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Abstract 

Cognitive decline due to Alzheimer’s disease (AD) is frequent in the geriatric population, which has been dispropor-
tionately affected by the COVID-19 pandemic. In this study, we investigated the levels of angiotensin-converting 
enzyme 2 (ACE2), a regulator of the renin-angiotensin system and the main entry receptor of SARS-CoV-2 in host cells, 
in postmortem parietal cortex samples from two independent AD cohorts, totalling 142 persons. Higher concentra-
tions of ACE2 protein (p < 0.01) and mRNA (p < 0.01) were found in individuals with a neuropathological diagnosis 
of AD compared to age-matched healthy control subjects. Brain levels of soluble ACE2 were inversely associated 
with cognitive scores (p = 0.02) and markers of pericytes (PDGFRβ, p = 0.02 and ANPEP, p = 0.007), but positively 
correlated with concentrations of soluble amyloid-β peptides (Aβ) (p = 0.01) and insoluble phospho-tau (S396/404, 
p = 0.002). However, no significant differences in ACE2 were observed in the 3xTg-AD mouse model of tau and Aβ 
neuropathology. Results from immunofluorescence and Western blots showed that ACE2 protein is predominantly 
localized in microvessels in the mouse brain whereas it is more frequently found in neurons in the human brain. 
The present data suggest that higher levels of soluble ACE2 in the human brain may contribute to AD, but their role 
in CNS infection by SARS-CoV-2 remains unclear.
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Introduction
Whether viral illnesses increase the risk of develop-
ing Alzheimer’s disease (AD) is a question raising con-
siderable interest. In the light of the recent COVID-19 
pandemics, an association between SARS-CoV-2 viral 
infection and cognitive decline due to AD or other causes 

has emerged [3, 24, 41, 59]. Risk factors for COVID-19 
complications and fatalities are often the same as those 
for AD dementia—age, obesity, cardiovascular disease, 
hypertension, and diabetes mellitus [43, 47, 69, 86]. Nota-
bly, dementia per se is a strong predictor of COVID-19 
mortality [55]. Using de-identified population-level 
electronic health records (EHR) from over 60 million 
individuals, a retrospective study showed that patients 
with dementia and COVID-19 had significantly worse 
outcomes (6-month hospitalization risk and mortality 
risk) than patients with dementia and no COVID-19 or 
patients with COVID-19 but no dementia [86]. In sum, 
people with dementia were disproportionately impacted 
by COVID-19, in terms of death and other clinical com-
plications [17, 47, 68, 72, 92]. Whether this is due to age 
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per se, a neuropathological AD diagnosis or other factors 
associated with cognitive decline is currently unknown.

Angiotensin-converting Enzyme 2 (ACE2) is a mem-
brane carboxypeptidase that hydrolyzes Angiotensin I 
and Angiotensin II to respectively generate Angiotensin 
1–9 and Angiotensin 1–7, which are part of the renin-
angiotensin system (RAS) responsible for maintaining 
blood pressure, as well as fluid and salt balance [66]. 
ACE2 is highly expressed in the lung [18, 31] but also 
in other tissues such as the kidney, intestine, liver, tes-
tis and the brain [38, 48, 73]. The distribution of ACE2 
in the brain is controversial, and earliest reports failed 
to identify the protein in the human CNS [22, 80]. Still, 
low levels of ACE2 mRNA were detected in the human 
brain using quantitative real‐time RT‐PCR [33]. Cer-
ebral immunostaining was reported in endothelial and 
arterial smooth muscle cells [32], as well as in neurons 
[23]. More recently, single-cell RNA sequencing data 
have brought new insights on the cellular distribution 
of ACE2 transcripts in the brain vasculature. Accord-
ing to the Betsholtz mouse database, the expression of 
ACE2 is very high in microvascular mural cells (such 
as pericytes and venous vascular smooth muscle cells), 
but not in endothelial cells [35, 62, 84]. However, other 
databases report ACE2 mRNA expression in endothelial 
cells of mice [18, 94, 95]. So far, the available data suggest 
that the expression of ACE2 in the human brain is lower 
in both endothelial cells and pericytes compared to the 
mouse brain, albeit with important interregional variabil-
ity [18, 34, 56, 90, 91].

ACE2 is also considered the main site of entry of 
SARS-CoV-2 into cells [40, 49, 70]. In previous outbreaks 
of SARS-CoV, which also use ACE2 as an entry point, the 
virus was detected in the brains of infected patients but 
reported almost exclusively in neurons [21, 32, 63, 78]. 
Indeed, CNS manifestations have been described in more 
than one third of hospitalized patients, especially those 
with severe conditions [17, 50, 54, 57, 67, 91, 92]. Thus, a 
higher ACE2 expression in the neurovascular unit of sub-
jects with AD could provide additional entry points for 
SARS-CoV-2 into the CNS and facilitate neuroinfection.

First, to investigate whether ACE2 levels in the brain 
could be associated with cognitive dysfunction, we com-
pared mRNA and protein levels of ACE2 in postmortem 
brain samples from individuals of two different cohorts, 
including subjects diagnosed with AD. In the first cohort 
from the Religious Order Study (n = 60), ACE2 protein 
levels were evaluated according to (i) the clinical diag-
nosis of no cognitive impairment (NCI), mild cognitive 
impairment (MCI), or AD; (ii) the neuropathological 
diagnosis of AD (ABC scoring) and the antemortem 
assessment of cognitive function. Associations between 
ACE2 and neurovascular markers were also examined. In 

the second cohort from other US sources (n = 82), brain 
levels of ACE2 protein and mRNA were investigated in 
individuals with a Braak-based neuropathological AD 
diagnosis. Finally, we compared the cellular localization 
of ACE2 between human and mouse brains and assessed 
ACE2 levels in a triple transgenic mouse model of AD 
neuropathology, the 3xTg-AD mouse.

