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Abstract 

Background Motor neurons (MNs), which are primarily affected in amyotrophic lateral sclerosis (ALS), are a special-
ized type of neurons that are long and non-dividing. Given their unique structure, these cells heavily rely on transport 
of organelles along their axons and the process of autophagy to maintain their cellular homeostasis. It has been 
shown that disruption of the autophagy pathway is sufficient to cause progressive neurodegeneration and defects 
in autophagy have been associated with various subtypes of ALS, including those caused by hexanucleotide repeat 
expansions in the C9orf72 gene. A more comprehensive understanding of the dysfunctional cellular mechanisms will 
help rationalize the design of potent and selective therapies for C9orf72-ALS.

Methods In this study, we used induced pluripotent stem cell (iPSC)-derived MNs from C9orf72-ALS patients 
and isogenic control lines to identify the underlying mechanisms causing dysregulations of the autophagy-lysosome 
pathway. Additionally, to ascertain the potential impact of C9orf72 loss-of-function on autophagic defects, we charac-
terized the observed phenotypes in a C9orf72 knockout iPSC line (C9-KO).

Results Despite the evident presence of dysfunctions in several aspects of the autophagy-lysosome pathway, such 
as disrupted lysosomal homeostasis, abnormal lysosome morphology, inhibition of autophagic flux, and accumu-
lation of p62 in C9orf72-ALS MNs, we were surprised to find that C9orf72 loss-of-function had minimal influence 
on these phenotypes. Instead, we primarily observed impairment in endosome maturation as a result of C9orf72 
loss-of-function. Additionally, our study shed light on the pathological mechanisms underlying C9orf72-ALS, as we 
detected an increased TBK1 phosphorylation at S172 in MNs derived from C9orf72 ALS patients.

Conclusions Our data provides further insight into the involvement of defects in the autophagy-lysosome pathway 
in C9orf72-ALS and strongly indicate that those defects are mainly due to the toxic gain-of-function mechanisms 
underlying C9orf72-ALS.
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Introduction
Amyotrophic lateral sclerosis (ALS) is a devastating neu-
rodegenerative disorder characterized by the progressive 
and rapid loss of both upper and lower motor neurons 
(MNs) in the motor cortex, brainstem, and spinal cord. 
It is primarily an adult-onset, incurable disease, ulti-
mately leading to muscle weakness, atrophy, and a lim-
ited survival period of 2–5 years after symptom onset, 
mainly due to respiratory failure and the lack of effective 
treatment options [1]. While the majority of ALS cases 
(~ 90%) have no affected family members and are thus 
classified as sporadic ALS (sALS), the other 10% of famil-
ial ALS (fALS) patients have a hereditary component 
within affected families. Despite being clinically indis-
tinguishable, both sALS and fALS types exhibit similar 
neuropathological features, including loss of neurons, 
cytoplasmic mislocalization of TAR DNA binding pro-
tein 43 (TDP-43) and the formation of insoluble protein 
aggregates containing TDP-43 [1–4]. In 2011, a GGG 
GCC  (G4C2) hexanucleotide repeat expansion (HRE) in 
the 5’ non-coding sequence of the C9orf72 gene was iden-
tified as the most common genetic cause of both fALS 
and sALS [5, 6]. Notably, this HRE in C9orf72 is also one 
of the primary genetic cause of frontotemporal demen-
tia (FTD), the second most common form of early-onset 
dementia in individuals under 65 years, after Alzheimer’s 
disease (AD) [5, 6]. Interestingly, ALS and FTD are the 
extremes of the same disease spectrum having several 
shared phenotypes such as the deposition of TDP-43 
aggregates which suggests that an effective treatment for 
ALS might potentially also be beneficial for patients suf-
fering from FTD [7–10].

Substantial progress has been made in understand-
ing the underlying pathogenic mechanisms of C9-ALS/
FTD. Three distinct non-mutually exclusive mechanisms 
have been proposed: a loss-of-function mechanism char-
acterized by reduced C9orf72 protein levels, known as 
C9orf72 haploinsufficiency [11–13]; toxic gain-of-func-
tion mechanisms where the HRE leads to the accumula-
tion of sense and antisense RNAs within the nucleus as 
foci [6, 11, 14, 15] or undergo repeat-associated non-ATG 
(RAN) translation to produce toxic dipeptide-repeat 
proteins (DPRs) [11, 16–18]. The research done in the 
last decade rather points towards toxic gain-of-function 
mechanisms as drivers of the disease, which are poten-
tially aggravated by C9orf72 loss-of-function [19–22].

SQSTM1/p62, an autophagy receptor protein, is com-
monly found in TDP-43 aggregates, indicating a dys-
function in proteostasis pathways such as the autophagy 
[23, 24]. Interestingly, several ALS-FTD-related genes, 
including ubiquilin 2 (UBQLN2), valosin containing pro-
tein (VCP), optineurin (OPTN) and TANK binding kinase 
1 (TBK1), are implicated in the autophagy-lysosome 

pathway [8, 25]. In addition, disruptions in lysoso-
mal homeostasis have been associated with multiple 
neurodegenerative diseases, including FTD and ALS 
[26–30]. Additionally, autophagic abnormalities have 
been reported in multiple ALS subtypes [31], and abla-
tion of several core autophagy genes has been shown to 
induce progressive neuronal degeneration, implying the 
indispensability of the pathway for neuronal health [32, 
33]. Interestingly, both C9orf72 haploinsufficiency and 
C9orf72 HRE toxic gain-of-function mechanisms are 
thought to disrupt the autophagy pathway, contributing 
to disease progression in C9-ALS/FTD [19].

To gain deeper insights into the impact of autophagic 
defects on MN degeneration in the context of C9-ALS/
FTD, we used patient-derived hiPSC-derivedMNs and 
CRISPR/Cas9-mediated genome editing technology to 
create a C9orf72 knockout hiPSC line, allowing us to 
assess the functional consequences of reduced C9orf72 
protein levels on the autophagy-lysosome pathway. Our 
findings collectively reveal that C9orf72 HRE toxic gain-
of-function leads to defects in multiple aspects of the 
autophagy-lysosome pathway, accompanied by increased 
TBK1 phosphorylation. However, our data also provides 
additional evidence that questions the direct involvement 
of C9orf72 haploinsufficiency in autophagic defects, as 
knockout of C9orf72 primarily resulted in deficiencies in 
endosome maturation that did not significantly impact 
autophagy in hiPSC-derived MNs.

Results
C9orf72 MNs display impaired lysosomal transport
Axonal transport defects play a crucial role in the dis-
ease mechanism of several neurodegenerative diseases, 
including ALS/FTD. Several genes associated with ALS, 
such as the C9orf72 HRE, have been implicated in this 
process, and these defects have been observed in various 
disease models [34–39]. Autophagy, another crucial cell 
homeostasis pathway frequently stated in ALS pathology, 
also heavily relies on axonal transport for both the deliv-
ery of degradative lysosomes to more distal parts of the 
axon and for the retrograde transport of autophagic vesi-
cles [19, 31, 40]. Therefore, we used two pairs of C9orf72 
patient iPSC-derived MNs and their isogenic controls 
previously described in [41] and evaluated the movement 
of lysosomes and autolysosomes through live imaging of 
C9orf72 and isogenic control iPSC-derived MNs stained 
with the acidotropic dye Lysotracker. We followed a well-
established protocol to differentiate patient and isogenic 
control iPSCs into MNs [34–36, 42, 43] (Additional file 1: 
Fig. S1a). Immunostaining with specific markers for 
MNs, including ISL1, ChAT, and SMI-32, confirmed that 
both the patient C9orf72 lines and their isogenic con-
trol lines generated MNs with a differentiation efficiency 
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ranging from 81 to 90% (Additional file  1: Fig. S1b–f). 
Kymograph-based analysis was used to analyze the trans-
port of (auto)lysosomes labeled with Lysotracker Red 
along the neurites of MNs (Fig. 1a). Our findings revealed 
a significant increase in the proportion of stationary 
(auto)lysosomes (Fig. 1b) and a notable decrease in both 
the proportion of moving (auto)lysosomes (Fig.  1c) and 
the proportion of motile (auto)lysosomes that paused 
or halted during axonal transport (Fig.  1d) in mutant 
C9orf72 MNs compared to controls. Collectively, these 
observations align with previous studies demonstrat-
ing lysosomal transport defects in C9orf72 iPSC-derived 
MNs [37, 38].

C9orf72 MNs have fewer and enlarged lysosomes
The proper functioning of neuronal lysosomes relies 
heavily on both anterograde axonal transport for deliv-
ering endosomes and lysosomes to distal axonal regions 
and retrograde axonal transport crucial for the matura-
tion of autophagic vesicles and (endo)lysosomes [44, 45]. 
Interestingly, flow cytometry analysis using Lysotracker 
Red revealed a general decrease of (auto)lysosomal ves-
icles in C9orf72 MNs (Additional file  1: Fig. S2a, b). To 
determine whether the observed axonal transport defects 
of acidic vesicles affect neuronal lysosome homeostasis, 
we also utilized SiR-Lysosome, a probe that stains mature 
lysosomes that contain active cathepsin D (CTSD) 
(Fig. 2a). Our results showed a decrease in the number of 
SiR-Lysosome-positive puncta in C9orf72 MNs (Fig.  2b, 
c). Furthermore, we employed DQ-Red BSA dye, which 
allows to assess both endolysosomal activity and lysoso-
mal cargo delivery as this self-quenched dye is taken up 
via endocytosis and targeted to the lysosomes, where it 
is enzymatically cleaved and becomes fluorescent [46–
48]. Consistent with the reduction in Lysotracker Red 

fluorescence, fluorescence intensities upon enzymatic 
cleavage of DQ-Red BSA were reduced by ~ 25% rela-
tive to isogenic control cells (Additional file  1: Fig. S2c, 
d). Moreover, analysis of iPSC-derived MN lysates using 
Western blot (Additional file  1: Fig. S2e, f ) and a fluo-
rescence-based CTSD activity assay (Additional file  1: 
Fig. S2g) revealed a reduction in mature CTSD protein 
levels and relative levels of CTSD activity respectively 
in C9orf72 lysates compared to controls. Of note, since 
these assays are only semi-quantitative, we are unable to 
discern between a reduced enzymatic activity of CTSD or 
an overall reduction in mature CTSD protein levels as a 
cause for reduced CTSD activity levels although our data 
points towards the latter explanation.

