH2-mutant 
astrocytoma. Additionally, since IDH2-mutant glioma 
xenograft model is lacking, translational insight is scant 
to date. Here, we report a patient with IDH2R172K-mutant 
astrocytoma that progressed during follow-up. We com-
prehensively performed genomic and epigenomic analy-
ses for both the initial and recurrent tumors. We further 
developed the first IDH2R172K mutant astrocytoma, CNS 
WHO grade 4 xenograft mouse model from recurrent 

tumor. Our data reveal a molecular mechanism of how 
genomic alterations promote tumor progression and xen-
ograft formation in IDH2-mutant astrocytoma.

Material and methods
Creation of primary cultured cells
Fresh tumor specimens were obtained from surgery 
and enzymatically dissociated with 0.1% of Trypsin and 
DNase. Primary cultured cells were maintained in serum-
free neural stem cell medium (Neurobasal Medium, 
Gibco), supplemented with L-glutamine (Gibco), B27 
(Gibco), N2 (Gibco), human recombinant EGF (R&D 
Systems), human FGF-basic (Alomone Labs), and Anti-
biotic–Antimycotic (Gibco) as previously described 
[41]. Dissociated cells were cryopreserved and used for 
in vitro experiments.

Cell viability analysis
To assess cell viability, tumor cells were dissociated into 
single cells and seeded into 96-well plates at 3000 cells/
well. After 6 h, chemical inhibitors were serially diluted 
and added to wells. Cell viability was measured by CellTi-
ter-Glo (Promega) assay at day 3. The relative cell viabil-
ity was indicated as the percentage viability of the DMSO 
control. Abemaciclib (Selleck), AC710 (Tocris Biosci-
ence), Enasidenib (AG-221, MedChemExpress), GDC-
0068 (Cayman), LY294002 (Sellek), Palbociclib (Toronto 
Research chemicals), and Tyrphostin A9 (Focus Biomol-
ecules) were used.

Xenograft models
1 ×  105 Cells were orthotopically implanted into the 
right striatum of 4–6 week-old female SCID Beige mice 
(Charles River, Yokohama) within 12 h after dissociation. 
Mice were monitored 2–3 times per week and sacrificed 
when neurologic deficits or general conditions reached 
the criteria for euthanasia. Brains were harvested and 
used for pathological and genomic evaluation. All mouse 
experiments were approved by the Institutional Animal 
Care and Use Committee at YCU (IRB No. FA22-011).

Western blotting
Cells were lysed in RIPA buffer (Sigma-Aldrich) with 
protease inhibitor cocktail tablets (Roche). Fifty μg of 
protein was separated by 10% SDS-PAGE and transferred 
to polyvinylidene difluoride membranes (Millipore) by 
electroblotting. After blocking with Bullet Blocking One 
for western blotting (Nacalai Tesque), the membranes 
were incubated with primary antibodies at 4  °C over-
night. After washing and incubation with horseradish 
peroxidase–conjugated secondary antibodies (CST), the 
blots were washed, and the signals were visualized with 
chemiluminescent HRP substrate (Merck Millipore). The 
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primary antibodies used were cleaved-PARP ([diluted 
1:1000], GeneTex, Cat. #GTX132329), GAPDH ([diluted 
1:4000], GeneTex, Cat. #GTX100118),  IDH2R172K 
([diluted 1:500], Medical and Biological laboratories, 
MBL, Cat. #D328-3), H3K27me3 ([diluted 1:5000], Cell 
Signaling Technology, CST, Cat. #9733  T), H3K9me3 
([diluted 1:5000], Abcam, Cat. #ab8898), Histone H3 
antibody ([diluted 1:5000], Abcam, Cat. #ab1791), phos-
pho-AKT ([diluted 1:1000], GeneTex, Cat. #GTX128414), 
phospho-ERK ([diluted 1:1000], Bethyl Laboratories, 
Cat. #A303-608A-M), phospho-MEK ([diluted 1:1000], 
CST, Cat. #9154S), and phospho-mTOR ([diluted 1:500], 
Merck, Cat. #09-213). Western blotting images were 
evaluated qualitatively.