Materials and methods
Human samples
Cohort #1
Gray matter samples from the Brodmann area 7 (BA7) 
corresponding to the posterior parietal cortex were 
obtained from participants in the Religious Orders Study 
(Rush Alzheimer’s Disease Center), an extensive longitudi-
nal clinical and pathological study of aging and dementia 
[7, 8]. Each participant enrolled without known demen-
tia and underwent annual structured clinical evaluations 
until death. A total of 21 cognitive performance tests 
were performed for each subject. At the time of death, 
a neurologist, blinded to all postmortem data, reviewed 
clinical data and rendered a summary diagnostic opin-
ion regarding the clinical diagnosis proximate to death. 
Participants received a clinical diagnosis of no cognitive 
impairment (n = 20 NCI) or mild cognitive impairment 
(n = 20 MCI) or Alzheimer’s disease (n = 20 AD), as pre-
viously described [7–9]. The neuropathological assess-
ment for the subjects included in the present study was 
performed using the ABC scoring method found in the 
revised National Institute of Aging – Alzheimer’s Asso-
ciation (NIA‐AA) guidelines for the neuropathological 
diagnosis of AD [61]. Three different neuropathologi-
cal parameters were evaluated for each subject: (A) the 
Thal score assessing phases of Aβ plaque accumulation 
[79], (B) the Braak score assessing neurofibrillary tangle 
(NFT) pathology [16] and (C) the CERAD score assessing 
neuritic plaque pathology [60]. These scores were then 
combined to obtain an ABC score, reported as "AX, BX, 
CX" with X ranging from 0 to 3 for each parameter [61]. 
Using the chart described in the revised NIA-AA guide-
lines [61], each ABC score was converted into one of four 
levels of AD neuropathological changes: not, low, inter-
mediate or high. The maximal scores to be considered as 
low level are "A3, B1, C3" and "A1, B3 and C1", whereas 
the minimal score to qualify for the intermediate level is 
"A1, B2, C2". According to this chart, samples with inter-
mediate or high pathological levels are consistent with 
a neuropathological diagnosis of AD because they have 
both extensive Aβ plaques and NFT, while those with no 
or low levels do not. Therefore, to establish a dichotomic 
classification in this study, individuals with intermedi-
ate or high levels of AD neuropathological changes were 
pooled in the AD group while participants with no or a 
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low level of AD neuropathological changes were pooled 
in the Control group. Relevant data from the ROS sam-
ples used here and published previously [14, 15], are 
summarized in Table 1.

Cohort #2
Gray matter samples from the parietal cortex were 
obtained from 3 different institutions in the United 
States: 1- Harvard Brain Tissue Resource Center, Bos-
ton, Massachussetts, 2- Brain Endowment Bank, Miami, 
Florida. 3- Human Brain and Spinal Fluid Resource 
Center, Los Angeles, California [26]. All 82 parietal cor-
tex samples were from the Brodmann area 39 (BA39), 
corresponding to the inferior region of the parietal cor-
tex. Neuropathological diagnoses were based on Braak 
scores that were available for all cases. Because Thal and 
CERAD scores were not available for all cases, ABC diag-
noses could not be used. To remain consistent with the 
ABC scoring used in Cohort #1, Braak scores of I or II 
were classified as Controls while Braak scores of III, IV, V 
and VI were considered as AD (Table 1). Frozen extracts 
from the parietal cortex were ground into a fine powder 
on dry ice with a mortar and pestle and kept at −80 °C.

Protein fractionation from human parietal cortex 
homogenates (Cohort #1)
Each inferior parietal cortex sample (~ 100  mg) from 
Cohort #1 was sequentially sonicated and centrifuged 
to generate two protein fractions: a Tris-buffered saline 
(TBS)‐soluble fraction containing soluble intracellular, 
nuclear and extracellular proteins and a detergent‐soluble 
protein fraction containing membrane-bound proteins 
extracted with a mix of detergents (0.5% Sodium dode-
cyl sulfate (SDS), 0.5% deoxycholate, 1% Triton), as previ-
ously reported [81, 82]. Protein contents of supernatants 
were quantified using a bicinchoninic acid assay (Ther-
mofisher cat: P123227). Protein homogenates in Laemmli 
were prepared as described below.

Isolation of human brain microvessels (Cohort #1)
The method used to generate microvessel-enriched 
extracts from frozen human parietal cortex samples has 
been described in our previous publications [13–15]. 
Briefly, this method consists of a series of centrifugation 
steps, including one density gradient centrifugation with 
dextran, after which the tissue is filtered through a 20-µm 
nylon filter. This generates two fractions: the material 
retained on the filter consists in cerebral microvessels 
(isolated microvessel-enriched fraction), whereas the 
filtrate consists in microvessel-depleted parenchymal 
cell populations. These fractions were homogenized in 
lysis buffer (150 mM NaCl, 10 mM  NaH2PO4, 1% Triton 
X-100, 0.5% SDS, and 0.5% sodium deoxycholate), so they 

contain all proteins (intracellular and membrane-bound) 
and are used in immunoblotting.

Alternatively, isolated microvessels on the filter were 
resuspended in 3  ml of microvessel isolation buffer 
(HBSS; 15 mM HEPES, 147 mM NaCl, 4 mM KCl, 3 mM 
 CaCl2, and 12 mM  MgCl2) with 1% BSA and protease and 
phosphatase inhibitors and spun at 2000 g for 10 min at 
4  °C. The supernatant was discarded and the pellet was 
resuspended in 100  μl of phosphate buffer saline (PBS). 
These cerebrovascular extracts were then deposited on 
glass slides (5  μl per slide) and left at RT for 30  min to 
allow adhesion. Afterwards, they were fixed using a 4% 
paraformaldehyde solution in PBS for 20 min at RT and 
processed for immunostaining.

Cerebral fractions enriched and depleted in endothe-
lial cells were evaluated using immunoblotting of vas-
cular and neuronal markers, as shown previously [14]. 
Isolation of brain microvessels was performed on human 
samples of Cohort #1 (final n = 56) and the fractions were 
used for Western blot analysis and immunostaining.

Protein and RNA extraction and RT‑qPCR analysis (Cohort 
#2)
Approximatively 50  mg of this fine powder were used 
for total protein extraction. Then, a lysis buffer (50 mM 
Tris–HCL to pH 7.4, 150 mM NaCl, 1% triton and 0.5% 
sodium deoxycholate) containing protease (complete 25 
X and Pepstatin A) and phosphatase inhibitors (sodium 
fluoride and sodium vanadate) was added. The sample 
solution was homogenized on ice by sonication using a 
Sonic Dismembrator (Fisher, Pittsburgh, PA) with two 
10-s pulses and a 30-s stop between steps. Samples were 
centrifuged 20 min at 10,000 g at 4  °C. Protein contents 
of supernatants were quantified using a bicinchoninic 
acid assay (Thermofisher cat: P123227). Protein homoge-
nates in Laemmli were prepared as described below.

