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Abstract 

Background Grade 4 glioma is the most aggressive and currently incurable brain tumor with a median survival 
of one year in adult patients. Elucidating novel transcriptomic and epigenetic contributors to the molecular heteroge‑
neity underlying its aggressiveness may lead to improved clinical outcomes.

Methods To identify grade 4 glioma ‑associated 5‑hydroxymethylcytosine (5hmC) and transcriptomic features as well 
as their cross‑talks, genome‑wide 5hmC and transcriptomic profiles of tissue samples from 61 patients with grade 4 
gliomas and 9 normal controls were obtained for differential and co‑regulation/co‑modification analyses. Prognostic 
models on overall survival based on transcriptomic features and the 5hmC modifications summarized over genic 
regions (promoters, gene bodies) and brain‑derived histone marks were developed using machine learning 
algorithms.

Results Despite global reduction, the majority of differential 5hmC features showed higher modification levels 
in grade 4 gliomas as compared to normal controls. In addition, the bi‑directional correlations between 5hmC modifi‑
cations over promoter regions or gene bodies and gene expression were greatly disturbed in grade 4 gliomas regard‑
less of IDH1 mutation status. Phenotype‑associated co‑regulated 5hmC–5hmC modules and 5hmC–mRNA modules 
not only are enriched with different molecular pathways that are indicative of the pathogenesis of grade 4 gliomas, 
but also are of prognostic significance comparable to IDH1 mutation status. Lastly, the best‑performing 5hmC model 
can predict patient survival at a much higher accuracy (c‑index = 74%) when compared to conventional prognostic 
factor IDH1 (c‑index = 57%), capturing the molecular characteristics of tumors that are independent of IDH1 mutation 
status and gene expression‑based molecular subtypes.

Conclusions The 5hmC‑based prognostic model could offer a robust tool to predict survival in patients with grade 4 
gliomas, potentially outperforming existing prognostic factors such as IDH1 mutations. The crosstalk between 5hmC 
and gene expression revealed another layer of complexity underlying the molecular heterogeneity in grade 4 glio‑
mas, offering opportunities for identifying novel therapeutic targets.
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Background
WHO (World Health Organization) grade 4 gliomas 
including IDH wild-type glioblastoma (GBM) and IDH 
mutant astrocytoma are the most malignant primary 
tumors in the Central Nervous System (CNS) [1]. Grade 
4 glioma is diagnosed in ~ 13,000 new patients with 
~9000 associated deaths in the United States every year 
[2]. Despite advances in surgery and combination thera-
pies, clinical outcomes for grade 4 gliomas have not been 
significantly improved [3]. A hallmark of these malig-
nant brain tumors is their heterogeneity, wherein dis-
crete subsets of grade 4 gliomas display unique patterns 
of pathogenesis, biology, and prognosis [3, 4]. Since the 
microenvironment within a tumor is not homogene-
ous, differences in oxygen pressure, blood vessel density, 
growth factors, and composition of extracellular matrix 
occur naturally in tumors, which in turn may manifest 
phenotypic and mutational/epigenetic differences [5]. 
The intrinsic and extrinsic heterogeneity together with 
the brain-exclusive microenvironment result in reduced 
therapeutic response and uniformly poor prognosis 
among patients with grade 4 gliomas [4, 6–9]. Particu-
larly, increased heterogeneity in grade 4 gliomas is known 
to be associated with poor prognosis with worse overall 
survival (OS) [6–9]. Tumor heterogeneity thus has direct 
translational relevance in guiding therapeutic strategies. 
While specific molecular markers such as mutations in 
the genes encoding IDH1 (isocitrate dehydrogenase 1) 
and EGFR have been implicated in clinical diagnosis, 
prognosis and treatments, further improvement in prog-
nostic stratification and novel therapies are still urgently 
needed to improve clinical outcomes [10].

