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[2]. Approximately 80% of meningiomas are WHO grade 
1 and can be managed with surgery or stereotactic radio-
surgery (SRS) with low recurrence risk, while about 20% 
are atypical or anaplastic subtypes (WHO grade 2 and 3, 
respectively) with associated increased recurrence and 
malignant potential [3–5].

While the WHO grading provides a framework to 
manage and prognosticate meningioma behavior, some 
meningiomas may not behave according to their WHO 
grade [6]. Molecular and genetic analysis of meningiomas 
through next generation sequencing (NGS) and DNA 
methylation profiling are increasingly used to refine our 
understanding of meningioma recurrence risk [7–13]. 
Recent studies using RNA sequencing and DNA methyla-
tion profiling have shown that meningiomas can be cate-
gorized according to their methylation or gene expression 

Introduction
Meningiomas are the most common primary brain 
tumors comprising one third of all central nervous sys-
tem tumors [1]. The World Health Organization (WHO) 
groups meningiomas into three grades based on their 
histopathological and molecular characteristics. Distin-
guishing between grades of meningiomas has important 
implications for treatment, management, and prognosis 
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Abstract
Gene fusion events have been linked to oncogenesis in many cancers. However, gene fusions in meningioma 
are understudied compared to somatic mutations, chromosomal gains/losses, and epigenetic changes. Fusions 
involving B-raf proto-oncogene, serine/threonine kinase (BRAF) are subtypes of oncogenic BRAF genetic 
abnormalities that have been reported in certain cases of brain tumors, such as pilocytic astrocytomas. However, 
BRAF fusions have not been recognized in meningioma. We present the case of an adult female presenting with 
episodic partial seizures characterized by déjà vu, confusion, and cognitive changes. Brain imaging revealed a 
cavernous sinus and sphenoid wing mass and she underwent resection. Histopathology revealed a World Health 
Organization (WHO) grade 1 meningioma. Genetic profiling with next generation sequencing and microarray 
analysis revealed an in-frame BRAF::PTPRN2 fusion affecting the BRAF kinase domain as well as chromothripsis of 
chromosome 7q resulting in multiple segmental gains and losses including amplifications of cyclin dependent 
kinase 6 (CDK6), tyrosine protein-kinase Met (MET), and smoothened (SMO). Elevated pERK staining in tumor cells 
provided evidence of activated mitogen-activated protein kinase (MAPK) signaling. This report raises the possibility 
that gene fusion events may be involved in meningioma pathogenesis and warrant further investigation.
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patterns [12, 14, 15]. NGS has led to the identification of 
novel driver gene mutations in meningioma in addition 
to NF2, including SMO, PI3KCA, TRAF7, KLF4, AKT1, 
POLR2A, and SMARCE1 [7, 16–20]. Discovery of driver 
mutations can offer additional routes of personalized 
therapy for surgically challenging or recurrent meningio-
mas, as in the Alliance A071401 Clinical Trial [21–23]. 
Identification of genetic markers in meningioma such as 
TERT and CDKN2A provides insight into prognosis and 
potential recurrence [24, 25]. Molecular sequencing has 
also revealed potential therapeutic targets in meningioma 
including SMO, AKT/PI3K, and BAP-1 [26]. Incorporat-
ing molecular and genetic insights with histopathological 
analysis is advancing characterization and treatment of 
meningioma; however, limited studies have investigated 
the role of gene fusions in meningioma.

Here, we report the case of an adult female presenting 
with episodic partial seizures who was found to have a 
WHO grade 1 left cavernous sinus/sphenoid wing menin-
gioma. Genetic profiling of her resected tumor with NGS 
revealed no pathologic mutations. Gene fusion panel 
identified a 7q34 B-raf proto-oncogene, serine/threo-
nine kinase (BRAF) fusion with a 7q36.3 protein tyrosine 
phosphatase receptor type N2 (PTPRN2). Copy number 
profiling revealed chromothripsis of chromosome 7q 
resulting in multiple segmental gains and losses includ-
ing amplifications of 7q21.2–7q22.1 containing cyclin 
dependent kinase 6 (CDK6), 7q31.1–7q31.31 contain-
ing tyrosine protein-kinase Met (MET), 7q31.33 - q32.1 
containing smoothened (SMO), as well as amplifications 
of both 7q33, 7q36.1 and 7q36.3. Additional immunos-
taining revealed pERK positivity in tumor cells, indicat-
ing increased mitogen-activated protein kinase (MAPK) 
pathway activation. Methylation profiling matched to 
a Merlin-intact meningioma, consistent with the copy 

number profile of this tumor. To our knowledge, this is 
the first BRAF fusion reported in meningioma. Future 
investigations into the significance of BRAF fusions in 
meningioma may help select good candidates for tar-
geted anti-BRAF therapy.