Approximately 100  mg of powderized parietal cor-
tex were used for total RNA extraction with TRIzol 
(Ambion) using manufacturer’s instructions. The result-
ing RNA pellet was resuspended in 80 μL RNAse-free 
water and incubated 10 min at 57 °C. The RNA concen-
tration was measured with an Infinite F200 (Tecan). The 
reverse transcription (RT) was performed with 1  µg of 
RNA. As a first step, genomic DNA was removed fol-
lowing the AccuRT Genomic DNA removal protocol 
(Applied Biological Materials, ABM, Vancouver, Can-
ada). Then the RT master mix (ABM) was added to RNA 
samples and incubated (10 min at 25 °C, 50 min at 42 °C 
and 5 min at 85  °C) as per the manufacturer’s protocol. 
All qPCR experiments were performed on the LightCy-
cler 480 (Roche) with the BrightGreen mix (ABM) and 
primers at 10 µM. After enzyme activation for 10 min at 
95 °C, 50 cycles were performed (15 s at 95 °C and 1 min 
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Table 1 Characteristics of Cohort #1 (Religious Order Study) and Cohort #2 (US other sources)

Cohort #1 characteristics (Religious Order Study): Participants were assigned to the “Control” or “AD” group based on the level of AD neuropathological changes 
associated with their ABC scores [61]. ABC scores were converted into one of the four levels of AD neuropathological changes (not, low, intermediate, or high) using 
the chart described in the revised NIA-AA guidelines [61]. Intermediate or high levels of AD neuropathological changes were assigned to the “AD” group, while those 
with no or a low level of AD neuropathological changes were rather assigned to the “Control” group [61]. Parenchymal CAA stages in parietal cortex were determined 
in the angular gyrus. Brain pH was measured in cerebellum extracts. Soluble Aβ peptide concentrations were determined by ELISA in whole homogenates of inferior 
parietal cortex. Values are expressed as means (SD) unless specified otherwise. Statistical analysis (compared to controls): Mann Whitney test: #p < 0.01; ¶p < 0.001; 
&p < 0.0001; Pearson test: £p < 0.01. Claudin5 and CD31 data in microvessel extracts were normalized with cyclophilin B as a loading control. Cohort #2 characteristics 
(Other US Sources): Brain samples of this cohort were provided by Harvard Brain Tissue Resource Center (Boston), Miller School of Medicine (Miami) and Human 
Brain and Spinal Fluid Resource Center (Los Angeles). Participants were assigned to the “Control” or “AD” group based on the Braak score. Values are expressed as 
means (SD). Statistical analysis (compared to controls): Unpaired t test, Pearson test. AD Alzheimer’s disease, C Contingency, CAA  Cerebral amyloid angiopathy, CERAD 
Consortium to Establish a Registry for Alzheimer’s Disease, MCI Mild cognitive impairment, MMSE Mini-Mental State Examination, NCI Healthy controls with no 
cognitive impairment ROD Relative optical density

Religious Order Study (Cohort #1)

Characteristics Control AD Statistical Analysis

N 22 38 –

Men, % 41 29 C; Pearson test,  x2 = 0.897; p = 0.3436

Mean age at death 86.7 (4.3) 87.5 (5.7) Mann Whitney test, p = 0.5548

Post-mortem delay, hours 7.9 (5.1) 7.5 (5.1) Mann Whitney test, p = 0.6648

Mean education, years 18.3 (3.5) 18.1 (3.1) Mann Whitney test, p = 0.5236

Mean MMSE 25.0 (4.5) 21.6 (7.9) Mann Whitney test, p = 0.0791

Global cognition score − 0.32 (0.8) − 0.94 (0.9)# Mann Whitney test, p = 0.0044

apoE s4 allele carriage (%) 9 45 $ C; Pearson test,  x2 = 8.182; p = 0.0042

Clinical diagnosis NCI/MCI/AD (n) 11/8/3 9/12/17 –

Thal amyloid score 0/1/2/3 (n) 7/13/2/0 0/3/15/20 –

Braak score 0/1/2/3 (n) 0/7/15/0 0/0/27/11 –

CERAD score 0/1/2/3 (n) 14/4/4/0 1/3/16/18 –

Parenchymal CAA stage in parietal cortex
0/1/2/3/4 (n)

15/4/1/1/0 18/7/5/2/3 C; Pearson test,  x2 = 3.830; p = 0.4295

Presence of chronic cortical macroinfarcts 0/1 (n) 20/2 33/5 C; Pearson test,  x2 = 0.224; p = 0.6363

Presence of chronic cortical microinfarcts 0/1 (n) 17/5 34/4 C; Pearson test,  x2 = 1.627; p = 0.2021

Usage of antihypertensive medications 0/1 (n) 2/20 5/33 C; Pearson test,  x2 = 0.224; p = 0.6363

Usage of diabetes medications 0/1 (n) 15/7 33/5 C; Pearson test,  x2 = 3.032; p = 0.0816

Cerebellar pH 6.4 (0.37) 6.3 (0.36) Mann Whitney test, p = 0.2933

Diffuse plaque counts in parietal cortex 3.8 (8.0) 20.3 (16.8)& Mann Whitney test, p < 0.0001

Neuritic plaque counts in parietal cortex 1.3 (3.2) 15.7 (12.5)& Mann Whitney test, p < 0.0001

Neurofibrillary Tangle Counts 0.09 (0.43) 2.92 (8.35)# Mann Whitney test, p = 0.0096

Soluble Aβ40 concentrations, pmol/L 125.4 (245.9) 363.2 (695.2)1 Mann Whitney test, p = 0.0009

Soluble Aβ42 concentrations, pmol/L 299.6 (475.0) 1173.6 (503.9)& Mann Whitney test, p < 0.0001

Soluble Aβ40/Aβ42 ratio 0.99 (1.09) 0.34 (0.59) Mann Whitney test, p < 0.0001

Cyclophilin B in microvessel extracts (loading 
control)
Claudin5 levels in microvessel extracts (normalized 
ROD)
CD31 levels in microvessel extracts (normalized ROD)

2.74 (0.77) 1.17 (0.50)
0.45 (0.40)

2.66 (0.79)
1.16 (0.41)
0.41 (0.36)

Mann Whitney test, p = 0.7309 Mann Whitney test, 
p = 0.6613 Mann Whitney test, p = 0.7366

Other US sources (Cohort #2)

Characteristics Control AD Statistical Analysis

N 30 52

Men, % 70 52 C; Pearson test,  x2 = 2.561; p = 0.1095

Mean age at death 74.9 (9.7) 78.9 (14.0) Unpaired t test, p = 0.0784

Post-mortem delay (h) 16.3 (4.9) 17.6 (4.8) Unpaired t test, p = 0.2185

Braak stages 0–2/3–6 (n) 30/0 0/52

Atherosclerosis (%) n.d 61,5
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at 60 °C), followed by 1 s at 95 °C and 1 min at 45 °C. Ref-
erence gene GAPDH (primers Forward: TCT CCT CTG 
ACT TCA ACA GCGAC and Reverse:CCC TGT TGC 
TGT AGC CAA ATTC) was used to normalize the mRNA 
expression. The relative amounts of each transcript were 
calculated using the comparative Ct (2-ΔΔCt) method. 
For Ace2 qPCR (primers Forward: GTG CAC AAA GGT 
GAC AAT GG and Reverse: GGC TGC AGA AAG TGA 
CAT GA), 12 controls and 19 AD individuals were used. 
We used a cut-off of ≥ 35 cycles for these samples.