Previous studies have revealed perturbation within the 
cancer epigenome, the mediator between environment 
and genome, and a common cancer hallmark as well [11]. 
Epigenetic factors such as cytosine modifications, histone 
modifications, and various non-coding RNAs (ncRNAs), 
as key regulators, play critical roles in the development 
and progression of tumorigenesis [11–13]. In grade 4 
gliomas, methylation status of MGMT (O-6-Methylgua-
nine-DNA Methyltransferase) gene promoter has been 
identified as a robust and independent predictive factor 
for the response to temozolomide, the first-line chemo-
therapy for grade 4 gliomas [14]. Therefore, elucidating 
novel epigenetic modifications that reflect the heteroge-
neity of grade 4 gliomas and their interactions with gene 
transcription could enhance our understanding of the 
underlying mechanisms of prognosis and responses to 
treatments in grade 4 gliomas.

Distinct from the extensively studied 5-methylcyt-
soines (5mC) in cancers, 5-hydroxymethylcytosines 
(5hmC) are epigenetic modifications enriched primar-
ily in enhancers as well as gene bodies and promoters 

of actively expressed genes [15]. Depletion of 5hmC has 
been associated with the hypermethylation of gene bod-
ies in various cancers including grade 4 gliomas [16–21]. 
Despite the positive correlation between 5hmC level 
and gene expression, a recent study in colorectal cancer 
also revealed a positive association between 5hmC and 
lncRNA transcription [22]. However, the interactions 
between 5hmC and transcriptomic features in grade 4 
gliomas remain to be explored. In addition, accumu-
lating studies showed the association between 5hmC 
and heterogeneity and the clinical outcomes in grade 
4 gliomas, therefore suggesting 5hmC as novel epige-
netic biomarkers for improved stratification in patients 
with grade 4 gliomas [19, 23]. However, previous stud-
ies were restricted to functional relevance of 5hmC in 
the gene body regions. Extending co-localization analy-
sis between 5hmC modification and gene body regions 
to other genomic features such as promoters and histone 
modifications will likely offer opportunities for identify-
ing therapeutic targets and prognostic markers. Because 
5hmC dynamics can be informative of gliomagenesis and 
is highly tissue-specific, an epigenome-wide analysis of 
5hmC in grade 4 gliomas will improve our understand-
ing of the interactions between 5hmC and transcriptional 
products as well as the implications of 5hmC in response 
to therapies and patient survival in grade 4 gliomas 
[24–28].

In this study, we explored the prognostic value of 
5hmC in grade 4 gliomas with follow-up information 
and OS. The 5hmC-Seal technique [15], a highly sensi-
tive chemical labeling technique was employed to profile 
genome-wide 5hmC in tumor samples [26]. The genome-
wide 5hmC profiles were used to explore the prognostic 
biomarkers from genomic features including gene bodies, 
promoters, and histone modification marks and to evalu-
ate the synergy of these genomic features with clinical 
parameters and subtypes based on transcriptional char-
acteristics [4]. Additionally, we assessed the crosstalk 
between 5hmC and gene expression through co-regula-
tion network analysis and identified specific co-regulated 
modules, in which relevant biological pathways were 
involved. Our results demonstrate potentially critical 
roles of 5hmC in regulating transcription as novel prog-
nostic biomarkers for grade 4 gliomas.

Methods
Clinical samples
This study was performed under a protocol approved 
by the Northwestern Institutional Review Board (IRB). 
All the samples were de-identified before we received 
them. We obtained fresh-frozen tissue samples of 61 
prospectively enrolled adult patients with grade 4 glio-
mas (≥ 18 years) from the Northwestern Nervous System 
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Tissue Bank (NSTB) at Northwestern University Fein-
berg School of Medicine, and 9 normal brain samples 
from the NeuroBiobank at the US National Institutes of 
Health (https:// neuro bank. nih. gov) (Table  1). Among 
the 61 patients with grade 4 gliomas, 63.9% (n = 39) 
were treatment naïve, 65.6% (n = 40) were of European 
ancestry, and 83.6% (n = 51) had IDH1 wild-type (WT) 
tumors (GBM). The median age of the patients with 
grade 4 gliomas was 60.0 years (range 46–65 years) and 
62.3% (n = 38) were males, and the median age of the 
normal controls was 55 (range 48–60  years) and 55.6% 
(n = 5) were males. Diagnosis and grading for the NSTB 
grade 4 gliomas samples were based on the WHO Clas-
sification and Grading System for CNS Tumors Guide-
lines [1]. Baseline demographic, clinical, pathological, 