Case presentation
The patient was a healthy 30-year-old right-handed 
female with no significant past medical history who pre-
sented with one month of multiple acute episodes of déjà 
vu, phantosmia (odorant perceived in the absence of 
stimulus), and Broca’s aphasia followed by sensations of 
panic and dizziness. She occasionally had difficulty find-
ing words for a short period after the episodes. She had 
some mild decreased left facial sensation. The patient 
was referred to the epilepsy team for work up of her par-
tial seizures. Electroencephalogram (EEG) did not show 
epileptiform activity. Brain magnetic resonance imag-
ing (MRI) revealed an avidly enhancing 5.9 × 4.8 cm left 
cavernous sinus and sphenoid wing mass with cerebral 
edema, significant compression of the left temporal lobe 
and left frontal lobe, 3  mm midline shift (Fig.  1a), and 
invasion into the left cavernous sinus, left anterior cli-
noid, and the left superior orbital fissure. Edema of the 
left hippocampus and temporal gyri was present on brain 
MRI. The patient was started on 500 mg of Levetiracetam 
twice a day for management of the partial seizures.

Given the size and location of the mass as well as the 
patient’s young age, the patient underwent a left cra-
nio-orbital craniotomy with planned subtotal resection 
(Fig. 1b),  with intentional residual left inside the cavern-
ous sinus to preserve cranial nerve function. The proce-
dure was completed without intraoperative complication.

Histopathology of the tumor sample showed an epithe-
lioid neoplasm composed of oval to round, bland nuclei 

Fig. 1  A) Pre-operative MRI showing a large middle cranial fossa mass with surrounding edema, significant compression of the left temporal lobe and 
effacement of the lateral ventricle. B) Post-operative MRI showing residual meningioma in the cavernous sinus following planned subtotal resection to 
preserve neurological function
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with occasional nuclear pseudoinclusions arranged in 
whorls and fascicles (Fig.  2a). Hypercellularity, micro-
cystic features, and focal clear cell change were present. 
The sample was absent of necrosis, sheeting, prominent 
macro-nucleoli, and small cell change. There were no 
chordoid, papillary, or rhabdoid features present. Immu-
nohistochemistry (IHC) stains for somatostain receptor 
2a (SSTR2a) and progesterone receptor (PR) were posi-
tive in the tumor cells (Fig. 2b and e). Additionally, pERK 
staining of the sample showed strong positivity in a sub-
set of the tumor cells, indicating increased MAPK activa-
tion (Fig. 2c). The DNA methylation profile was analyzed 
using the Illumina EPIC 850k platform, and matched 
with meningioma (confidence score 1.0). Post-hoc analy-
sis revealed the tumor was in the Merlin-intact meth-
ylation group [12]. The sample was negative for TERT 
promoter mutation based on targeted sequencing. Stan-
dard workup of meningioma at our institution involves 
in-depth molecular analysis for recurrent tumors, WHO 
grades 2 or 3, and select WHO grade 1 tumors at the 
treating physician’s discretion. Due to the patient’s young 
age and very large size at presentation, molecular analysis 
was performed on her tumor to inform risk profiling and 
future treatments if necessary. The tumor sample was 
analyzed with PGDx Solid Tumor NGS panel, Fusion-
Plex Solid Tumor NGS panel, and Oncoscan Solid Tumor 
Microarray. Interestingly, an in-frame fusion transcript 
BRAF::PTPRN2 was detected along with chromothrip-
sis of chromosome 7q, resulting in multiple segmental 
gains and losses, including amplifications of 7q21.2q22.1 
(CDK6), 7q31.1q31.31 (MET), and 7q31.33q31.1 (SMO) 
(demonstrated based on DNA methylation profile in 
Fig.  3a). This BRAF::PTPRN2 fusion is an in-frame 
fusion between BRAF Exon 16 on chromosome 7q34 and 
PTPRN2 Exon 14 on chromosome 7q36.3, affecting the 
BRAF kinase domain (Fig.  4a). Oncoscan also detected 
upregulation of the fused regions 7q34 (5 times copy 
number state) and 7q36.3 (8 times copy number state). 
The combined histologic, immunohistochemical, and 
molecular features supported the preoperative diagnosis 
of WHO grade 1 meningioma.

Postoperatively, the patient was transferred to the neu-
rosurgery intensive care unit for recovery. The patient 
had mild diplopia, decreased sensation to pressure in 
the left V3 dermatome, and mild ptosis on the left, but 
was otherwise neurologically intact and doing well. The 
patient was discharged on postoperative day 2 and con-
tinued prophylactic anticoagulation therapy as well 
as continued Levetiracetam. At eight-week follow-up 
in clinic, the patient continued to do well with no fur-
ther seizures, resolution of diplopia and improved facial 
sensation.

Discussion and conclusions
The BRAF gene, located at chromosome 7q34, encodes 
the B-Raf proto-oncogene serine/threonine kinase, 
which regulates cell growth, division, and differentiation 
[27, 28]. Activating BRAF alterations can lead to a con-
stitutively active B-Raf protein, resulting in neoplastic 
growth. The most common BRAF alteration is a V600E 
mutation, where the substitution of valine with glutamic 
acid at position 600 causes hyperactivation of the pro-
tein [29, 30]. Previous studies have reported different 
BRAF mutations in colorectal, lung, thyroid cancers, and 
melanoma [28, 31–33]. BRAF mutations in meningioma, 
though rare, have been reported in the literature with the 
majority being BRAF V600E point mutations in rhabdoid 
meningioma [34, 35].