Next, we investigated endolysosomal morphology in 
iPSC-derived C9orf72 and control MNs using trans-
mission electron microscopy (TEM) and discovered 
an increased proportion of enlarged lysosomes, as well 
as multivesicular bodies (MVB) and autophagic ER 
whorls, indicative of both autophagy and ER stress [49, 
50] (Fig. 2d–f). These findings highlight that the C9orf72 
HRE leads to alterations in lysosomal homeostasis.

C9orf72 MNs exhibit TDP‑43 pathology and reduced cell 
viability upon aging
During the last decade, multiple groups successfully 
detected RNA foci and some DPRs using patient iPSC-
derived neuronal models [37, 38, 41, 51–55]. However, 
the two major hallmarks of ALS—cytoplasmic mislocali-
zation of TDP-43 and MN degeneration were not consist-
ently observed, casting some doubt on the relevance of 
these model systems [56]. In our initial assessment of the 
subcellular distribution of TDP-43 in 40-day-old patient 
iPSC-derived MNs and isogenic controls, we did not 
observe any mislocalization of the protein (Additional 
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Fig. 1 C9orf72 MNs display impairment of lysosomal trafficking along neurites. a Example kymograph from 40-day-old C9orf72 and isogenic 
control MNs loaded with Lysotracker Red. Tilted and straight vertical lines represent moving and stationary lysosomes respectively. Scale bar, 30 µM. 
b Quantification of the number of stationary lysosomes in proportion to neurite length (in pixels, px). c Quantification of the number of motile 
lysosomes in proportion to neurite length (in pixels, px). d Quantification of the percentage of motile lysosomes that pause or stop during their 
transport. Data represent mean ± SEM; data are pooled from three independent differentiations, and each dot represents a neurite (n = 180 neurites 
for all conditions). Statistical significance was assessed by one-way ANOVA and Tukey’s multiple comparison tests (b–d); *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001
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file  1: Fig. S3a, b). Additionally, when assessing the dis-
ease-associated S409/410 phosphorylation of TDP-43 
[57], we only detected a slight increase in its phospho-
rylation levels (Additional file 1: Fig. S3a, c). However, as 
the MN cultures aged, we observed a subtle cytoplasmic 
mislocalization of TDP-43 (Fig. 3a, b). Interestingly, this 
age-dependent decrease in nuclear/cytoplasmic ratio 
of TDP-43 coincided with a significant increase in the 

abnormal S409/410 phosphorylation of TDP-43 (Fig. 3a, 
c).

Next, to investigate MN degeneration/survival, we 
employed two different approaches. First, we used the 
CellTiter-Glo® assay to measure metabolically active 
cells based on the quantification of cellular ATP levels 
(Fig. 3d, top panel). Second, we performed immunostain-
ing for cleaved caspase-3 in MN cultures to estimate the 
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Fig. 2 C9orf72 MNs have reduced lysosome numbers and altered lysosome morphology. a Fluorescent microscopy images of 40-day-old C9orf72 
and isogenic control MNs labeled with SiR-Lysosome (SiR-Lyso), a dye that selectively labels Cathepsin D-positive lysosomes. Scale bar = 50 µm. b, 
c Quantification of the SiR-Lysosome puncta number (b) and fluorescent intensity per cell (c) from the images shown in (a); each dot represents 
one confocal image that was analyzed (n = 35 for all conditions). d Representative TEM images from 40-day old MNs used to quantify the size 
of lysosomes/late endosome (indicated by black arrowheads). Multivesicular bodies (MVB), Mitochondria (M), Golgi complex (GC), the endoplasmic 
reticulum (ER) and the ER whorls (ERW) are marked on the images. e, f Relative frequency distribution (e) and quantification (f) of the lysosomal 
circumference measured from TEM images as shown in (d); each dot represents a lysosome that was measured (C9-1, n = 197; C9-1iso, n = 472; C9-2, 
n = 257; C9-2iso, n = 445). Data represent mean ± SEM; data are pooled from three independent differentiations. Statistical significance was assessed 
by one-way ANOVA and Tukey’s multiple comparison tests (b, c) or Kruskal–Wallis test and Dunn’s multiple comparison tests (f); *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001



Page 5 of 22Beckers et al. Acta Neuropathologica Communications          (2023) 11:151  

percentage of apoptotic cells (Fig.  3d, bottom panel). 
Interestingly, in 40-day-old MNs we only detected a 
minor decrease in metabolically active cells (Additional 
file 1: Fig. S3d) and minimal evidence of apoptosis (Addi-
tional file 1: Fig. S3e). In contrast, the TDP-43 pathology 
that became noticeable upon aging in 60-day old C9orf72 
MNs coincided with a reduction in cell viability (Fig. 3e) 
as well as with increased levels of cleaved caspase-3 

(Fig.  3f ). Taken together, our findings demonstrate that 
TDP-43 becomes mislocalized to the cytoplasm and MN 
cell viability declines as the cells age.

C9orf72 MNs show protein aggregates, insoluble 
full‑length, and C‑terminal fragments of TDP‑43
Confocal microscopic observations did not reveal appar-
ent aggregates that stained positive for pTDP-43 or 
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Fig. 3 Upon aging, C9orf72 MNs display mislocalization of TDP-43, increased phosphorylation of TDP-43 and a reduced cell viability. a 
Immunocytochemistry (ICC) of aged, 60-day-old C9orf72 and isogenic control MNs stained for TDP-43 and phosphorylated TDP-43 (pTDP-43). 
The presence of a typical neuronal morphology (which includes a soma and elongated neurites was used to select the MNs for analysis. Scale 
bar = 10 µm. b, c Quantifications of the nuclear vs cytoplasmic (N/C) TDP-43 ratio (b) and the corrected total cell fluorescence (CTCF) of pTDP-43 
(c) from the ICC images shown in (a). Each dot represents a cell that was measured (C9-1, n = 124; C9-1iso, n = 145; C9-2, n = 133; C9-2iso, n = 132). 
d Schematic overview of the two methods used to measure cell viability. e Quantification of the relative cell viability in 60-day-old C9orf72 MNs 
relative to their isogenic controls as measured by the CellTiter-Glo® assay. For each independent differentiation, at least 6 technical replicates 
of 5000 cells were plated in 96-well plates the average intensity of each C9orf72 patient line was normalized to that of their respective isogenic 
control; each dot represents one biological replicate. f Quantification of the percentage of apoptotic cells staining positive for cleaved caspase-3 
in the TUJ1-positive 60-day-old MN population. Each dot represents one biological replicate in which between 126 and 239 TUJ1-positive cells 
were scored for cleaved caspase-3 staining. Data represent mean ± SEM; data are pooled from four-five independent differentiations. Statistical 
significance was assessed by one-way ANOVA and Tukey’s multiple comparison test (e, f) or Kruskal–Wallis test and Dunn’s multiple comparison test 
(b, c); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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TDP-43, which are major indicators of ALS pathology. 
However, a previously established protein fractiona-
tion protocol (Fig.  4a) revealed increased levels of both 
insoluble full-length and C-terminal TDP-43 fragments 
(CTFs) measuring 35 and 25kDa resulting from proteo-
lytic cleavage in mutant TDP-43 iPSC-derived MNs [34, 
58]. While these insoluble TDP-43 proteins may repre-
sent early stages (seeds) of TDP-43 aggregates, the pres-
ence of insoluble TDP-43 CTFs is also considered to be a 
hallmark of ALS [59]. Similar to the observations in TDP-
43 iPSC-derived MNs [34], C9orf72 iPSC-derived MNs 
exhibited increased levels of insoluble TDP-43 and TDP-
43 CTFs (Fig. 4b, e–g) despite the absence of larger TDP-
43 aggregates. Notably, total levels of TDP-43, as well as 
soluble TDP-43 levels, remained unchanged in C9orf72 
MNs, indicating no major problems with protein stability 
or autoregulation (Fig. 4c, d).

Another approach to assess premature protein aggre-
gation involves examining the levels of SQSTM1/p62. 
p62 plays a multifaceted role in cellular proteostasis 
as it is involved in different signal transduction path-
ways [60, 61]. However, p62 is best known for its role as 
an autophagy receptor for ubiquitinated proteins, and 
increased p62 levels often indicate reduced aggregate 
clearance by the autophagy system [60, 62]. Interestingly, 
elevated levels of p62 are frequently observed in post-
mortem tissue from ALS patients [63–65], and increased 
p62 levels have been found in iPSC-derived cortical neu-
rons and MNs of C9orf72 patients [51, 52]. By measur-
ing basal endogenous p62 using immunofluorescence 
(Fig. 4h), we could replicate the increase in both total p62 
signal and p62 puncta numbers per MN (Fig. 4i, j). Nota-
bly, elevated p62 levels were also detected in 40-day-old 
C9orf72 iPSC-derived MN lysates using Western blot, 
thus preceding TDP-43 mislocalization and cell death 
(Fig.  5a, b). Furthermore, analysis of post-mortem spi-
nal cord and central cortex tissue from C9orf72 carriers 
also showed increased levels of p62 (Fig. 4k, l; Additional 

file  1: Fig. S4d, g). More detailed investigation of these 
C9orf72 post-mortem brain and spinal cord tissue lysates 
uncovered additional indications of dysregulation in the 
autophagy-lysosome pathway, as evidenced by alterations 
in the levels of LAMP1 and the ratio of LC3-II/LC3-I 
(Additional file  1: Fig. S4a–f). These findings demon-
strate that by using C9orf72 iPSC-derived MNs, we were 
able to replicate early signs of TDP-43 pathology and 
protein aggregation observed in post-mortem material 
from C9orf72 patients.