Histopathological analysis
Tumor tissue specimens were fixed in 10% neutral-buff-
ered formalin and embedded in paraffin. Hematoxylin 
and eosin staining was performed using standard pro-
cedures. For immunohistochemistry, 5-µm thick sec-
tions were deparaffinized, treated with 0.5%  H2O2 in 
methanol, rehydrated, and heated in a microwave for 
20 min for antigen retrieval. After blocking with serum, 
tissue sections were incubated with primary antibod-
ies against Akt ([diluted 1:1000], CST, Cat. #4691), 
CDK4 ([diluted 1:1000], Bioss Antibodies, Cat. #BS-
0633R), ERK ([diluted 1:1000], CST, Cat. #4695), Ki-67 
([diluted 1:1000], Novus Biologicals, Cat. #NB600-1252), 
MDM2 ([diluted 1:1000], GeneTex, Cat. #GTX100531), 
p53 ([diluted 1:1000], Novus Biologicals, Cat. #NBP2-
44982), phospho-AKT ([diluted 1:1000], GeneTex, Cat. 
#GTX128414), phospho-ERK ([diluted 1:1000], Bethyl 
Laboratories, Cat. #A303-608A), phospho-PDGFRA 
([diluted 1:1000], CST, Cat. #3170  T), and phospho-Rb 
([diluted 1:1000], CST, Cat. #8516S) at 4  °C overnight. 
The next day, the sections were washed with phosphate-
buffered saline, incubated with biotinylated secondary 
antibodies for 30  min at room temperature, and then 
incubated with ABC solution (PK-6101, PK-6102; Vec-
tor Laboratories) for 30  min. Finally, the sections were 
incubated with DAB (K3467, Dako) and counterstained 
with hematoxylin. Three images per each specimen were 
obtained for quantitative analysis. Cells positive for phos-
phorylated proteins were evaluated quantitatively. Only 
strongly stained cells were considered positive.

Genomic analysis
Genomic DNA was extracted using Dneasy Blood & Tis-
sue (Qiagen), according to the manufacturer’s protocol. 
To evaluate single nucleotide variants (SNVs), insertion/
deletion, and copy number alterations (CNAs), whole 
exome sequencing (WES) was performed as previously 
described [38]. Somatic SNV was detected by MuTect, 

while the somatic InDel was identified by Strelka. Con-
trol-FREEC was used to detect somatic CNV. ANNO-
VAR was used to perform variant annotation. dbSNP, 
COSMIC, OMIM, GWAS Catalog, and HGMD were 
used to find reported information of the variants [23]. 
The multiplex polymerase chain reaction (PCR) technol-
ogy (MGH SNaPShot) was also performed for validation, 
as previously described [39]. IDH1R132H and IDH2R172K, 
TP53R248W, and TERT promoter SNVs were also assessed 
by Sanger sequencing. Primer sequences for Sanger 
sequencing are listed in the Additional file  2: Table  S1. 
CDK4, CDKN2A, EGFR, MDM2, PDGFRA, PTEN, and 
TP53 CNAs were selectively assessed using multiplex 
ligation-dependent probe amplification (MLPA), accord-
ing to the manufacturer’s instructions (SALSA MLPA 
KIT probe mix P105-D3, MRC-Holland). SALSA MLPA 
KIT probe mix P088-C2 was used to validate chromo-
some 1p and/19q and CDKN2A status. The MLPA data 
were collected using an ABI 3730xL Genetic Analyzer 
(FASMAC, Japan) and analyzed using Coffalyzer.Net 
Software (MRC-Holland). The copy number status was 
defined using the following thresholds: homozygous 
deletion (HD, x < 0.4), hemizygous deletion (0.4 < x < 0.7), 
gain (1.3 < x < 2.0), and amplification (x > 2.0), according 
to previous studies [17].

DNA methylation array analysis
The Infinium MethylationEPIC v.1.0 BeadChip Kit (Illu-
mina) was used to obtain genome-wide DNA methyla-
tion profiles and copy number alterations. The detailed 
protocol has been described previously [16]. The cut-off 
value for amplification (0.35) and homozygous deletion 
( − 0.415) was used [37].

Statistical analysis
Statistical analysis was performed using JMP Pro17.0.0 
software (Cary, NC) and GraphPad Prism (ver. 10.0.3, 
San Diego, CA). For parametric analysis, a two-tailed 
t-tests was used. Survival analysis using datasets was per-
formed by Kaplan–Meier method, and the log-rank test 
was used to compare survival differences. The data were 
expressed as the mean ± SEM. P-value < 0.05 was consid-
ered as statistically significant.