Isolation of murine brain microvessels and protein 
fractionation
All experiments were performed in accordance with the 
Canadian Council on Animal Care and were approved by 
the Institutional Committee at the Centre Hospitalier de 
l’Université Laval (CHUL). Four (4) or six (6)-, 12- and 
18-month-old 3xTg-AD (APPswe, PS1M146V, tauP301L) 
mice produced at our animal facility were used in equal 
numbers of males and females in each group. These mice 
show progressive accumulation of Aβ plaques and neu-
rofibrillary tangles, which are detectable at 12  months 
and are widespread after 18 months [12, 19]. Mice were 
fed a standard chow (Teklad 2018, Harlan Laboratories, 
Canada) from breeding to 5  months of age. Mice were 
then fed a control diet (CD; 20%kcal from fat) or a high-
fat diet (HFD; 60%kcal from fat) from 6 to 18  months 
of age, in order to worsen neuropathology and memory 
performance and to induce metabolic impairments [5, 
44, 75, 83], which are also associated with a higher risk 
of developing severe SARS-CoV-2 infections [1, 43]. As 
previously described [77], mice were killed under deep 
anesthesia (100 mg/kg ketamine, 10 mg/kg xylazine) via 
terminal intracardiac perfusion of PBS containing pro-
tease and phosphatase inhibitors. The brains were imme-
diately collected and transferred into ice-cold perfusion 
buffer, where meninges, cerebellum and brainstem were 
removed. The parieto-temporal cortex was rapidly dis-
sected and frozen at − 80  °C until processed for protein 
extraction. TBS-soluble (intracellular and extracellular 
fraction) and detergent-soluble fractions (membrane 
fraction) were prepared as described above. Alternatively, 
brain tissue was chopped and frozen in 0.5 mL of HBSS 
containing 0.32 M sucrose until processed for microves-
sel enrichment, which was performed as described above 
for human samples. Fractions enriched and depleted in 
cerebrovascular cells were either homogenized in lysis 
buffer (total proteins including intracellular and mem-
brane-bound) for Western blot analysis or deposited on 
glass slides for immunofluorescence, as above.

Western blot analysis
Microvessel protein homogenates from human pari-
etal cortex and murine whole brain extracts were added 
to Laemmli’s loading buffer and heated 10 min at 70 °C. 
TBS- and detergent-soluble fractions from homogenates 
of human parietal cortex were also added to Laemmli’s 
loading buffer and heated 5 min at 95 °C. Equal amounts 
of proteins per sample (8  µg for both human and 
murine brain microvessel extracts and 12 µg for protein 
homogenates of human parietal cortex, 15 µg for protein 
homogenates of mouse brain) were resolved by sodium 
dodecyl sulphate–polyacrylamide gel electrophoresis 
(SDS-PAGE). All samples, loaded in a random order, 
were run on the same immunoblot experiment for quan-
tification. Proteins were electroblotted on PVDF mem-
branes, which were then blocked during 1 h with a PBS 
solution containing 5% non-fat dry milk, 0.5% BSA and 
0.1% Tween-20. Membranes were then incubated over-
night at 4 °C with primary antibodies (rabbit anti-ACE2, 
#ab108252, 1:1000, rabbit anti-TMPRSS2 #ab109131, 
1:1000). Membranes were then washed three times with 
PBS containing 0.1% Tween-20 and incubated during 1 h 
at room temperature with the secondary antibody (goat/
donkey anti-rabbit HRP Jackson ImmunoResearch Lab-
oratories, West Grove, PA; 1:60,000 or 1:10,000 in PBS 
containing 0.1% Tween-20 and 1% BSA). Densitomet-
ric analysis was performed using ImageLab (Bio-Rad). 
Uncropped gels of human samples immunoblot assays 
are shown in the Additional file  2: Material (Additional 
file 1: Figs. S6 and S7).

Immunostaining
To demonstrate ACE2 localization in postmortem human 
brain tissue, we tested a number of commercially avail-
able antibodies using a wide range of immunostaining 
protocols. Immunostaining was performed on formalin-
fixed, paraffin-embedded (FFPE) tissue Sects.  (6  µm) 
of human parietal cortex, on fresh-frozen (FF) tissue 
Sects. (12 µm) from human and mouse hippocampus, as 
well as on human and murine isolated brain microves-
sels (see below). Briefly, FFPE sections were deparaffi-
nized in CitriSolv hybrid and rehydrated with decreasing 
concentrations of ethanol in water. Antigen retrieval was 
then performed by boiling slides in Tris buffer (10 mM, 
pH 9.0) with 1 mM EDTA and 0.05% (v/v) Tween-20 in a 
microwave for 15 min and letting them cool for 30 min at 
room temperature. Sections were quenched with 50 mM 
 NH4Cl, digested with trypsin 0.1% (w/v, Sigma-Aldrich) 
at 37 °C for 15 min, and incubated in Tris-buffered saline 
(TBS) with 0.3 M glycine for 15 min. Sections were then 
blocked sequentially with Bloxall, avidin/biotin blocking 
kit (Vector Laboratories, CA) and Superblock (Thermo) 
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with 0.2% Triton-X100, and used for immunohistochem-
istry. FF sections and brain microvascular fractions were 
kept at − 80 °C until use, then vacuum-dried at 4 °C and 
fixed in 4% (w/v) paraformaldehyde (pH 7.4) for 20 min 
at room temperature. All sections were then blocked and 
permeabilized for 1  h with Superblock containing 0.2% 
(v/v) Triton X-100. Incubation with primary antibodies 
(various rabbit anti-ACE2, mouse anti-NeuN MAB377, 
goat anti-collagen IV AB789) was performed overnight 
at 4  °C in Superblock with 0.05% Tween-20. For immu-
nohistochemistry, after washing in PBS, sections were 
incubated with biotinylated secondary antibodies (Jack-
son Immunoresearch) and then with streptavidin-HRP 
(ABC Elite kit). ACE2 localization was revealed using the 
ImmPACT AMEC red substrate and nuclei were coun-
terstained with Mayer’s hematoxylin. For immunofluo-
rescence, after washes, secondary antibodies (conjugated 
to Alexa Fluor 555, 647 and 750, which use channels with 
less autofluorescence) were added to sections for 1  h. 
Slides were then sequentially incubated with 4′,6-diamid-
ino-2-phenylindole (DAPI) and TrueBlack Plus (Biotium, 
CA) to quench lipofuscin autofluorescence. Photomicro-
graphs were recorded with a Cytation 5 or EVOS fl Auto 
Imaging System (Thermo Fisher).