Autophagy is impaired in C9orf72 MNs
To further support our findings, we treated mature 
C9orf72 and control iPSC-derived MNs with either 
Bafilomycin A1 (Baf A1), a potent inhibitor of the vacu-
olar-type H + -ATPase, Torin 1, a strong mTOR inhibitor 
or a combination of both for a period of 24 h (Fig.  5a). 
Baf A1 was used to block the fusion of lysosomes with 
autophagosomes, leading to autophagy inhibition, while 
Torin 1 induced autophagy by inhibiting mTOR. When 
we initially quantified the LC3-II/LC3-I ratio in DMSO-
treated cells we observed an increase in the ratio of LC3-
II/LC3-I in patient MNs (Fig.  5c). Interestingly, in line 
with the reduced lysosome count, untreated C9orf72 
iPSC-derived MNs exhibited a significant decrease in 
basal levels of LAMP1 (Fig.  5d). In addition, to assess 
autophagic flux, we blocked the autophagy pathway 
using high doses of Baf A1 and measured the resulting 
increase in LC3-II and p62 levels, providing an estimate 
of the amount of LC3-II or p62 that would have been 
degraded in the absence of drugs (Fig.  5e). By dividing 
the levels of p62 or LC3-II in Baf A1-treated cells by the 
respective levels in untreated cells, we observed a sig-
nificant reduction of autophagic flux (Fig. 5f, g). Despite 
this autophagic flux dysregulation, immunostaining of 
autophagy markers in C9orf72 and control iPSC-derived 
MNs treated with Torin 1 normalized to untreated cells 
revealed no significant defects in autophagy initiation 

Fig. 4 Presence of the C9orf72 HRE results in increased levels of insoluble full-length and C-terminal fragments of TDP-43 and an increase in p62 
levels. a Schematic representation of the worklow used to separate soluble and insoluble fractions from iPSC-derived MNs. b Representative 
Western blot showing TDP-43 in total (unfractionated), soluble and insoluble fractions. c–g Quantifications of (b), measuring the levels of full-length 
TDP-43 in the total fraction (c), full-length TDP-43 in the soluble fraction (d), full-length TDP-43 in the insoluble fraction (e), the c-terminal fragment 
of 35 kDa (CTF-35) in the insoluble fraction (f) and the c-terminal fragment of 25 kDa (CTF-25) in the insoluble fraction (g). Each dot represents one 
biological replicate. h Immunocytochemistry (ICC) images of 40-day-old C9orf72 and isogenic control iPSC-derived MNs stained for the aggregate 
marker p62 and a neuronal marker TUJ1. Scale bar = 10 µm. i, j Quantifications of the corrected total cell fluorescence (CTCF) (i) and p62 puncta 
number per cell (j) from the ICC images shown in (h); each dot represents a confocal image containing one single MN that was analyzed (n = 60 
for all conditions). k Representative Western blot detecting p62 in post-mortem human central cortex tissue lysates from C9orf72 ALS patients 
(C9orf72), ALS patients tested negative for the C9orf72 HRE (Non-C9 ALS) and healthy controls (Control). l, Quantification of (k), measuring p62 
protein levels; each dot represents one tissue sample (C9orf72, n = 9; Non-C9 ALS, n = 8; Control, n = 7). GAPDH was used to normalize data. 
Data represent mean ± SEM; data are pooled from three independent differentiations. Statistical significance was assessed by one-way ANOVA 
and Tukey’s multiple comparison test (i, j) or Kruskal–Wallis test and Dunn’s multiple comparison test (c–g, l); *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001

(See figure on next page.)
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(Fig. 5h-j). Additionally, we assessed MN survival during 
autophagic stress by treating mature C9orf72 and control 
iPSC-derived MNs with Baf A1 (Fig. 5j. Both genotypes 
displayed a dose- and time-dependent reduction in MN 
survival (Fig.  5j–m). In nearly all treatment conditions, 
the viability of C9orf72 MNs was significantly reduced 

compared to the respective treated isogenic control cells 
(Fig.  5k–m). To validate these findings, we used Lys05, 
a novel and potent autophagy pathway inhibitor, and 
obtained similar results (Additional file 1: Fig. S8a) [66]. 
In conclusion, these observations provide compelling 
evidence of diminished autophagic flux and increased 
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vulnerability to lysosomal stress in C9orf72 iPSC-derived 
MNs.

C9orf72 protein levels are reduced in C9orf72 ALS patients, 
but this haploinsufficiency is not replicated in iPSC‑derived 
MNs
At present, the impact of C9orf72 haploinsufficiency in 
C9orf72 ALS/FTD is still a subject of debate, as multi-
ple studies using different model systems have reported 
conflicting results [13, 19, 67]. We used a very specific 
C9orf72 antibody [68] to assess C9orf72 protein levels 
in human post-mortem and iPSC-derived MN samples 
from C9orf72 patients and isogenic controls using West-
ern blot (Additional file  1: Fig. S5a–c). While a marked 
decrease in C9orf72 protein levels was observed in post-
mortem central cortex and spinal cord samples (Addi-
tional file  1: Fig. S5d, e), we did not observe C9orf72 
haploinsufficiency in iPSC-derived MN samples derived 
from two C9orf72 patients when compared to their 
respective isogenic controls (Additional file  1: Fig. S5f ). 
These findings once again highlight the challenges associ-
ated with investigating and modeling the role of C9orf72 
haploinsufficiency in C9orf72 ALS pathology.

Knocking out C9orf72 does not affect axonal transport 
or TDP‑43 pathology but has a minor impact on cell 
survival
Although we could not detect reduced levels of C9orf72 
protein, we wanted to test whether part of the phenotype 
we observed was related to C9orf72 loss-of-function. 
Therefore, we conducted a more in-depth investigation 
into the effect of C9orf72 loss-of-function on our phe-
notypes by utilizing a homozygous C9orf72 knockout 
iPSC line (C9-KO) (Additional file 1: Fig. S6a-e). Follow-
ing differentiation of the C9-KO and control iPSC lines 
into MNs, we assessed the movement of Lysotracker 

Red-labeled vesicles and found no abnormalities in their 
motility (Fig.  6a–c). Additionally, we observed no sig-
nificant differences in the subcellular localization or 
pathological phosphorylation of TDP-43 in 40-day-old 
(Additional file 1: Fig. S7a–c) or aged 60-day-old C9-KO 
iPSC-derived MNs (Fig.  6d–f). However, knocking 
out C9orf72 did have an impact on cellular health as it 
reduced the cell viability of aged 60-day-old iPSC-derived 
MNs (Fig.  6g, h), but not of 40-day-old neurons (Addi-
tional file 1: Fig. S7d, e).

Lysosome number, but not morphology, is altered in C9‑KO 
MNs
The role of C9orf72 haploinsufficiency in C9orf72 ALS/
FTD and its broader physiological function in neurons 
are still subjects of debate. While C9orf72 clearly has 
a role in endolysosomal homeostasis, the exact mecha-
nism and target organelles of C9orf72 differ between 
studies [12, 19, 69–74]. While most evidence suggests 
an interaction between C9orf72 and early endosomes, 
as well as a role in vesicle trafficking, lysosomes appear 
to be the most affected organelle population in both 
C9orf72 patient and C9orf72 knockout MNs [12, 19]. 
To further explore the possibility that loss of C9orf72 
alone can induce lysosomal defects, we examined lyso-
somal number, morphology, and localization in C9-KO 
iPSC-derived MNs. We observed no differences in lyso-
somal localization (results not shown), but there was a 
modest yet significant reduction in mature, CTSD-pos-
itive lysosomes as measured by the SiR-Lysosome dye 
(Fig.  7a–c). However, examination of endolysosomal 
morphology using TEM revealed no signs of lysosomal 
enlargement in C9-KO iPSC-derived MNs (Fig.  7d–f ). 
As the lysosomal defects observed in C9-KO MNs are 
less severe than those observed in C9orf72 patient MNs, 
our data suggests that while C9orf72 haploinsufficiency 