Results
Case presentation
A 44-year-old man complained a headache. Magnetic 
resonance imaging (MRI) demonstrated a non-enhancing 
tumor with surrounding edema in the right frontal lobe. 
The T2/FLAIR mismatch sign was observed (Fig.  1A, 
upper panels). 18F-fluorodeoxyglucose (FDG)-PET dem-
onstrated a lower uptake in the tumor, compared with 
the contralateral cerebral hemisphere. 11C-methionnine 
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(MET)-PET revealed a weak uptake of the tumor (maxi-
mum standardized uptake value; 2.0, Additional file  1: 
Fig. S1A). We performed subtotal tumor resection at the 
right superior frontal gyrus (YMG25P). Hematoxylin 
and eosin staining showed high cellular proliferation of 
astrocytic cells with 4 mitotic figures per  mm2. Nuclear 

atypia was observed, while microvascular proliferation 
and necrosis were absent (Fig.  1B). Immunostaining for 
p53 was positive, whereas  IDH1R132H was negative and 
ATRX was lost (Additional file  1: Fig. S1B). Pathogenic 
mutations of IDH2R172K and TP53R248W were identified, 
(Fig.  1C, Additional file  2: Tables S2 and S3). On the 

Fig. 1 Clinical characteristics of IDH2-mutant astrocytoma patient. A Magnetic resonance imaging showing FLAIR (left), T2-weighted (middle), 
and gadolinium-enhanced T1-weighted (right) images for initial tumor (YMG25P, upper panel) and recurrent tumor (YMG25R, lower panel). B 
Hematoxylin and eosin staining (upper) and Ki-67 immunohistochemistry (lower) for YMG25P (left) and YMG25R (right) tumors. Bars, 50 μm. C 
Sanger sequencing indicating IDH2 (c.515G > A, R172K) and TP53 (c.742C > T, R248W) mutation in YMG25P (upper) and YMG25R (lower)
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other hand, ATRX and TERT promoter SNV were not 
identified.

Postoperatively, the patient received radiotherapy 
(60  Gy/30 fractions) with concomitant temozolomide 
(TMZ), and was subsequently treated with TMZ for 
24 cycles. However, 32  months after the initial diagno-
sis, MRI demonstrated a contrast enhancing tumor in 
the contralateral left parietal lobe (Fig.  1A, lower pan-
els). T2/FLAIR imaging showed a high signal intensity 
mass lesion, which was discontinuous from the initial 
tumor. We performed gross total resection of this tumor 
(YMG25R). Hematoxylin and eosin staining demon-
strated high cellularity with 20 mitotic figures per  mm2 
in the recurrent tumor, but necrosis and microvascular 
proliferation were scant. The Ki-67 labeling index was 
26% in YMG25R, which was relatively higher than that 
of YMG25P (11%, Fig. 1B). Immunostaining for p53 was 
positive, whereas  IDH1R132H was negative and ATRX 
was lost in YMG25R (Additional file  1: Fig. S1B), con-
sistent with YMG25P. Genomic sequencing revealed 
the same IDH2R172K and TP53R248W heterozygous muta-
tions (Fig. 1C). An elevated tumor mutation burden was 
found (23 mutations/Mb) in YMG25R, but additional 
pathogenic mutation was not identified (Additional file 2: 
Tables S2 and S3). After the second surgery, the patient 
received chemotherapy with procarbazine, nimustine, 
and vincristine. However, MRI showed progressive dis-
ease and bevacizumab was additionally administrated. 
Forty-eight months after initial diagnosis, the patient 
passed away due to tumor progression.