Data and statistical analysis
An unpaired Student’s t-test was performed when only 
two groups were compared, with a Welch correction 
when variances were not equal. If the data distribution 
of either one or both groups failed to pass the normal-
ity tests (Shapiro–Wilk test or Kolmogorov–Smirov 
test), groups were compared using a non-parametric 
Mann–Whitney test. When more than two groups were 
compared, parametric one-way ANOVA followed by 
Tukey’s multiple comparison tests or two-way ANOVA 
were used. If criteria for variance (Bartlett’s) or normality 
were not met, non-parametric Kruskal–Wallis ANOVA 

followed by Dunn’s multiple comparison tests were used. 
If needed, data were log transformed to normalize dis-
tributions. For all data, statistical significance was set at 
P < 0.05. Individual data were excluded for technical rea-
sons or if determined as an outlier using the ROUT (1%) 
method in GraphPad Prism. Linear correlation analysis 
was used to determine correlation coefficients between 
ACE2 and antemortem evaluation, neuropathological 
markers or BBB markers. All statistical analyses were per-
formed with Prism 9 (GraphPad, San Diego, CA, USA) or 
JMP (version 16; SAS Institute Inc., Cary, IL) software.

Results
Association between ACE2 in the parietal cortex, 
the neuropathological diagnosis of AD and cognitive 
scores
Table  1 summarizes the clinical and biochemical data 
from both cohorts, showing that subjects with AD dis-
played higher tau and Aβ pathologies but comparable 
levels of endothelial proteins cyclophilin B, claudin-5 
and CD31. ACE2 protein levels weremeasured in TBS-
soluble (cytosolic, extracellular, nuclear and secreted 
proteins), detergent-soluble (membrane-bound proteins) 
and microvessel-enriched fractions (vascular proteins) 
from parietal cortex samples. Representative Western 
immunoblots of ACE2 and analyses are shown in Fig. 1 
for Cohort #1 and Fig. 2 for Cohort #2. A band migrating 
at approximately 100  kDa, corresponding to full-length 
ACE2, was observed in each fraction (Figs. 1, 2).

We first evaluated ACE2 protein levels in extracts from 
the parietal cortex of 60 individuals from Cohort #1, 
ROS. When the subjects were classified according to the 
neuropathological ABC diagnosis, higher levels of ACE2 
protein were found in TBS-soluble fractions from AD 
subjects compared to non-AD participants (p = 0.0087) 
(Fig. 1C). This rise in soluble ACE2 was more prominent 
in AD ApoE4 carriers (Additional file 1: Fig. S2). When 

Fig. 1 Levels of TBS-Soluble ACE2 protein are higher in AD individuals and are negatively correlated with global cognitive score. Parietal cortex 
levels of ACE2 protein from Cohort #1 were determined by Western blotting after SDS-PAGE (10% acrylamide) of three fractions: a TBS-soluble 
fraction A–D a detergent-soluble fraction E–H and a microvessel-enriched fraction L–O. No statistical difference was detected for ACE2 in the three 
fractions when subjects were classified according to antemortem clinical diagnosis (B, F, M). However, the TBS/Detergent-Soluble ACE2 ratio 
was higher in clinical AD subjects I. Levels of the ACE2 protein were higher in the TBS-soluble fraction and in the ratio TBS/Detergent-Soluble 
in individuals with a neuropathological diagnosis of AD based on ABC scoring C, G, J, N. TBS-soluble ACE2 and microvascular ACE2 levels were 
negatively correlated with the global cognitive score D, O. An equal amount (12 µg) of proteins per sample for both TBS-soluble and detergent 
soluble fractions was loaded and 8 µg of proteins per sample was loaded for microvessel-enriched fractions. All samples, loaded in a random order, 
were run on the same gel and transferred on the same membrane before immunoblotting for quantification. Examples were taken from the same 
experiment, and consecutive bands loaded in random order are shown. Actin and cyclophilin B are shown as loading controls. Data are represented 
as a scatterplot. A very high outlier has been removed in the clinical AD group in I, J and K. Horizontal lines indicate mean ± SEM. Statistical 
analysis: Two groups: Mann–Whitney test **p < 0.01; Three groups: Kruskal–Wallis followed by a Dunn’s multiple comparisons *p < 0.05, Coefficient 
of determination & p < 0.05. ACE2 Angiotensin-Converting Enzyme 2, A or AD Alzheimer’s disease, C Control, Clin Dx Clinical diagnosis, ABC Dx ABC 
neuropathological diagnosis, CyB Cyclophilin B, M or MCI Mild cognitive impairment, N or NCI Healthy controls with no cognitive impairment, O.D. 
optical density, SEM Standard error of the mean, TBS Tris-Buffered Saline

(See figure on next page.)
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the subjects were classified according to the clinical diag-
nosis, only a non-significant trend towards higher ACE2 
concentrations was observed in the TBS-soluble frac-
tion, using a non-parametric Kruskal–Wallis ANOVA 
(p = 0.1471) (Fig.  1B). However, the difference between 
AD and Controls/NCI was statistically significant when 
this comparison was performed only in individuals with 
parenchymal cerebral amyloid angiopathy (p = 0.0022) 

(pCAA; Additional file 1: Fig. S1A, D). On the other hand, 
ACE2 levels assessed in the detergent-soluble fraction, 
enriched for membrane-associated proteins, remained 
similar between groups (Fig.  1E–G). However, the ratio 
of the TBS/Detergent-soluble forms was significantly 
higher in patients diagnosed with AD clinically and neu-
ropathologically (p = 0.0272 and p = 0.0016, respectively) 
(Fig. 1I–J).
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We next measured ACE2 protein levels in microvessel 
extracts. Given the high interindividual variability, only a 
non-significant trend towards higher ACE2 protein levels 
was observed in individuals with an AD clinical diagno-
sis (p = 0.1712) (Fig. 1L–N). However, the difference with 
Controls became significant when including only AD 
patients with pCAA (Additional file 1: Fig. S1C, F).

Interestingly, the levels of ACE2 found in TBS-soluble 
and microvessel-enriched fractions were inversely asso-
ciated with antemortem global cognitive scores (Fig. 1D, 
O and Fig. 3). This association remained significant after 
adjustment for age at death and sex.

To corroborate these results, we performed Western 
immunoblots on a second series of human brain sam-
ples from Cohort #2 [26] (Fig.  2A). Consistently, higher 
levels of ACE2 protein were detected in individuals with 
a Braak-based diagnosis of AD (Fig.  2B), in association 
with higher Ace2 mRNA levels (Fig.  2B), suggesting a 
regulation at the transcriptional level. No difference was 
observed in the levels of transmembrane protease ser-
ine type 2 (TMPRSS2) (Additional file 1: Fig. S3), a pro-
tein that plays a key role in SARS-CoV-2 infection by 

activating the spike protein, facilitating entry into target 
cells using ACE2 [40].