(See figure on next page.)
Fig. 5 The autophagic pathway is impaired in C9orf72 MNs. a, Representative Western blot of iPSC-derived MNs treated with either DMSO, 
the autophagy inhibitor Bafilomycin A1 (Baf A1), the autophagy inducer Torin 1 or a combination of the latter, immunostained for LC3-I and LC3-II, 
p62, LAMP1 and β-actin, used to measure levels of autophagosomes, aggregates, lysosomes or for protein normalization respectively. b,c,d, 
Quantifications of the Western blot shown in (a), measuring the relative levels of p62 (b), the ratio of LC3-II/LC3-I (c) and LAMP1 (d); each dot 
represents one biological replicate. e Schematic representation of the autophagic flux assay. By inhibiting the autophagy pathway with high 
doses of Baf A1 and measuring the concomitant increase in LC3-II or p62, we get an estimate of the amount of LC3-II or p62 that would have 
been degraded when no drugs were added (= autophagic flux). f, g Quantifications of the Western blot shown in (a), measuring the levels of p62 
(f) or LC3-II (g) after treatment with Baf A1 and dividing those with the levels of either p62 or LC3-II without treatment; each dot represents one 
biological replicate. h,i, Quantifications of the Western blot shown in (a), measuring the relative levels op p62 (h), LC3-II (i) after treatment with Torin 
1 and dividing those with the levels of either p62 or LC3-II without treatment; each dot represents one biological replicate. j Experimental outline 
of the Baf A1 vulnerability assay in iPSC-derived MNs. Following normal MN differentiation, DMSO, 1 µM or 3 µM of Baf A1 are added to the medium 
at day 37, 38 or 39. At day 40, the CellTiter-Glo® assay was used to asses cell survival. k, l, m, Quantification of the survival rate after 24 h (k), 48 h 
(l) or 72 h (m) treatment with Baf A1. The survival rate of iPSC-derived MNs is calculated by normalizing the CellTiter-Glo® signal of Baf A1-treated 
cells to DMSO control-treated wells; each dot represents the average of one biological replicate. Data represent mean ± SEM; data are pooled 
from four-five (k–m) or eight-nine (b–d, f–i) independent differentiations. Statistical significance was assessed by one-way ANOVA and Tukey’s 
multiple comparison test (b–d, f–i, k–m); *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns = not significant
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impacts lysosomal health, it is unlikely to be the pri-
mary factor contributing to neuronal lysosomal dys-
functions in C9orf72 ALS/FTD. Additionally, C9orf72 
toxic GOF mechanisms may also play a role in disrupt-
ing lysosomal homeostasis.

C9‑KO MNs don’t show inhibition of autophagic flux 
but C9‑KO causes an impairment of endosomal maturation
As we observed a small reduction in mature lysosomes 
upon C9orf72 knockout, we further investigated basal 
autophagy and potential alterations in autophagic flux. 
Mature control and C9-KO iPSC-derived MNs were 

a

b c

e f

d

g

LC3-I
LC3-II

p62

β-actin

C9-1 C9-1iso C9-2isoC9-2

Torin 1
+
_ _

____ __ _ + + + + + + +
+ + + + + + + +

_
_ __ __ _

LAMP1

l mk 24h Baf A1-treatment 72h Baf A1-treatment48h Baf A1-treatment

h i

j

Fig. 5 (See legend on previous page.)



Page 10 of 22Beckers et al. Acta Neuropathologica Communications          (2023) 11:151 

treated with DMSO vehicle, Baf A1, Torin 1 or a com-
bination of both autophagy-modulating drugs (Fig. 8a). 
Treatments with Torin 1 revealed no apparent defects 
in autophagy induction (results not shown). Analy-
sis of p62 levels (Fig.  8b), LC3-II/LC3-I ratio (Fig.  8c) 
and autophagic flux (Fig.  8d, e) showed no defects in 
untreated cells while we observed a significant decrease 
in LAMP1-levels in C9-KO cells (Fig.  8f ). Given the 

involvement of C9orf72 in the endolysosomal path-
way, we further validated the levels of Rab7 and EEA1, 
which serve as markers of late endosomes and early 
endosomes, respectively, in untreated cells (Fig. 8g, h). 
While Rab7 levels were also significantly downregu-
lated in C9-KO neurons, EEA1 levels were significantly 
upregulated. These results indicate impaired endoso-
mal maturation in MNs upon loss of C9orf72. Similar 
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Fig. 6 C9orf72 KO MNs do not show with defects in lysosomal trafficking or TDP-43 localisation but do present with a reduction in cell viability. 
A–c, Quantification of vesicle transport along neurites in control and C9 KO iPSC-derived MNs loaded with Lysotracker Red. Total number 
of tracks per 100 particles (a), total displacement per 100 particles (b) and average speed of particles (c) were analyzed. Each dot represents a well 
that was analyzed (CTRL, n = 57; C9 KO, n = 63). d Immunocytochemistry (ICC) of aged, 60-day-old control and C9 KO MNs stained for TDP-43 
and phosphorylated TDP-43 (pTDP-43). The presence of a typical neuronal morphology (which includes a soma and elongated neurites was used 
to select the MNs for analysis. Scale bar = 10 µm. e, f Quantifications of the nuclear vs cytoplasmic (N/C) TDP-43 ratio (e) and the corrected total cell 
fluorescence (CTCF) of pTDP-43 (f) from the ICC images shown in (d). Each dot represents a cell that was measured (CTRL, n = 153; C9 KO, n = 153). 
g Quantification of the relative cell viability in 60-day-old C9 KO MNs relative to its isogenic control line as measured by the CellTiter-Glo® assay. 
For each independent differentiation, at least 6 technical replicates of 5000 cells were plated in 96-well plates and the average intensity of the C9 KO 
line was normalized to that of its isogenic control line; each dot represents one biological replicate. h Quantification of the percentage of apoptotic 
cells staining positive for cleaved caspase-3 in the TUJ1-positive 60-day-old MN population. Each dot represents one biological replicate in which 
between 171 and 410 TUJ1-positive cells were scored for cleaved caspase-3 staining. Data represent mean ± SEM; data are pooled from five 
independent differentiations. Statistical significance was assessed by unpaired t-test (a–c, e, f, h) or one sample t-test (g); *p < 0.05, **p < 0.01
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to the experiments performed in C9orf72 patient iPSC-
derived MNs (Fig. 5k–n), we investigated MN survival 
under autophagic stress induced by Baf A1. Interest-
ingly, no differences in survival could be detected in 
any of the tested conditions upon depletion of C9orf72 
(Fig.  8i–k). Consistently, treatment with another 
autophagy inhibitor, Lys05, also failed to induce sur-
vival differences in C9-KO iPSC-derived MNs (Addi-
tional file  1: Fig. S8b), while the survival rates of 
isogenic controls cells were comparable between all 
experiments (Additional file 1: Fig. S8c, d).

TBK1 is abnormally phosphorylated in C9orf72 MNs
A recent study by Shao et  al. shed light on the inter-
play between C9orf72, TANK-binding kinase 1 (TBK1), 
and TDP-43, which are well-known ALS/FTD-asso-
ciated genes [75]. The study revealed that aggregation 
of poly(GA) leads to the sequestration of TBK1 into 
inclusions, resulting in its transautophosphorylation 
[76, 77]. In light of these findings, we used immunob-
lot analysis to determine if TBK1 was also abnormally 
(hyper)phosphorylated in our C9orf72 iPSC-derived 
MNs. Interestingly, while total TBK1 levels remained 
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Fig. 7 Knockout of C9orf72 seems to negatively affect lysosome number, but does not affect lysosome morphology. a Fluorescent microscopy 
images of 40-day-old C9 KO and isogenic control MNs labeled with SiR-Lysosome, a dye that selectively labels Cathepsin D-positive lysosomes. 
Scale bar = 50 µm. b, c Quantification of the SiR-Lysosome puncta number (b) and fluorescent intensity per cell (c) from the images shown in (a); 
each dot represents one confocal image that was analyzed (n = 60 for all conditions in (b) and n = 80 for all conditions in (c)). d Representative 
TEM images from 40-day old MNs used to quantify the size of lysosomes/late endosome (indicated by black arrowheads). Mitochondria (M), Golgi 
complex (GC), Nucleus (N) and the endoplasmic reticulum (ER) are marked on the images. e, f Relative frequency distribution (e) and quantification 
(f) of the lysosomal circumference measured from TEM images as shown in (d); each dot represents a lysosome that was measured (CTRL, n = 692; 
C9 KO, n = 765). Data represent mean ± SEM; data are pooled from three-four independent differentiations. Statistical significance was assessed 
by unpaired t-test (b, c) or Mann–Whitney U test (e); *p < 0.05, **p < 0.01



Page 12 of 22Beckers et al. Acta Neuropathologica Communications          (2023) 11:151 

unaltered in lysates of 40-day-old patient iPSC-derived 
MNs and isogenic controls, C9orf72 patient MNs 
exhibited an increased ratio of S172 phosphorylated 
TBK1 relative to total TBK1 (Fig.  9a–c). In summary, 
although we did not observe fully developed pathologi-
cal aggregates containing pTBK1 in 40-day-old iPSC-
derived MNs, the altered phosphorylation of TBK1 

suggests perturbed TBK1 signaling in C9orf72 patient 
MNs.