Genome-wide DNA methylation array and MLPA 
revealed CDKN2A hemizygous deletion in YMG25R that 
was unchanged from YMG25P (Fig. 2A, Additional file 1: 
Fig. S2A). Also, partial deletion of chromosome 19 was 
found in YMG25P, while chromosome 1p and 19q partial 
deletion was observed in YMG25R (Fig.  2A, Additional 
file 1: Fig. S2B), which was described previously [28]. In 
YMG25P and YMG25R, methylation classifier results 
(version 11b4) indicated a classification matched to dif-
fuse glioma, IDH mutant (Additional file  2: Table  S4). 
Unsupervised clustering using t-SNE analysis, as indi-
cated by DNA methylation analysis, demonstrated that 
both tumors were plotted close to astrocytoma, IDH-
mutant (Fig. 2B). Methylation classifier (11b4) indicated 
subclass astrocytoma in YMG25P (score 0.63), and sub-
class high-grade astrocytoma in YMG25R (score 0.65, 
Fig. 2B, Additional file 2: Table S4). On the other hand, 
the newest version 12.8 matched YMG25P as diffuse 
glioma, IDH mutant and 1p/19q co-deleted in YMG25P 
(score 0.91), but did not match YMG25R to any classifi-
cation (Additional file  2: Table  S5). Since chromosome 
1p/19q co-deletion, one of the essential criteria of “oli-
godendroglioma, IDH-mutant and 1p/19q-codeleted”, 

was absent in both tumors, the results of the Classifier 
version 12.8 were discordant with the molecular diag-
nosis. Collectively, the integrated diagnosis of YMG25P 
and YMG25R was astrocytoma, IDH-mutant, CNS 
WHO grade 3. MGMT promoter was methylated in both 
tumors (MGMT-STP27, Additional file 1: Fig. S2C). The 
reason for the discordance between the results of version 
11b4 and 12.8 is unknown and has not been provided on 
the DKFZ website.

Notably, amplifications of CDK4 and MDM2 and gain 
of PDGFRA, together with chromosome 4p gain were 
identified as newly acquired CNAs in YMG25R, as com-
pared to the initial tumor YMG25P (Fig. 2A, Additional 
file  1: Fig. S2A). To assess differences of signaling path-
way activation, we performed immunohistochemistry 
and western blot for phospho-PDGFRA, -AKT, -mTOR, 
-MEK, and -ERK, comparing YMG25P and YMG25R in 
tissue and cells derived. We found that the expression 
levels of these phospho-proteins were higher in YMG25R 
compared to YMG25P (Fig. 3A-B, Additional file 1: Fig. 
S3A-B). We also found that CDK4, MDM2, and phos-
pho-Rb were upregulated in YMG25R as compared to 
YMG25P (Fig. 3A, Additional file 1: Fig. 3A).

We established patient-derived cultures from YMG25P 
and YMG25R, and tested response to targeted agents. 
Interestingly, we found a significantly increased sensitiv-
ity to PDGFR inhibitors (Tyrphostin A9 and AC710) in 
YMG25R cells compared with YMG25P cells (Fig.  3C). 
No difference was observed in response to treatment 
with PI3K inhibitor (LY294002) and AKT inhibitor 
(GDC-0068, Additional file  1: Fig. S3C). We also found 
that CDK4/6 inhibitors (Abemaciclib and Palbociclib) 
significantly decreased cell viability in YMG25R cells as 
compared with YMG25P cells (Fig.  3D). Previous clini-
cal and preclinical studies have demonstrated that AML 
cells with IDH2 mutation were highly sensitive to mutant 
IDH2 specific inhibitors [13, 43, 48]. To examine the 
potential impact of mutant IDH2 specific inhibitor on 
our IDH2 mutant glioma cells, we performed cell viabil-
ity assay and western blots. However, we did not find 
decreased cell viability or histone change in IDH2 inhibi-
tor (AG-221)-treated YMG25R cells (Additional file  1: 
Fig. S3D–F).