TBS‑soluble ACE2 is positively associated with clinical, 
neuropathological, and vascular markers of AD, 
while detergent‑soluble ACE2 displays opposite trends
Hierarchical clustering of correlation coefficients 
(strength of association) was performed to identify vari-
ables associated with differences in ACE2 in Cohort #1. 
Although the leading risk factor for AD is age, no sig-
nificant correlation was found between ACE2 levels in all 
fractions tested and the ages of death (Fig. 3, Additional 
file  1: Fig. S4), which were equivalent between groups 
(Table 1). These observations suggest that the greater sol-
uble ACE2 in individuals with AD in the ROS cohort was 
not driven by age. However, the age interval (74–98 years) 
was too small to detect an effect of aging per se on cer-
ebral ACE2. Beside the inverse association with global 
antemortem cognitive scores of participants (r2 = -0.09, 
P < 0.05, Figs. 1D and 3), higher postmortem TBS-soluble 
concentrations of ACE2 were also significantly correlated 
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with failing episodic memory, a domain predominantly 
affected in AD (Fig. 3).

Associations were then examined with neuropatho-
logical markers of AD, previously assessed in the pari-
etal cortex from the same sample series (Fig. 3). Levels 
of TBS-soluble ACE2 were positively associated with 
AD markers like diffuse plaque counts, soluble Aβ lev-
els and insoluble phospho-tau (pS396/404 epitope) 
(Fig.  3). In contrast, levels of detergent-soluble ACE2 

were negatively associated with the insoluble phospho-
rylated form of TAR DNA-binding protein 43 (TDP-43) 
(which is higher in AD [15]) but positively with solu-
ble phospho-TDP-43 C-terminal fragment migrating 
at approximately ~ 35  kDa (which is lower in AD [15]) 
and soluble tau (Fig.  3). Similarly, neurovascular pro-
teins such as platelet-derived growth factor receptor 
β (PDGRFRβ), and ABCB1 correlated positively with 
membrane-bound ACE2 but inversely with TBS-solu-
ble and vascular forms of ACE2, which in turn correlate 
with β-secretase 1 (BACE1) and advanced glycosyla-
tion end product-specific receptor (RAGE), proteins 
involved in the formation and accumulation of Aβ 
(Fig. 3).

Single-cell RNA sequencing data in the mouse and 
human brain show that ACE2 mRNA expression is 
enriched in pericytes [34, 62], and PDGFRβ, a marker 
of mural cells including pericytes, is reduced in AD [15, 
58]. Here, we found that microvascular PDGFRβ and 
aminopeptidase N (ANPEP) levels were negatively cor-
related with TBS-soluble ACE2 levels but were positively 
associated with detergent-soluble ACE2 levels (Fig.  3, 
Additional file 1: Fig. S4), suggesting a possible release of 
ACE2 from membranes linked with pericyte-related dys-
functions at the blood–brain barrier (BBB).

Together, these results suggest that the elevation 
of ACE2 in TBS-soluble and, to a lesser extent, in 
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microvessel fractions are associated with more advanced 
Aβ and tau pathologies and with a pattern of changes 
in vascular proteins consistent with AD progression. By 
contrast, membrane-bound ACE2 exhibited opposite 
trends and was strongly associated with reduced TDP-43 
proteinopathy and consolidated BBB markers.

ACE2 is observed in human and murine neurons 
and cerebral vessels
Localizing ACE2 within the neurovascular unit at the 
interface between the blood and the brain can provide 

basic information about SARS-CoV-2 penetration into 
the CNS. Therefore, we sought to determine whether 
ACE2 protein was enriched in brain microvessel 
extracts compared to post-vascular parenchymal frac-
tions and unfractionated homogenates from human 
(parietal cortex) and mouse (whole brain) samples 
(Fig.  4). We found a strong enrichment of ACE2 in 
murine cerebral microvessels, along with endothelial 
marker Claudin5 and a marker of mural cells including 
pericytes, PDGFRβ (Fig. 4F). However, in human brain 
samples, ACE2 protein levels were more comparable 
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Fig. 4 ACE2 immunosignal is strong in mouse microvessels, but also found in neurons in human brain extracts. A, F Immunoblotting detection 
of ACE2 in human (parietal cortex) A and mouse (whole brain) F vascular fractions “Va”, compared to postvascular parenchymal samples 
depleted in vascular cells “P” and total homogenates “T”. SDS-PAGE was performed on a 4–20% acrylamide gradient gel. For comparison purposes, 
synaptophysin (synaptic/neuronal marker), Claudin5 (endothelial marker), and PDGFRβ (a marker of mural cells, including pericytes), are also shown. 
In the mouse brain, ACE2 is highly enriched in microvessels compared to the postvascular fraction, different to what is observed in the human A, F. 
B–E, G, H Representative immunostaining of ACE2 (green) in human B–E and murine cerebrovascular fractions G, H, with collagen IV (endothelial 
marker) in red B, D, G, H or blue C, E, as well as NeuN (neuronal marker) in red C, E and DAPI (nuclei) in blue B–H. In human samples, ACE2 staining 
is most frequently observed in neurons, whereas ACE2 staining is concentrated in murine microvessels. Red arrows point to ACE2 + /NeuN + cells, 
blue arrows to ACE2 + /NeuN- cells, and green arrows to erythrocytes. ACE2 antibodies: rb mAb #ab108252 A, F, rb pAb #HPA000288 B, D, G 
and #35–1875 C, E, H. Scale bar: 10 µm. ACE2 Angiotensin-Converting Enzyme 2, Coll IV Collagen IV Coloc Colocalization, NeuN Neuronal nuclear 
protein, PDGFRβ Platelet Derived Growth Factor Receptor Beta. mAb Monoclonal antibody, pAb Polyclonal antibody
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between microvessel and parenchymal fractions, the 
latter being enriched in the neuronal marker synapto-
physin (Fig. 4A). Thus, these Western blot results sug-
gest that the localization of ACE2 in the brain differs 
between both species, with a cerebrovascular predomi-
nance in the mouse that was not observed in humans.