Discussion
In this study, we used C9orf72 patient-derived and 
C9orf72 knockout hiPSC-derived MNs to investigate 
the early functional consequences of C9orf72 HRE toxic 
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Fig. 8 Endosome maturation, but not autophagy is impaired in C9 KO MNs. a Representative Western blot of iPSC-derived MNs treated 
with either DMSO, the autophagy inhibitor Bafilomycin A1 (Baf A1), the autophagy inducer Torin 1 or a combination of the latter, immunostained 
for LC3-I and LC3-II, p62, LAMP1, EEA1, Rab7 and β-actin/GAPDH, used to measure levels of autophagosomes, aggregates, lysosomes, early 
endosomes, late endosomes or for protein normalization respectively. b, c Quantifications of the Western blot shown in (a), measuring the relative 
levels of p62 (b) and the ratio of LC3-II/LC3-I (c); each dot represents one biological replicate. d, e Quantifications of the Western blot shown in (a), 
measuring the levels of p62 (d) or LC3-II (e) after treatment with Baf A1 and dividing those with the levels of either p62 or LC3-II without treatment; 
each dot represents one biological replicate. f–h Quantifications of the Western blot shown in (a), measuring the basal relative levels of LAMP1 
(f), Rab7 (g) and EEA1 (h); each dot represents one biological replicate. i–k Quantification of the survival rate after 24 h (i), 48 h (j) or 72 h (k) 
treatment with Baf A1. The survival rate of iPSC-derived MNs is calculated by normalizing the CellTiter-Glo® signal of Baf A1-treated cells to DMSO 
control-treated wells; each dot represents the average of one biological replicate. Data represent mean ± SEM; data are pooled from six (b–h) 
or four (i–k) independent differentiations. Statistical significance was assessed by unpaired t-test (b–h) or one-way ANOVA and Tukey’s multiple 
comparison test (i–k); *p < 0.05, **p < 0.01
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gain-of-function mechanisms and C9orf72 haploinsuf-
ficiency on neuronal health. We especially focused on 
exploring the impact on the autophagy and endolyso-
somal system, given the numerous genes associated 
with NDs have been linked to the endosome-lysosome 
network in recent years [8, 26, 28, 29]. Notable exam-
ples include ALS/FTD-linked variants in genes like 
SQSTM1/p62, TBK1, C9orf72, OPTN, FIG4, ALS2, 
CHMP2B, FIG4 as well as FTD-causing mutations in 
TMEM106 or GRN [8, 26, 28, 29]. Additionally, recent 
studies have discovered that the induction of endoso-
mal abnormalities, either chemically or genetically, is 

sufficient to induce TDP-43 pathology [75]. This find-
ing is not surprising, considering that TDP-43 turno-
ver is partly dependent on endocytosis and autophagy 
[78, 79]. Our results demonstrate that MNs carrying the 
C9orf72 HRE displayed defects in multiple aspects of 
the autophagy-lysosome pathway. These defects include 
dysregulated lysosomal transport and homeostasis, 
alterations in (endo)lysosomal morphology, decreased 
autophagic flux, and the accumulation of TDP-43 CTFs 
and p62 puncta. It is worth noting that these autophagy-
lysosome abnormalities coincided with cytoplasmic mis-
localization of TDP-43 and a decrease in neuronal cell 
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Fig. 9 Phosphorylation of TBK1 at S172 is increased in C9orf72 MNs. a, Representative Western blot of iPSC-derived MNs immunostained for pTBK 
(S172), TBK1 and β-actin. b, c Quantifications of the Western blot shown in (a), measuring the relative phosphorylation of TBK1 (b) and the total 
levels of TBK1 (c); each dot represents one biological replicate. d, Summary of the results found in this study: toxic GOF mechanisms in C9orf72-ALS 
cause impairment of (endo)lysosomal homeostasis, at least in part mediated by alteration of TBK1 signalling, while C9orf72 LOF mainly influences 
endosome maturation
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viability. Interestingly, while the aforementioned ALS-
related phenotypes became apparent upon aging of our 
hiPSC-derived MNs, lysosomal defects were already pre-
sent at earlier stages, suggesting their potential involve-
ment in disease onset or progression and emphasizing 
their clinical relevance.

During the early stages of our study, another research 
group working on C9orf72 reported impaired axonal 
transport of the lysosomes [38]. Given the huge variabil-
ity and lack of reproducibility among different research 
groups when working with hiPSCs, we were pleased 
to confirm the lysosomal axonal transport phenotype 
in our cellular models. To further validate our findings, 
we assessed ALS-related phenotypes in mature 40-day-
old and more aged 60-day-old MNs, and we were able 
to recapitulate the reported TDP-43 mislocalization 
observed by other research groups [58, 79–83]. Addi-
tionally, we also found an age-related increase in TDP-
43 phosphorylation and a decrease in cell viability of our 
iPSC-derived MNs. These results indicate that the pres-
ence or absence of certain ALS-related phenotypes dur-
ing hiPSCs-derived MN differentiation may stem from 
variations in the differentiation protocols and the relative 
“age” of the analyzed MN cultures. As lysosomal home-
ostasis heavily relies on axonal transport, we further 
investigated the functional consequences of this dysreg-
ulation in C9orf72 hiPSC-derived MNs. Using multiple 
independent methods, we observed a marked decrease 
in mature (CTSD-positive) lysosomes. In addition, we 
found an increase in enlarged lysosomes and lysosome-
related organelles. Although enlarged lysosomes mostly 
contain active cathepsins, they are known to have prob-
lems with acidification, display reduced motility and 
dynamics, and consequently fail to travel into the axon 
and carry out their cellular function effectively [84, 85].

At the functional level, the alterations in lysosomal 
biology were accompanied by the accumulation of p62 
puncta and insoluble fragments of TDP-43, both full-
length and C-terminal. Despite not being able to detect 
full-blown TDP-43 or p62 aggregates, recent evidence 
suggests that these inclusions, reported in post-mor-
tem samples, likely represent end-stage features of ALS 
and might not be essential to cause toxicity [34, 86]. 
Increased levels of p62 and insoluble TDP-43 in patient 
iPSC-derived MNs imply the possibility of a dysregulated 
autophagic system in these cells [60, 79]. While the ini-
tiation of autophagy was not impacted in C9orf72 MNs, 
we observed an increase in the LC3-II/LC3-I ratio and 
in basal levels of p62 while LAMP1 levels where reduced 
in untreated C9orf72 MNs. Interestingly, LAMP1 levels 
where found to be increased in post-mortem tissue from 
C9orf72 ALS patient. This discrepancy can be explained 
by the relatively small proportion of MNs in brain or 

spinal cord lysate compared to the pure MNs cultures 
in  vitro. Additionally, treatment of our cells with Baf 
A1 revealed decreased autophagic flux. Consistent with 
these findings, C9orf72 MNs displayed increased vulner-
ability to autophagy inhibition, further supporting the 
aforementioned autophagic defects. These results align 
with a previous study and provide additional evidence 
for impairment of the autophagy pathway as a pathogenic 
mechanism in C9orf72 ALS/FTD [12, 22, 51].

Despite observing reduced C9orf72 protein levels in 
post-mortem spinal cord and central cortex samples of 
C9orf72 ALS patients, we did not detect C9orf72 haplo-
insufficiency in C9orf72 patient iPSC-derived MNs. It is 
still unknown whether the lack of C9orf72 haploinsuf-
ficiency in our iPSC-derived MNs can be attributed to 
the iPSC-reprogramming method or to the MN differ-
entiation method or whether accurately models and thus 
challenges the hypothesis of haploinsufficiency in MNs, 
which remains controversial in the field. The reduced lev-
els in post-mortem tissues may originate from reduced 
expression levels in cell types other than MNs and from 
the loss of MNs as well. In fact, a recent large-scale iPSC-
derived MN differentiation study also reported signifi-
cant variability in C9orf72 expression levels, which could 
explain the lack of C9orf72 haploinsufficiency observed 
in our study [87]. In addition, a recent single nuclei pro-
filing study showed that C9orf72 mRNA levels vary a 
lot between the different cell populations present in the 
brain and spinal cord and that they were reduced mainly 
in microglia rather that in motor neurons [88]. As a 
consequence, our results rather point towards dysfunc-
tions of autophagy in a later stage of the pathway (i.e., 
autophagosome-lysosome fusion or autolysosome deg-
radation) caused by toxic HRE gain-of-function mecha-
nisms although the possibility remains that reduced 
C9orf72 levels might negatively regulate autophagy initi-
ation. In addition, C9orf72 haploinsufficiency might have 
a profound impact in other cell types such as microglia 
that show deficits in lysosomal transcriptional pathways 
and in that way directly influence motor neuron health 
[69, 88].

Overall, our findings demonstrate that defects in 
axonal trafficking, lysosomal homeostasis, and autophagy 
are already present in 40-day-old iPSC-derived MNs, 
preceding the onset of TDP-43 pathology and signs of 
neuronal degeneration that become apparent as the cells 
age. To contribute to understanding of C9orf72 haplo-
insufficiency, we assessed some of our phenotypes in 
C9orf72 patient neurons in C9-KO iPSC-derived MNs. 
Surprisingly, we found little to no effects of C9orf72 pro-
tein loss on lysosomal transport or morphology, TDP-43 
pathology or autophagy in neurons. However, this does 
not exclude a more dramatic impact of reduced C9orf72 
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levels in other cell types, such as microglia [89]. Never-
theless, we did observe small defects in neuronal survival 
and lysosome number upon C9orf72 knockout. Most 
research focusing on the physiological role of C9orf72 
suggest its involvement in endolysosomal homeostasis 
and trafficking [19]. Interestingly, our data indicate that 
endosomal maturation is clearly impaired upon loss of 
C9orf72, further corroborating the implication of the 
C9orf72 protein in endolysosomal homeostasis. There-
fore, while we cannot completely exclude the possibility 
of C9orf72 haploinsufficiency affecting autophagy, our 
results suggest that although C9orf72 clearly is an impor-
tant player in the endolysosomal pathway and possibly 
other vesicle trafficking pathways, C9orf72 haploinsuffi-
ciency is highly unlikely to be the primary driving force 
behind the autophagic defects observed in MNs from 
C9orf72 ALS/FTD patients. In fact, most evidence points 
towards a form of synergistic pathogenesis in C9-ALS/
FTD, primarily involving the toxic gain-of-function 
mechanisms of HRE, with C9orf72 haploinsufficiency 
making only a minor contribution.