To assess the potential of xenograft formation, we 
attempted to establish orthotopic patient-derived xen-
ograft models. YMG25P and YMG25R cells (1 ×  105 
cells) were stereotactically injected into SCID-Beige 
mouse brains. Of note, we observed reproducible xeno-
graft formation in YMG25R-implanted mice, but not in 
YMG25P-implanted mice (Fig. 4A, B). Hematoxylin and 
eosin staining of YMG25R xenografts showed prolifera-
tive tumor cells with nuclear atypia (Fig. 4A). Immuno-
histochemical analysis demonstrated expression of p53 
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Fig. 2 DNA methylation array-based tumor characteristics. A Copy number profiling of YMG25P (upper) and YMG25R (lower) tumor. B 
Unsupervised clustering using t-SNE analysis for initial tumor (YMG25P) and recurrent tumor (YMG25R). Brain tumor classifier was determined 
by version 11b4
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Fig. 3 Protein expression and drug sensitivity for associated protein inhibitors. A Immunohistochemistry of indicated proteins for initial tumor 
(YMG25P, left) and recurrent tumor (YMG25R, right). Bars, 50 µm. B Bar graphs indicating % positive stained cells for indicated proteins. C, D 
Relative cell viability following PDGFR inhibitor (C) and CDK4/6 inhibitor (D) treatment at day3. DMSO, control. *P < 0.05. Data are represented 
as the mean ± SEM
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and Ki-67 labeling index was 20% (Additional file 1: Fig. 
S4A). We found the IDH2R172K and TP53R248W heterozy-
gous SNVs in the xenografts, retained from the patient 
tumors (Fig.  4C). Methylation classifier analysis (11b4) 
indicated classification matched to diffuse glioma, IDH 
mutant (calibrated score 0.91); subclass high grade astro-
cytoma (score 0.68, Fig. 4D, Additional file 2: Table S4), 
mirroring the parent tumor specimen. Consistent with 
YMG25R parent tumor cells, gain of PDGFRA and 
amplification of CDK4 and MDM2 were observed, while 
CDKN2A HD was identified in the xenografts, qualify-
ing for astrocytoma, IDH-mutant, CNS WHO grade 4 
according to the WHO CNS5 criteria (Fig. 4E, Additional 
file  1: Fig. S4B). In addition, similar to YMG25R par-
ent tumor (Fig.  3A-B), YMG25R xenograft cells highly 
expressed phospho-PDGFRA, -AKT, and -ERK as well 
as CDK4 and MDM2, and phospho-Rb, as compared to 
sham control (Fig. 4F, Additional file 1: Fig. S4C–D).

To verify if IDH1/2-mutant astrocytomas with 
CDKN2A, PDGFRA, CDK4, or MDM2 CNA promotes 
poor prognosis, we used the GLASS and MSK diffuse 
glioma datasets (total 1,448 cases) [6, 19]. In these data-
sets, we found only one case of IDH2-mutant and 1p/19q 
non-codel tumor, but CNA was not analyzed in this case. 
In IDH1-mutant astrocytoma cases with available clini-
cal and CNA data (total 161 cases), we found that tumors 
harboring either CDKN2A deletion, PDGFRA amplifica-
tion, CDK4 amplification, or MDM2 amplification con-
ferred poor prognosis in these cohorts (Additional file 1: 
Fig. S5A-B).

Discussion
In this report, we demonstrate the first novel IDH2-
mutant patient-derived xenograft model established from 
a progressed recurrent astrocytoma,  IDH2R172K mutant, 
CNS WHO grade 3. Although the recurrent tumor was 
clinically aggressive and lethal, acquired pathogenic 
SNV was not annotated. Notably, we found that xeno-
grafts only formed from the recurrent tumor harbor-
ing the gain of PDGFRA and amplification of CDK4 and 
MDM2, which were not identified in the initial tumor. 
We also found highly expressed phospho-PDGFRA and 
phospho-Rb in the recurrent tumor. Importantly, we con-
firmed that PDGFRA, CDK4, and MDM2 CNAs as well 

as IDH2R172K and TP53R248W SNVs were recapitulated 
in the xenograft model. On the other hand, hemizygous 
deletion of CDKN2A/B observed in both initial and 
recurrent parent tumors was changed to HD in the xeno-
graft model. These findings suggest that, similar to IDH1-
mutant astrocytoma, co-existing CNAs that activate 
retinoblastoma (RB) and PDGFR signaling pathway may 
critically drive tumor progression and xenograft forma-
tion in IDH2-mutant astrocytoma.

In the GLASS and MSK diffuse glioma datasets, we 
found only one IDH2-mutant astrocytic tumor in the 
entire cohort [6, 19]. In addition, all 4 IDH2-mutant and 
1p/19q non-codel tumors were histologically diagnosed 
as WHO grade 2 and did not show putative driver SNV, 
except TP53 and ATRX mutations in the TCGA LGG 
cohort [9]. On the other hand, the present case harbored 
IDH2R172K and TP53R248W heterozygous mutation and the 
DNA methylation array indicated methylation class fam-
ily glioma, IDH mutant, subclass astrocytoma in primary 
tumor and high-grade astrocytoma in recurrent tumor. 
Thus, this case is particularly unique and useful for better 
understanding molecular mechanisms of tumor progres-
sion in IDH2-mutant astrocytoma.