To confirm the cellular localization of ACE2, immu-
nostaining was also performed on cerebrovascular 
extracts (Fig.  4B-E, G, H). A moderate immunofluores-
cent signal was detected inside microvessels isolated 
from human brains (collagen IV-positive, Fig. 4B, C) and 
NeuN-positive neurons (Fig.  4C, E). By contrast in the 
mouse, ACE2 immunosignal was intense in microves-
sels and colocalized well with collagen IV (Fig. 4G, H). To 
validate immunostaining in human tissue sections, nine 
anti-ACE2 antibodies were used in human testis samples 
where ACE2 is highly expressed in Leydig and Sertoli 
cells (Additional file 1: Fig. S5). All antibodies showed a 
clear signal in this tissue. However, detection of ACE2 in 
the human brain, where levels are at least 20 times lower 

(results not shown), was challenging with a majority of 
antibodies, and only antibodies ab108252, HPA000288 
and 35–1875 gave a satisfactory signal. In human hip-
pocampal sections, ACE2 was detected in NeuN-posi-
tive neurons, particularly in large ones staining weakly 
for DAPI and in small ones with a strong DAPI signal 
(Fig. 5A, B). In sections of human parietal cortex, ACE2 
detection was also more prominent in neuron-like cells 
(Fig.  5C, D, E). On the other hand, in mouse sections, 
ACE2 staining was more intense in the cerebrovascu-
lature and colocalized neatly with PDGFRβ, indicating 
an expression in mouse pericytes (Fig.  5F–H). Negative 
controls and channel splits are shown in Additional file 1: 
Fig. S6. These results are consistent with Western blot 
data, showing that ACE2 can be detected in neuron-like 
cells in the human brain, whereas it is concentrated in 
cerebrovascular cells in the mouse.
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Fig. 5 In tissue sections, ACE2 immunostaining is predominantly observed in neurons in the human brain and in the cerebrovasculature in mice. 
A–E Representative immunostaining of ACE2 (green in IF or red in IHC) in fresh frozen human hippocampus A, B, formalin-fixed paraffin-embedded 
parietal cortex C–E, and in murine fresh frozen hippocampal F and cerebellar G–H sections. Inlaid in G, the primary mAb was preblocked with its 
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or PDGFRβ (a marker of mural cells including pericytes) H are in red, and DAPI (nuclei) is in blue A–C, F–H. For immunohistochemistry, sections were 
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ACE2 antibodies: rabbit mAb #ab108252 C, G, rabbit pAb #HPA000288 A, B, E, F and #35–1875 D or goat pAb #AF3437. Scale bars: 200 µm A, F, 
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Microvascular and whole‑brain ACE2 protein levels are 
not altered in a mouse model of AD
To probe whether changes in ACE2 could be a conse-
quence of classical tau and Aβ neuropathology, we used 

the triple transgenic mouse model of AD (3xTg-AD) [64], 
which develops Aβ plaques and neurofibrillary tangles 
(NFT) by 12  months of age. We quantified ACE2 pro-
tein levels in both 3xTg-AD and non-transgenic mice 
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Fig. 6 ACE2 levels are not altered in a model of AD, the 3xTg-AD mouse. A Determination of ACE2 levels by Western immunoblotting in brain 
homogenates from NonTg and 3xTg-AD mice aged 4, 12, and 18 months. No difference was observed in TBS-soluble and detergent-soluble ACE2. 
B In brain microvessel-enriched fractions from NonTg and 3xTg-AD mice aged 6, 12, 18 months, and in 18-month-old animals fed either a control 
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that exacerbates AD-like neuropathology. Examples were taken from the same immunoblot experiment, and consecutive bands loaded in random 
order are shown. Actin and cyclophilin B are shown as loading controls. Data are represented as mean ± SEM. Statistical analysis: Kruskal–Wallis, ns, 
non-significant. ACE2 Angiotensin-Converting Enzyme 2, AD Alzheimer’s disease, Non-Tg,/NT Non-transgenic mice, 3 × 3xTg-AD mice, CD/C Control 
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from two different cohorts: (i) mice of 4 or 6, 12, and 
18 months of age, (ii) and 18-month-old mice fed either 
a control or a HFD that exacerbates neuropathology [83] 
(Fig.  6). No significant change was observed in protein 
levels of ACE2 in TBS-soluble or detergent-soluble frac-
tions according to genotype and age (Fig. 6A). Similarly, 
ACE2 in cerebrovascular fractions did not vary according 
to genotype, age, and diet (Fig. 6B). These results suggest 
that the development of human tau and Aβ neuropathol-
ogy in mice is insufficient to increase murine ACE2 lev-
els, even when combined with aging and HFD, two risk 
factors for both AD and COVID-19 infection.

Discussion
This present postmortem study investigated ACE2 con-
centrations in the brain of individuals with AD from two 
different cohorts. We assessed ACE2 protein levels in all 
subjects and mRNA expression in a subset. We observed 
a significant relationship between ACE2 levels, the neu-
ropathological diagnosis of AD, and antemortem cogni-
tive evaluation. Overall, our data indicate that (1) levels 
of TBS-soluble ACE2 in the parietal cortex were higher 
in persons with AD when compared to control subjects, 
accompanied by an elevation in ACE2 mRNA transcripts; 
(2) lower cognitive scores were associated with higher 
levels of ACE2 in TBS-soluble and cerebrovascular frac-
tions; (3) an apparent transfer of ACE2 from membranes 
to a soluble compartment was associated with pericyte 
loss and other markers of AD progression; (4) ACE2 lev-
els remained unchanged in an animal model of AD-like 
neuropathology; (5) whereas ACE2 was highly concen-
trated in microvessels in the mouse brain, it was more 
frequently found in neurons in the human brain. Such a 
series of observations highlight that an AD diagnosis is 
associated with higher levels of specific forms of ACE2 
in the brain, which might contribute to the higher risk 
of SARS-CoV-2 CNS infection in cognitively impaired 
individuals.

Higher levels of soluble ACE2 are associated with AD 
and cognitive decline
The present observation of higher levels of soluble ACE2 
in AD is in agreement with a previous report using a 
limited number of hippocampal samples of AD subjects 
(n = 13) compared to Controls (n = 5) [20]. Furthermore, 
preliminary human brain microarray data mentioned in 
a letter to the Editor also suggest a higher ACE2 expres-
sion levels in AD patients [51]. Although an association 
between SARS-CoV-2 infection and cognitive impair-
ment has been previously evidenced at the population 
level [86] and hinted by genetic studies [28, 45], a sig-
nificant correlation between ACE2 levels in the brain and 
cognitive scores has not been reported previously.

Several mechanisms could explain the higher levels of 
ACE2 in AD. Since old age increases the risk of infection 
with SARS-CoV-2 and of developing cognitive decline 
and AD, we could have expected an association between 
cerebral ACE2 levels and advanced age. However, no 
correlation between age and ACE2 could be evidenced 
here in both human and mouse samples, suggesting that 
changes in TBS-soluble ACE2 are not directly related 
to age but rather to AD pathology, as supported by the 
correlations observed with Aβ and tau pathologies in 
human subjects. This is consistent with health records 
data showing that dementia is associated with a higher 
risk for COVID-19, independently of age [86]. Second, 
the increase in ACE2 could be a consequence of the AD 
neurodegenerative process. Indeed, a recent network 
analysis suggested that AD and COVID-19 share defects 
in neuroinflammation and microvascular injury pathways 
[96]. Although we did not observe changes in murine 
ACE2 protein levels in the 3xTg-AD model, it should be 
reminded that such a mouse model displays an amount 
of Aβ and tau 1 to 3 orders of magnitude lower than 
what is typically found in an AD brain. A compensatory 
mechanism in response to AD neuropathology, includ-
ing an increase in gene transcription, is consistent with 
the higher ACE2 mRNA expression measured in AD 
samples.