Last but not least, we also observed an increased ratio 
of S172 phosphorylated TBK1 relative to total TBK1 in 
C9orf72 patient MNs. Although we did not observe path-
ological aggregates of TBK1 in our 40-day-old MN cul-
tures, hyperphosphorylation of TBK1 likely represents 
an early pathological event in the disease cascade. While 
this phosphorylation activates TBK1, its sequestration 
into cellular inclusions is believed to disrupt TBK1 activ-
ity and negatively impact endolysosomal maturation. 
As TBK1 is a crucial regulator of autophagic clearance 
of aggregates, its sequestration could initiate a viscous 
cycle that ultimately leads to the formation of full-blown 
aggregates (Fig.  9d) [77]. In fact, preliminary data from 
human MNs with reduced TBK1 activity also suggested 
a causal link between endolysosomal dysfunctions caused 
by TBK1 deficiency and TDP-43 pathology [46].

Materials and methods
Cell culture and motor neuron differentiation
The two human ALS patient-derived iPSC lines carry-
ing a C9orf72 HRE and their respective isogenic controls 
were previously described in [41], while the C9orf72 KO 
line was was generated using SYNTHEGO multi-guide 
sgRNA to delete a 130-base pair (bp) fragment in exon 
2 of the C9orf72 gene (sgRNA-1: TTG GGC TCC AAA 
GAC AGA AC; sgRNA-2: TAG CAG CTA CTT TTG CTT 
AC; sgRNA-3: CCG CCA TCT CCA GCT GTT GC). Con-
trol iPSCs were detached by incubation with Accutase for 
3–5 min at 37°C. Upon dissociation into single cells, the 
required number of cells (5 × 105 cells per reaction) were 
resuspended in Lonza P3 Nucleofector solution (20 µL/
reaction, P3 Primary Cell 4D-Nucleofector Kit S, Lonza). 

Cells in P3 Nucleofector solution were then mixed with 
5 µL of Ribonucleoproteins (RNPs) (7.5:1 sgRNA to 
Cas9 ratio, previously incubated 10’ at 37°C) and trans-
ferred into Nucleocuvette strip and electroporated using 
of the 4D-Nucleofector System with X unit (program 
"CA-137", Lonza). Nucleofected iPSCs were plated in a 
Matrigel-coated well plate with mTeSR1 and Y-27632 (10 
μM) (Tocris) and incubated overnight at 37°C, 5% CO2. 
Upon confluence, cells were dissociated and plated at low 
density for clonal selection (500 and 250 cells per plate 
surface area of 9.6 cm2). Multiple colonies were manually 
picked and screened for optimal bp deletion (130-bp) via 
PCR. To validate the gene editing, the positive colonies 
were Sanger sequenced. The biallelic bp deletion followed 
by nonhomologous end-joining event led to the forma-
tion of multiple STOP codons within the exon 2 of the 
C9orf72 gene. As a consequence, the translation of the 
C9orf72 protein was prematurely terminated, and no 
protein was detected via immunoblot analysis as shown 
in Fig S6e.

The iPSCs were cultured in Essential 8™ medium (E8 
flex medium) (Thermo Fisher Scientific) supplemented 
with 1% penicillin–streptomycin (Thermo Fisher Scien-
tific) and incubated at 37°C and 5%  CO2. Upon reach-
ing 80–90% confluence, iPSCs were passaged using 
0.5mM Promega™ EDTA (Thermo Fisher Scientific) 
diluted in Gibco™ Dulbecco’s Phosphate-Buffered Saline 
(DPBS—Thermo Fisher Scientific) and plated on a 6-well 
plate coated with Geltrex® LDEV-Free hESC-Qualified 
Reduced Growth Factor Basement Membrane Matrix 
(Geltrex—Thermo Fisher Scientific). Once a month, the 
MycoAlert™ Mycoplasma Detection Kit (Lonza, Catalog 
Number: LT07-318) was used to confirm the absence of 
mycoplasma contamination. The differentiation of iPSCs 
into MN was performed as previously described [36]. The 
Ethical Committee of UZ Leuven gave ethical approval 
for these experiments (S50354).

Immunocytochemistry
Cells were cultured on a coverslip before being fixed for 
20 min using 4% PFA and rinsed three times with DPBS. 
Blocking was performed at room temperature for 1h 
using 5% normal donkey serum (NDS, Sigma), and 0.1% 
Triton X-100 in DPBS. Primary antibodies were diluted 
in 2% NDS, and 0.1% Triton X-100 in DPBS and incu-
bated overnight at 4°C. A list of all antibodies used and 
their dilution can be found in Additional file 2: Table S1. 
After three washes with DPBS, the cells were incubated 
with the appropriate Alexa Fluor™ secondary antibod-
ies (1:2000 in DPBS, Life Technologies; Additional file 2: 
Table S1) for 2h at room temperature. Subsequently, the 
coverslips were washed twice, and cell nuclei were stained 
using the NucBlue Live ReadyProbes™ Reagent (Thermo 
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Fisher Scientific) for 20 min. Coverslips were again 
washed three times with DPBS before being mounted 
on microscope slides using ProLong™ Gold antifade rea-
gent (Invitrogen). Confocal images were acquired using a 
Leica SP8 DMI8 confocal microscope (20 × or 64 × objec-
tive) using excitation lines at 405, 488, 555 and 647 nm. 
The acquired images were processed using Fiji software.

Transmission electron microscopy (TEM)
Cells grown on glass bottom dishes (MatTek) were sub-
jected to a series of procedures. First, they were washed 
with PBS, then with 0.1 M sodium cacodylate buffer, fol-
lowed by overnight fixation using 2.5% glutaraldehyde 
in 0.1 M sodium-cacodylate buffer at 4 °C. Subsequently, 
the fixed cells were post-fixed in 1% osmium tetrox-
ide (2 h), washed with  dH2O, and subjected to gradual 
dehydration through an ethanol series (50–100%). Dur-
ing the 70% ethanol step, the samples were stained with 
uranyl acetate for 30 min at 4 °C. Following dehydration, 
cells were infiltrated with resin (Agar 100)/ethanol mix-
tures. The next day, cells were infiltrated and embedded 
with 100% epoxy resin in inverted BEEM® capsules for 
two days (60 °C). Ultrathin sections of 50 nm thick were 
cut following the separation of polymerized cells from 
the glass bottom dishes (using a freeze–thaw approach). 
These sections were subsequently post-stained with 3% 
uranyl acetate in water (10 min) and Reynold’s lead cit-
rate (2 min). Micrographs were taken in a JEOL JEM2100 
(JEOL, Japan) at 80 kV. Experiments were conducted in 
triplicate, and a minimum of 30 cells per condition were 
quantified. Ultrastructural identification and quantifi-
cation of lysosomes were done as described [90] using 
RADIUS (EMSIS GmbH) software.

Western blot analysis
iPSCs and iPSC-derived MNs were harvested using 
StemPro™ Accutase™ (Thermo Fisher Scientific). Follow-
ing gentle centrifugation at 0.3g for 3 min, the cell pellet 
was snap-frozen on dry ice or using liquid nitrogen and 
subsequently stored at -80°C or directly homogenized. 
For homogenization, the cell pellet was treated with 
cold RIPA buffer (Sigma) supplemented with a protease 
inhibitor cocktail (cOmplete™ EDTA-free, Sigma) and 
phosphatase inhibitors (PhosSTOP, Sigma). The protein 
concentration was determined using the Micro BCA™ 
Protein Assay Kit (Thermo Fisher Scientific). Thereafter, 
equal amounts of protein (10–50 µg) were mixed with 
Pierce™ Reducing sample buffer (Thermo Fisher Scien-
tific) and boiled for 10 min at 95°C before being loaded 
onto a precast 4–20% Mini-PROTEAN® TGXTM gel 
(Bio-Rad). After separation for 60–90 min at 100V, 
the proteins were transferred to a nitrocellulose mem-
brane (Trans-Blot® Turbo™ Mini 0.2 µm Nitrocellulose 

Transfer Pack) by means of a Trans-Blot® Turbo™ Trans-
fer System (Bio-Rad). Before immunodetection, total 
protein levels on the membrane were quantified using the 
No-Stain™ Protein Labeling Reagent (Invitrogen) accord-
ing to the manufacturer’s guidelines. The membranes 
were then blocked in 5% nonfat dry milk (Blotting-Grade 
Blocker, Bio-Rad) in Tris Buffered Saline solution with 
0.1% tween (TBS-T) for 1 h at room temperature before 
overnight incubation with primary antibodies. A list of 
primary antibodies and their dilutions can be found in 
Additional file  2: Table  S1. The following day, primary 
antibodies were removed, and the membranes were 
washed 3 times for 10 min with TBS-T before incubat-
ing with specific secondary antibodies conjugated with 
horseradish peroxidase (1/5000, Agilent Dako) for 1 h. 
Finally, protein detection was performed using enhanced 
chemiluminescence reagents (ECL substrate, Thermo 
Fisher Scientific) and the ImageQuant LAS 4000 bio-
molecular Imager (GE Healthcare). The ImageQuant TL 
software (version 7.0; GE Healthcare Life Sciences) was 
used to quantify band intensities and normalize them to 
No-Stain™ total protein or β-actin loading controls.

Soluble‑insoluble protein fractionation
Cellular fractionation to seperate the insoluble protein 
fraction was achieved by centrifuging 250–500 µg of 
lysates from iPSC-derived MNs at 4°C for 20 min at max-
imum speed (20,000g). The supernatant was collected as 
soluble fraction (that still contains soluble but dispersible 
proteins [91]) and the pellet was washed once with RIPA 
buffer supplemented with protease and phosphatase 
inhibitors before being centrifuged a second time using 
identical settings. The supernatant was carefully removed 
and 25–50 µL of 2 × Laemmli sample buffer (Bio-Rad) 
supplemented with 1% DTT (dithiothreitol, Promega) 
was added to the pellet. Finally, 10–20 µg of the total 
protein fraction, soluble protein fraction and the entire 
insoluble protein fraction were analyzed using Western 
blot.