Targeted therapies have been developed to inhibit 
constitutively activated BRAF proteins. BRAF inhibi-
tors (BRAFi), such as vemurafenib and dabrafenib, 
have shown significant efficacy in targeted treatment of 
patients with BRAF positive cancers such as melanoma 
[36, 37]. BRAFi therapy may also have potential effi-
cacy for treating BRAF-activated mutant primary brain 
tumors, such as gliomas and astrocytomas, based on ini-
tial data [38, 39]. However, resistance to BRAFi therapy 
remains a significant challenge in the treatment of BRAF-
activated primary brain tumors [39–41].

BRAF gene fusions are a less common subtype of 
BRAF genetic alteration that have been reported primar-
ily in brain tumors. Several studies have reported on the 
BRAF::KIAA1549 fusion in pilocytic astrocytomas as well 
as diffuse leptomeningeal glioneuronal tumors (DLGNT) 
[42–44]. The resultant protein, containing the N-terminal 
region of KIAA1549 and the kinase domain of BRAF, 
leads to activation of the MAPK signaling pathway and 
contributes to oncogenesis [45].

Given the availability of clinical inhibitors, BRAF alter-
ations have been investigated as a potential treatment 
target in multiple cancers. However, to the best of our 
knowledge, the fusion of BRAF with PTPRN2 in a WHO 
grade 1 meningioma has not been previously reported. 
PTPRN2, also found on chromosome 7, encodes the 
protein Islet Antigen-2β (IA-2β) which belongs to the 
protein tyrosine phosphatase (PTP) family and plays an 
important role in insulin secretion [46]. IA-2β may play a 
role in glucose intolerance in insulin-dependent diabetes 
[47]. However, the full activity of IA-2β has not yet been 
elucidated and its tyrosine phosphatase activity has not 
been experimentally validated. PTPRN2 is upregulated 
in breast cancer and has been shown to increase tumor 
growth and metastatic potential in mouse models [48]. 
Additionally, epigenetic modification PTPRN2 has been 
suggested to play a role in the oncogenesis of hepatocel-
lular carcinoma [49], and it is hypomethylated in some 
glioblastomas, glioblastoma stem cells and primary 
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Fig. 2  A) H&E stain of resected tumor showing oval to round bland nuclei with occasional nuclear pseudoinclusions arranged in whorls and fascicles. B) 
Immunohistochemical staining showing positive expression of somatostatin receptor 2a. C) pERK stain showing positive staining in a large subset of our 
patient’s tumor cells. D) Negative control pERK stain showing negative staining in a comparative WHO grade 1 meningioma. E) Immunohistochemical 
staining showing positive expression of progesterone receptor (PR). All photomicrographs taken at 200x magnification
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xenografts [50]; however, it has never been reported to 
be altered in meningioma. In our patient, upregulation 
of the sites of BRAF::PTPRN2 fusion at 7q34 and 7q36.3, 
along with positive pERK staining in tumor cells, raise 
the possibility that this novel fusion may contribute to 
oncogenesis by increased MAPK activation, but further 
experimental validation would be necessary to define the 
impact of the fusion.

Chromothripsis of chromosome 7q was also identified 
in our patient, resulting in amplifications of CDK6, MET, 
and SMO. Chromothripsis is a single, large event that 
involves complex chromosomal rearrangements, includ-
ing deletions, duplications, inversions, and transloca-
tions resulting in reorganization of genes [51, 52]. While 
the frequency of chromothripsis in meningiomas is not 
well-established, cases have been reported [16, 53]. Some 
studies have suggested that cancers with complex chro-
mosomal rearrangements, such as chromothripsis, may 
exhibit more aggressive behavior, progression to higher 
grade, increased recurrence rates, or altered response 
to treatment [51, 54, 55]. However, further research is 
needed to better understand these associations.

The identification of the BRAF::PTPRN2 fusion in 
meningiomas is novel, and highlights the need for further 
interrogation of gene fusions in meningioma tumorigen-
esis and progression. While the clinical and biological 
implications of the BRAF::PTPRN2 fusion are not fully 
known, further investigation could offer insight into the 
mechanisms of meningioma development and recur-
rence after surgical treatment. Further mechanistic and 
clinical research of this novel fusion is needed to deter-
mine its potential oncogenesis and whether patients with 
such fusions would be good candidates for anti-BRAF 
therapy.

In conclusion, we report a novel BRAF::PTPRN2 fusion 
with associated chromothripsis of chromosome 7q in a 
case of a WHO grade 1 meningioma. These findings con-
tribute to a growing literature of the genomic profiling 
in meningiomas. Further studies are needed to detail the 
clinical and pathological significance of BRAF fusions as 
well as to explore the potential of targeted therapies for 
meningioma.

Fig. 3  A) Copy number profile from DNA methylation sequencing reveals chromothripsis of chromosome 7. B) tSNE plot showing the current case 
clustering with meningioma
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