ACE2 is part of the renin angiotensin system (RAS), 
which regulates the vascular system in the whole body. 
An increase of cerebral ACE2 may impact the brain RAS, 
thereby affecting blood flow, arterial pressure, neuro-
inflammation and, consequently, brain function. Such 
a dysregulation of the RAS equilibrium in the brain 
could contribute to the aetiology of several neurode-
generative diseases, including AD [2, 87, 88]. For exam-
ple, in a cohort study including community-dwelling 
older adults with mild to moderate AD, the use of ACE 
inhibitors (ACEi) was associated with a slower cogni-
tive decline, independent from their antihypertensive 
effects [76]. ACEi and angiotensin II receptor blockers 
(ARBs) are also under investigation to improve cogni-
tive impairment associated with AD [27, 30, 39, 71]. We 
did not detect any association with the use of drugs act-
ing on ACE, such as ARBs or ACEi, and brain levels of 
ACE2, but the study was not designed for that purpose. 
However, it is important to note that the levels of ACE2 
detected by immunoblotting may not directly inform on 
ACE2 activity. Indeed, a postmortem assessment with a 
fluorogenic assay instead showed a reduction of ACE2 
enzymatic activity in AD [46]. Studies in animals indi-
cate that pharmacological activation of ACE2 rather 
reduces hippocampal soluble Aβ and reverses cognitive 
impairment in the Tg2576 model of Aβ neuropathology 
[25]. A loss of function of cerebral ACE2 is expected to 
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reduce levels of Ang1-7 and MAS/G receptor activity, 
leading to a decrease in anti-inflammatory, anti-oxidant, 
vasodilatory, and neuroprotective properties[42], which 
is undesirable in AD [30]. Imbalances in the brain RAS 
pathway have been shown to aggravate vascular pathol-
ogy features associated with AD such as stroke or infarcts 
[30]. The increase in soluble ACE2 described here may 
involves a shift towards an inactive form of the enzyme, 
which may in turn translate in reduced ACE2-mediated 
response and defective brain RAS in the AD brain.

Another peculiar observation is the difference between 
ACE2 found in soluble fractions containing intracel-
lular/extracellular proteins versus ACE2 retrieved in 
detergent-soluble fractions containing membrane-bound 
proteins. Overall, ACE2 in TBS-soluble fractions was 
higher in subjects with AD, while no such trend was 
observed with ACE2 from cell membranes. Moreover, 
the correlation between ACE2 and AD-relevant mark-
ers, most notably the pericyte markers PDGFRβ and oth-
ers like ANPEP, differed significantly between the two 
fractions. The strong inverse association with TDP-43 
pathology was also limited to detergent-soluble (mem-
brane) ACE2. Previous studies did not distinguish TBS-
soluble versus detergent-soluble ACE2 [20, 51]. Although 
ACE2 is generally considered a membrane protein, its 
actual attachment to the cytoplasm membrane is rela-
tively weak. For example, the ACE2 ectodomain can be 
cleaved by ADAM17 or TMPRSS2 and released in the 
cytoplasm [37, 97]. Recent studies report that a decrease 
in active membrane-bound ACE2 due to ADAM17 and 
TMPRSS2 overactivation could be deleterious for SARS-
CoV-2-infected patients [37, 65, 89]. However, we did 
not observe differences in mRNA and protein levels of 
TMPRSS2. Vascular ACE2 was also specifically meas-
ured in this study. Despite associations with cognitive 
scores and PDGFRβ levels, no significant difference was 
detected between groups, possibly due to the interindi-
vidual variability induced by the separation process. An 
intriguing possibility explaining the higher content in 
ACE2 specifically in the TBS fraction, as detected with an 
antibody targeting the N-terminal extracellular domain, 
could be an enhanced release of ACE2 from the mem-
brane to the cytosol or the extracellular parenchyma in 
AD, also termed ACE2 shedding [37, 85]. Alternatively, 
abnormal intracellular trafficking could be involved, with 
unglycosylated ACE2 remaining trapped in the endo-
plasmic reticulum, leading to the intracellular accumula-
tion of ACE2 instead of translocation to the cell surface 
[4, 6, 74]. Such a detachment of ACE2 from cell mem-
branes may be a pathological phenomenon associated 
with AD, warranting further study. In any case, it would 
not directly facilitate SARS-CoV-2 entry into brain cells. 
As stated above, it would rather indicate a disturbance 

in ACE2 normal function and signalling, defective brain 
RAS and in turn, a fertile ground for SARS-CoV-2 aggra-
vation in AD.

The present work also unveils additional information 
on the cellular localization of ACE2 in the human brain. 
Unlike in the mouse, where the enrichment in microves-
sels was evident, the detection of ACE2 in human brain 
capillaries became apparent only after microvascular 
fractionation. However, ACE2 was clearly present in neu-
rons in human brain sections, corroborating Western blot 
results. Nonetheless, it should be noted that brains from 
mice were harvested quickly after transcardiac perfusion. 
On the other hand, human brain tissue underwent pre-
mortem and postmortem events, which may have affected 
ACE2 distribution and detection. In sum, the present 
data obtained using several different antibodies indicate 
that the cerebral distribution of ACE2 is less strictly vas-
cular, more neuronal in the human brain compared to the 
mouse brain. At the very least, work related to human 
ACE2 but performed in mouse models should be inter-
preted with caution regarding their possible application 
to the brain RAS, AD and other neuropathologies, as well 
as central SARS-CoV-2 infection in humans.

Conclusions
In summary, the present data show that an accumulation 
of the soluble form of ACE2 is associated with cognitive 
decline in individuals with a neuropathological diagnosis 
of AD. ACE2 levels were not influenced by age or biologi-
cal sex. We also observed a strong association between 
soluble ACE2 levels and AD neuropathology, as well as 
pericyte loss. While such a rise in ACE2 could initially be 
interpreted as increased entry points for SARS-CoV-2 in 
the CNS, the observed shift toward a soluble form may 
more likely be an indication of defective brain RAS in 
AD. The search for molecular cues regulating ACE2 and 
the RAS in the brain may ultimately lead to the discovery 
of new therapeutics to prevent cognitive decline and AD.
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