Live cell imaging and axonal transport analysis
To measure the axonal transport of acidic organelles 
along microtubules, iPSC-derived MNs were allowed 
to mature until day 38 or 59 of the differentiation pro-
tocol. After washing the MNs with DPBS, the cells 
were incubated at room temperature for 30 min with 
LysoTracker™ RED DND-99 (200nM, Thermo Fisher 
Scientific) diluted in MN maturation medium. Subse-
quently, the media was replaced with Hibernate A Low 
Fluorescence medium (Brainbits) and image acquisition 
took place on the Operetta CLS™ High-Content Analy-
sis System (PerkinElmer) at LiMoNe (VIB-KU Leuven). 
A total of 200 images were captured at 1s intervals 
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using a 40× water immersion lens, and a 555 nm laser 
was used to excite the LysoTracker dye. Using Fiji, these 
200 images were combined into a stack/video and time/
distance kymographs were created for every individual 
axon. From these kymographs, the number of moving 
organelles was extracted as they can be discerned as 
tilted lines, whereas the stationary particles appear as 
vertical lines. Using these kymographs we could also 
detect pausing/stopping of organelles as this results in a 
short/long conversion of the tilted line to a vertical one. 
Next, using the trackmate plugin [92], the total amount 
of organelles were detected. In order to avoid uncon-
scious bias, the analysis was carried out blinded.

Lysotracker and DQ‑Red BSA intensity measurements 
using flow cytometry
iPSC-derived MNs at DIV40 were washed once with 
DPBS and then incubated with 200nM of LysoTracker 
for 1 h at 37°C. Following a wash with DPBS, the cells 
were collected by treatment with Accutase. After cen-
trifugation (5 min, 500g, 4°C) and removal of the super-
natant, the cells were resuspended in 500 µL of 1% BSA 
solution and filtered prior to measuring Lysotracker 
fluorescence using a BD FACSymphony A5 flow cytom-
eter recording a minimum of 50,000 positive events. 
Cells treated with bafilomycin A1 (100 nm) served as 
the control. Data analysis was performed using BD 
FACSDiva 8.0.1 software.

DQ-Red BSA was used as a substrate to evaluate the 
proteolytic activity of lysosomes. Briefly, iPSC-derived 
MNs at DIV40 were incubated with DQ-Red BSA (10µg/
mL, Thermo Fisher Scientific) at 37°C for 1h. Following 
the incubation, single cells were collected by treatment 
with Accutase, centrifuged (5 min, 500g, 4°C) and resus-
pended in PBS (containing 1% BSA), and fluorescence 
was measured using a BD FACSymphony A5 flow cytom-
eter, recording a minimum of 50,000 positive events were 
recorded. Cells treated with bafilomycin A1 (100 nm) 
were taken as a control. Data analysis was performed 
using BD FACSDiva 8.0.1 software.

Cathepsin D activity assay
The proteolytic activity of Cathepsin D in C9orf72 or 
isogenic control iPSC-derived motor neurons was ana-
lyzed using the fluorometric Cathepsin D Activity Assay 
Kit (abcam). Samples were lysed in the CD lysis buffer 
and 100–200 ng of total protein was loaded in duplicates 
and analyzed as specified in the suppliers’ guidelines. In 
parallel, total protein samples were also analyzed using 
Western blot in order to estimate total cathepsin D pro-
tein levels.

Cell viability assay
Cell viability of iPSC-derived MNs was assessed using 
the CellTiter-Glo® Luminescent Cell Viability Assay 
(Promega) according to the manufacturer’s guidelines. 
Briefly, MNs were grown in 96-well plates and at DIV40 
or DIV60, an equal amount of CellTiter-Glo® reagent was 
added to the medium. The mixture was then shaken for 
2 min to facilitate cell lysis followed by incubation of the 
plate for 10 min in the dark. Next, 100 µL of the reagent-
media mixture was transferred to a white 96-well plate, 
and luminescence was recorded using the SpectraMax® 
iD3 microplate reader (Molecular Devices). Medium 
without cells was used to determine and correct for back-
ground luminescence.

Survival assay of iPSC‑derived MNs with autophagic stress
Following differentiation to motor neurons, varying con-
centrations of Baf A1 (1–3 µM) or Lys05 (3–30 µM) were 
added to the growth media on Day 37, Day 38 or Day 39. 
On Day 40, a complete medium change was performed, 
replacing the autophagic stressor or DMSO with fresh 
medium. Subsequently, cell survival was measured using 
the CellTiter-Glo® Luminescent Cell Viability assay as 
described above. The cell survival rate was determined 
by dividing the average luminescence intensity of wells 
treated with Baf A1 or Lys05 by the average intensity of 
control wells treated with DMSO.

Autophagic flux assay
To measure autophagic flux, which represents the bal-
ance between autophagosome formation and degrada-
tion, we treated cells with either DMSO, 100nM Baf A1, 
1µM Torin 1 or a combination of the latter two for 24 h. 
Thereafter, cells were snap-frozen or directly lysed and 
subjected to Western blot. By dividing the band inten-
sities of either LC3-II or p62 in the Baf A1-treated cells 
with the intensities of the respective DMSO-treated cells, 
we estimated the autophagic flux occurring in the cells.

Human post‑mortem brain and spinal cord samples
In accordance with the applicable laws in Belgium and 
upon written informed consent (UZ Leuven), brain and 
spinal cord tissue was collected. Ethical approval for the 
study was given by the Ethical Committee of UZ Leuven 
(S65097, S59292, S60803, Leuven, Belgium). Brain sam-
ples of 17 ALS cases (nine C9orf72 and eight sporadic) 
and seven non-neurodegenerative controls and spinal 
cord samples of (16 ALS cases (eight C9orf72 and eight 
sporadic) and eight non-neurodegenerative controls were 
included in this study (Additional file  3: Table  S2). The 
diagnosis of ALS or FTD was based on clinical assess-
ment according to the consensus criteria for ALS [93–95] 
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and FTD [96, 97]. The post-mortem diagnosis of ALS and 
FTLD-TDP was confirmed through pathological evalua-
tion of pTDP-43 pathology in both brain and spinal cord. 
After the autopsy, the right hemisphere was dissected 
in coronal planes of approx. 2 cm and frozen at -80°C. 
50 mg of brain or spinal cord tissue was weighed and 
mechanically homogenized using a micropestle in 0.5 mL 
2% SDS in TBS with Nuclease (Pierce™ Universal Nucle-
ase, Thermo Fisher Scientific) and a cocktail of protease/
phosphatase inhibitors (Halt, Thermo Fisher Scientific). 
The samples were then sonicated, followed by centrifu-
gation at 14 000 g for 30 min. The resulting supernatant 
was used for further analysis, and protein concentra-
tions were determined using the BCA Protein Assay Kit 
(Thermo Fisher Scientific).

Quantification of TDP‑43 mislocalization
Using Fiji image analysis software, the nuclei of immu-
nofluorescent-stained iPSC-derived motor neurons were 
selected in the DAPI channel. This was used to place cor-
responding regions of interest (ROIs) in the other chan-
nels in an unbiased manner. Cytoplasmic ROIs were 
captured for the selected nuclei in the p-TDP43 or Tuj1 
channel. The intensity of TDP-43 in the nuclei and cyto-
plasm was measured as corrected total cell fluorescence 
(CTCF), which is calculated by subtracting the product 
of the mean fluorescence of the background and the area 
of the ROI from the integrated density. The data is pre-
sented as the ratio of nuclear to cytoplasmic intensity 
(N/C ratio), and each data point represents a single cell.

Quantification of p62 puncta
To analyze the number of p62 puncta in cells, the “Ana-
lyze Particles” function of Fiji image analysis software was 
used, with the "MaxEntropy" threshold option selected 
as previously described in [47]. In brief, the channel of 
interest (p62) was extracted from the confocal image, and 
the cell of interest was cropped out. The Image was then 
duplicated, and the "MaxEntropy" threshold was applied 
to the duplicated image. We then measured the “Area” 
and the “Mean gray value” and limited our measurement 
to our threshold while also redirecting the measurement 
to the original image. Finally, we used the “Analyze Parti-
cles” function from the “Analyze” tab to obtain size and 
intensity measurements from every single p62 puncta in 
the cell.

Statistics
Data was analyzed and visualized using GraphPad Prism 
9.5.0. Statistical tests as well as sample numbers and bio-
logical replicates, are indicated in the respective figure 
legends.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s40478- 023- 01648-0.