In IDH-mutant astrocytoma, total CNA level was asso-
ciated with poor prognosis [3, 26]. One of the most criti-
cal CNAs that drive tumor progression is CDKN2A/B 
loss. In normal cells, cell cycle regulation is critical for 
homeostasis. CDKN2A encodes p14ARF and p16INK4a, 
while CDKN2B encodes p15INK4b tumor suppres-
sor proteins. In unstressed conditions, p16INK4a and 
p15INK4b bind to CDK4/CDK6, while p14ARF nega-
tively regulates MDM2, which blocks p53 accumulation. 
These tumor suppressor proteins block cell cycle tran-
sition from G1 phase to S phase and induce cell cycle 
arrest [15]. Conversely, CDKN2A/B deletion inactivates 
p16INK4a, p14ARF, and p15INK4b, deregulates cell 
cycle and increases cell proliferation [36]. CDKN2A/B 
HD has been demonstrated to be strongly associated 
with poor prognosis in IDH-mutant astrocytomas [37], 
and the WHO CNS5 defines IDH-mutant astrocytomas 
with CDKN2A/B HD as CNS WHO grade 4, regard-
less of histological findings [8, 15, 22]. In addition to 
CDKN2A HD, recent studies indicated that CDKN2A 
hemizygous deletion also confers worse prognosis in 

Fig. 4 IDH2-mutant astrocytoma xenograft model. A Hematoxylin and eosin staining of non-xenograft formed mouse brain (YMG25P, upper) 
and xenograft formed mouse brain (YMG25R, lower). Inset, high magnification. B Kaplan–Meier curve estimates of mice implanted with xenograft 
non-forming YMG25P (blue) and forming YMG25R (red). C Sanger sequencing indicating IDH2 (c.515G > A, R172K) and TP53 (c.742C > T, R248W) 
mutation in YMG25R xenograft. D Unsupervised clustering using t-SNE analysis for YMG25R xenograft. Brain tumor classifier was determined 
by v11b4. E Copy number profiling of YMG25R xenograft. F Immunohistochemistry for indicated proteins in YMG25R xenograft (upper) and sham 
mouse brain (lower). Bars, 50 μm

(See figure on next page.)
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Fig. 4 (See legend on previous page.)



Page 10 of 13Tateishi et al. Acta Neuropathologica Communications          (2023) 11:186 

IDH-mutant astrocytoma [18, 21]. In the present case, 
both initial (YMG25P) and recurrent (YMG25R) tumors 
were diagnosed as WHO grade 3, because of the lack of 
histopathological grade 4 features (i.e., necrosis and/
or microvascular proliferation) and CDKN2A/B HD. 
Notably, we found CDKN2A/B HD in the xenograft 
model (YMG25R-PDX), which was only derived from 
the recurrent tumor. This implies that most malignant 
subclonal population with CDKN2A/B HD may have 
selectively generated the xenografts. However, verify-
ing this hypothesis will require an assay system that, 
unlike MLPA, enables distinguishing subclonal HD 
from hemizygous deletion. Besides, we found CDK4 and 
MDM2 amplifications with upregulated phospho-Rb in 
the recurrent tumor and its xenografts, suggesting the 
multiple deregulated cell cycle mechanisms to support 
tumor progression and facilitate xenograft formation in 
the present case.

Although the overall prognostic significance is still 
controversial [37], a large-scale study demonstrated that 
in addition to CDKN2A/B deletion, CDK4 amplifica-
tion, which also deregulates Rb pathway, was associated 
with poor prognosis in IDH-mutant astrocytoma [3, 27]. 
Another study demonstrated that combination of CDK4 
amplification and/or CDKN2A deletion, and chromo-
some 14 loss conferred poor prognosis in astrocytoma, 
IDH-mutant [10, 11]. Moreover, co-amplification of 
CDK4 and MDM2, which are located at the breakpoint-
enriched region of chromosome 12q14-15, have been 
previously correlated with worse clinical prognosis in 
GBM [49]. In the present case, co-copy number ampli-
fication of CDK4 and MDM2 may have cooperatively 
upregulated cell cycle and promoted tumor progression. 
In other words, analogous to CDKN2A/B HD, CDK4 and 
MDM2 co-amplification might accelerate tumor progres-
sion and may induce a malignant phenotype. Of note, we 
found that CDK4/6 inhibitor selectively suppressed cell 
viability of phospho-Rb-upregulated, recurrent cells, fur-
ther supporting the critical role of cell cycle deregulation 
in progression in IDH2-mutant astrocytoma.