Additional file 1: Figure S1: Generation and characterization of 
iPSC-derived MNs from C9orf72 ALS patients and isogenic controls. a 
Schematic representation of the protocol used to differentiate iPSCs to 
spinal motor neurons (MNs). Abbreviations: BDNF: brain-derived 
neurotrophic factor; CHIR: CHIR99021; CNTF: ciliary neurotrophic factor; 
DAPT: a γ-secretase inhibitor; GDNF: glial cell line-derived neurotrophic 
factor; iPSC: induced pluripotent stem cell; LDN: LDN-193189; NEP: 
neuroepithelial stem cell; NPC: neuronal progenitor cell; RA: retinoic acid; 
SAG: smoothened agonist; SB: SB 431542; Y: Y-27632. b, c Immunocyto-
chemistry (ICC) of multiple (motor) neuron markers TUJ1 and ISL1 (b), 
ChAT and SMI32 (c) and DAPI in 40-day old C9orf72 and isogenic control 
MNs. Scale bar = 50 µm. d–f Quantification of the ISL-positive (d), 
ChAT-positive (e), and SMI-32 positive (f) cells relative to the total 
DAPI-labeled cell count; each dot represents one biological replicate. Data 
represent mean ± SEM. Statistical significance was assessed by one-way 
ANOVA (d–f) and Tukey’s multiple comparison test (b, c, t); ns = not 
significant. Figure S2: C9orf72 MNs have defects in lysosomal function 
and display reduced levels of mature lysosomes. a Flow cytometry analysis 
graphs of MNs stained with Lysotracker Red. b Quantification of the 
relative Lysotracker Red fluorescence shown in (a). c Flow cytometry 
graphs of MNs treated with DQ-BSA which generates fluorescence upon 
proteolytic cleavage by lysosomes. d Quantification of the relative DQ-BSA 
fluorescence shown in (c). e Representative Western blot detecting 
pro-cathepsin D (CTSD) and mature CTSD. β-actin was used to normalize 
data. f Quantifications of the Western blot shown in (e), measuring the 
relative levels of mature CTSD. g Quantification of the relative QTSD 
enzyme activity as measured by a fluorometric CTSD activity assay kit. 
Data represent mean ± SEM. Statistical significance was assessed by 
Kruskal–Wallis test and Dunn’s multiple comparison test (b, d, f, g); 
*p < 0.05, **p < 0.01. Figure S3: Mature C9orf72 MNs do not display 
mislocalization of TDP-43, nor increased phosphorylation of TDP-43 and 
only display a minor reduction in cell viability. a Immunocytochemistry 
(ICC) of 40-day old C9orf72 and isogenic control MNs stained for TDP-43 
and phosphorylated TDP-43 (pTDP-43). The presence of a typical neuronal 
morphology (which includes a soma and elongated neurites was used to 
select the MNs for analysis. Scale bar = 10 µm. b, c Quantifications of the 
nuclear vs cytoplasmic (N/C) TDP-43 ratio (b) and the corrected total cell 
fluorescence (CTCF) of pTDP-43 (c) from the ICC images shown in (a). Each 
dot represents a cell that was measured (C9-1, n = 166; C9-1iso, n = 189; 
C9-2, n = 163; C9-2iso, n = 172). d Quantification of the relative cell viability 
in 40-day-old C9orf72 MNs relative to their isogenic controls as measured 
by the CellTiter-Glo® assay. For each independent differentiation, at least 6 
technical replicates of 5000 cells were plated in 96-well plates the average 
intensity of each C9orf72 patient line was normalized to that of their 
respective isogenic control; each dot represents one biological replicate. 
e, Quantification of the percentage of apoptotic cells staining positive for 
cleaved caspase-3 in the TUJ1-positive 40-day-old MN population. Each 
dot represents one biological replicate in which between 107 and 224 
TUJ1-positive cells were scored for cleaved caspase-3 staining. Data 
represent mean ± SEM; data are pooled from four-five independent 
differentiations. Statistical significance was assessed by Kruskal–Wallis test 
and Dunn’s multiple comparison test (b, c) or one-way ANOVA and Tukey’s 
multiple comparison test (d, e); *p < 0.05, ns: not significant. Figure S4: 
Signs of dysregulations in the autophagy-lysosome pathway are present 
in post-mortem brain and spinal cord tissue of ALS patients. a Representa-
tive Western blot detecting LC3-I and LC3-II, LAMP1, GAPDH and total 
protein, used to measure levels of autophagosomes, lysosomes or for 
protein normalization respectively in post-mortem human central cortex 
tissue lysates from C9orf72 ALS patients (C9orf72), ALS patients tested 
negative for the C9orf72 HRE (Non-C9 ALS) and healthy controls (Control). 
b, c Quantifications of the Western blot shown in (a), measuring the ratio 
of LC3-II/LC3-I (b) and relative levels of LAMP1 (c); (C9orf72, n = 9; Non-C9 
ALS, n = 8; Control, n = 7). GAPDH or total protein was used to normalize 
data. d, Representative Western blot detecting LC3-I and LC3-II, p62, 
LAMP1, GAPDH and total protein, used to measure levels of 
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autophagosomes, aggregates, lysosomes or for protein normalization 
respectively in post-mortem human cervicothoracic spinal cord tissue 
lysates from C9orf72 ALS patients (C9orf72), ALS patients tested negative 
for the C9orf72 HRE (Non-C9 ALS) and healthy controls (Control). e–g, 
Quantifications of the Western blot shown in (d), measuring the ratio of 
LC3-II/LC3-I (e), the relative levels of LAMP1 (f) and the relative levels of 
p62 (g); each dot represents one tissue sample (C9orf72, n = 8; Non-C9 
ALS, n = 8; Control, n = 8). GAPDH or total protein was used to normalize 
data. Data represent mean ± SEM. Statistical significance was assessed by 
Kruskal–Wallis test and Dunn’s multiple comparison test (b, c, e–g); 
*p < 0.05. Figure S5: C9orf72 protein levels are downregulated in 
post-mortem brain and spinal cord samples, but not in C9orf72 MNs. a–c 
Representative Western blots detecting C9orf72, GAPDH or β3-tubulin 
and total protein in post-mortem human central cortex (a) or human 
cervicothoracic spinal cord tissue lysates (c) from C9orf72 ALS patients 
(C9orf72), ALS patients tested negative for the C9orf72 HRE (Non-C9 ALS) 
and healthy controls (Control) and C9orf72 patient iPSC-derived MNs and 
their respective isogenic controls (c). d–f Quantifications of the Western 
blots shown in (a–c), measuring the levels of C9orf72 in human central 
cortex (d), human cervicothoracic spinal cord (e) and C9orf72 patient 
iPSC-derived MNs and their respective isogenic controls (f); each dot 
represents one tissue sample (C9orf72, n = 8–9; Non-C9 ALS, n = 8; Control, 
n = 7–8) or one independent differentiation. GAPDH, β3-tubulin or total 
protein was used to normalize data. Data represent mean ± SEM; data are 
pooled from twelve-thirteen (f) independent differentiations. Statistical 
significance was assessed by Kruskal–Wallis test and Dunn’s multiple 
comparison test (d, e) or one-way ANOVA and Tukey’s multiple 
comparison test (f); *p < 0.05. Figure S6: Generation of C9orf72 knockout 
line (C9-KO). a General overview of the C9-KO iPSC line generation. b, 
Schematic representation showing multi-guide RNAs targeting exon 2 of 
the C9orf72 gene (upper panel). Sangersequencing traces of homozygous 
C9-KO and CTRL lines spanning the cut side of guide 1 (lower panel) c PCR 
product showing 130 bp deletion in the C9-KO line. d The C9-KO iPSC line 
retains pluripotency features as assessed by immunostaining of OCT4, 
SOX2, and NANOG. Scale bar = 100 µm. e, Representative Western blots 
detecting C9orf72 and total protein levels in iPSCs (left) or 40-day-old MNs 
derived from these iPSCs (right). Figure S7: Mature C9-KO iPSC-derived 
MNs do not display mislocalization of TDP-43, nor increased phosphoryla-
tion of TDP-43 and only a minor reduction in cell viability. a Immunocyto-
chemistry (ICC) images of 40-day-old control and C9 KO MNs stained for 
TDP-43 and phosphorylated TDP-43 (pTDP-43). The presence of a typical 
neuronal morphology (which includes a soma and elongated neurites 
was used to select the MNs for analysis. Scale bar = 10 µm. b, c Quantifica-
tions of the nuclear vs cytoplasmic (N/C) TDP-43 ratio (b) and the 
corrected total cell fluorescence (CTCF) of pTDP-43 (c) from the ICC 
images shown in (a). Each dot represents a cell that was measured (CTRL, 
n = 168; C9 KO, n = 173). d Quantification of the relative cell viability in 
40-day-old C9 KO MNs relative to its isogenic control line as measured by 
the CellTiter-Glo® assay. For each independent differentiation, at least 6 
technical replicates of 5000 cells were plated in 96-well plates and the 
average intensity of the C9 KO line was normalized to that of its isogenic 
control line; each dot represents one biological replicate. e, Quantification 
of the percentage of apoptotic cells staining positive for cleaved 
caspase-3 in the TUJ1-positive 40-day-old MN population. Each dot 
represents one biological replicate in which between 191 and 279 
TUJ1-positive cells were scored for cleaved caspase-3 staining. Data 
represent mean ± SEM; data are pooled from four-five independent 
differentiations. Statistical significance was assessed by unpaired t-test (b, 
c, e) or one sample t-test (d); *p < 0.05, **p < 0.01. Figure S8: C9orf72 
patient, but not C9-KO MNs display an increased vulnerability to 
autophagic stress caused by Lys05. a, b Quantifications of the survival rate 
of 40-day-old C9orf72 patient (a) or C9-KO (b) iPSC-derived MNs and their 
respective isogenic control after 24 h treatment with 3-30 µM of Lys05. 
The survival rate of iPSC-derived MNs is calculated by normalizing the 
CellTiter-Glo® signal of Lys05-treated cells to DMSO control-treated wells; 
each dot represents the average of one biological replicate. Data 
represent mean ± SEM; data are pooled from three-six (a) or four (b) 
independent differentiations. Statistical significance was assessed by 
one-way ANOVA and Tukey’s multiple comparison test (a, b); *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001.

Additional file 2: Table S1. List of reagents and resources.

Additional file 3: Table S2. Clinical information of post-mortem samples.
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