We also found PDGFRA CNA in the recurrent tumor 
as well as the xenograft model and upregulated protein 
expressions in the PI3K/AKT/mTOR pathway and RAS/
RAF/MEK/ERK pathway in the recurrent tumor. It has 
been demonstrated that PDGFRA amplification is cor-
related with IDH1 mutation and associated with poorer 
prognosis in IDH1-mutant astrocytomas, CNS WHO 
grade 4, as compared to those without PDGFRA amplifi-
cation [32]. Yang et al. stratified IDH-mutant lower-grade 
astrocytomas by the presence of CDKN2A HD, CDK4 
amplification, and PDGFRA amplification. These copy 
number alterations were found in a mutually exclusive 
manner [47], unlike the present case. They found that 

tumors with PDGFRA amplification (high risk group) had 
poorer prognosis than those with CDKN2A homozygous 
deletion or CDK4 amplification (intermediate group) and 
copy number non-altered group (low risk group) [47]. 
PDFGRA  is a member of the receptor tyrosine kinase 
family and is involved in stimulating the PI3K/AKT/
mTOR pathway and RAS/RAF/MEK/ERK pathway [7]. 
PDGFRA plays a role in normal gliogenesis of the central 
nervous system and PDGFRA high-level amplification 
and gain has been associated with high grade malignancy 
in gliomas [1, 34]. In an experimental model, PDGFA 
enhanced the growth of  IDH1R132H mutant immortal 
Cdkn2a, Atrx, and Pten deficient astrocytes and PDGFA 
cooperated with  IDH1R132H and loss of Cdkn2a, Atrx, and 
Pten to promote glioma formation in vivo [31]. Another 
study using the RCAS/TVA system demonstrated that 
glioma-genesis in the context of mutant IDH1 with shp53 
and/or Cdkn2a loss, was only facilitated when combined 
with PDGFa [2]. Importantly, the present data demon-
strated that PDGFR inhibitor potently suppressed cell 
viability in recurrent tumor cells with PDGFRA gain, 
whereas there was no difference after PI3K inhibitor 
treatment. These clinical and preclinical findings support 
the role of PDGFRA gene alterations and downstream 
multiple signaling pathways, including PI3K/AKT/mTOR 
pathway and RAS/RAF/MEK/ERK pathway, in promot-
ing progression of not only IDH1-mutant, but also IDH2-
mutant astrocytoma.

Although a recent clinical trial reported that an inhibi-
tor targeting mutant IDH1 and IDH2 induced durable 
therapeutic efficacy in lowgrade glioma [24], the impact 
of directly targeting mutant IDH for high-grade glioma is 
under clinical investigation. In accord with our previous 
study that IDH1 inhibitor was not sufficient to induce 
anti-tumor effects in IDH1-mutant high-grade gliomas 
[40], we did not find decreased cell viability nor histone 
methylation status changes after mutation specific IDH2 
inhibitor treatment of recurrent cells. However, as the 
drug exposure was short-term, further study is needed 
to address if prolonged use of mutant specific IDH2 
inhibitor can induce anti-tumor effects in IDH2 mutant 
high-grade astrocytoma. Impact of IDH2 inhibitors 
on earlier stages of tumorigenesis also requires future 
investigations.

Altogether, this study demonstrated the pivotal 
biological role of gene alterations that activate RB 
pathway and PDGFR pathway in the progression of 
IDH2-mutant astrocytoma. This molecular mecha-
nism in disease progression seems analogous to IDH1-
mutant astrocytoma. We also established the first 
IDH2-mutant astrocytoma xenograft model derived 
from progressed disease. Together with the clinical 
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characteristics and xenograft model, we found that 
CNAs involving RB pathway and PDGFRA promote 
tumor progression in astrocytoma, IDH2-mutant.
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