and clinical outcome data, such as age, sex, self-reported 
race/ethnicity, mutation status, and survival time were 
retrieved from medical records using our established 
protocol. The grade 4 gliomas were classified into Neural 
(N) (n = 4), Proneural (P) (n = 19), Classical (C) (n = 17) 
and Mesenchymal (M) (n = 21) after the RNA-seq data 
were processed and normalized as described below using 
the Simple Glioblastoma Subclassifier [29]. After tissue 
biopsy, 77.0% (n = 47) patients received standard treat-
ments, including adjuvant radiotherapy (RT) and temo-
zolomide (TMZ) chemotherapy. Thirty-nine (63.9%) 
patients were deceased with an average OS time of 10.8 
(± 9.2) months, after being followed up for 44  months. 
All samples were randomized for the assays and the 
technicians were blinded to sample identities. Informed 

Table 1 Demographics and clinical characteristics of the study participants

IDH1 isocitrate dehydrogenase 1, RT radio therapy, TMZ temozolomide chemotherapy, sd standard deviation, lq lower quantile, uq upper quantile
a Two-tailed Wilcoxon rank sum test
b Pearson’s Chi-squared test for two-sample proportions
c Subtypes predicted based on the expression profiles of core gene signatures

Category Grade 4 glioma p-value

IDH1 mutant
(IDH1-Mut astrocytoma)

IDH1 wild type
(GBM)

n = 10 n = 51

Age at Diagnosis (yrs) Mean (sd) 59.5 (12) 39.3 (7)

Median (lq,uq) 61.0 (54.5,67.0) 38.0 (34,42.8) 0.00a

No. < 40 yrs 5 (50.0%) 7 (13.7%)

Sex Female 3 (30.0%) 20 (39.2%) 0.85b

Male 7 (70.0%) 31 (60.8%)

Population African American 1 (10.0%) 1 (2.0%)

European American 8 (80.0%) 32 (62.7%) 0.34b

Multiracial – 5 (9.8%)

Unknown 1 (10.0%) 12 (23.5%)

Molecular  Subtypec Classical 1 (10.0%) 16 (31.4%)

Mesenchymal 2 (20.0%) 19 (37.3%) 0.03b

Neural – 4 (7.8%)

Proneural 7 (70.0%) 12 (23.5%)

Pre‑Treatment Treatment Naïve 4 (40.0%) 35 (68.6%)

RT 6 (60.0%) 11 (21.6%) 0.08b

TMZ 6 (60.0%) 12 (23.5%)

Post‑Treatment Treatment Naïve 2 (20.0%) 12 (23.5%)

RT 6 (60.0%) 35 (68.6%) 1b

TMZ 8 (80.0%) 34 (66.7%)

Recurrence Status Newly‑diagnosed 4 (40%) 35 (68.6%) 0.17b

Recurrent 6 (60%) 16 (31.4%)

Survival Status Alive 6 (60.0%) 16 (31.4%) 0.17b

Dead 4 (40.0%) 35 (68.6%)

Overall Survival (months) Alive—mean (sd) 36.0 (9.6) 18.0 (13.2)

Dead—mean (sd) 15.6 (15.6) 10.2 (8.4)

https://neurobank.nih.gov
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consent was obtained for each participating individual 
for the NSTB samples.

RNA-seq and bioinformatic processing
Total RNA was isolated using Qiagen RNeasy Kit (Cat 
#74104) or Trizol, followed by treatment with the Ribo-
Zero Gold rRNA Removal Kit (Illumina, Inc., USA) [30]. 
The cDNA libraries were prepared using the TrueSeq 
Stranded Total RNA Library Prep Kit (Illumina, Inc., 
USA) and the next-generation sequencing (NGS) was 
performed on the Illumina HiSeq 4000 platform (PE50) 
at the University of Chicago Genomics Facility. Approxi-
mately 24 million read pairs were generated from each 
library. Raw sequencing reads were trimmed and fil-
tered for low-quality bases and reads (quality score ≥  20 
for a minimum of 90% bases) using the FASTX Toolkit 
(v 0.0.14), followed by alignment to the human genome 
reference (GRCh37/hg19 without chromosome X, Y and 
Mitochondria) using the spliced aligner Tophat (v 2.1.0) 
with the default paired-end mode [31]. Read pairs were 
concordantly aligned with ≤ 2 mismatches. Aligned read 
pairs with mapping quality score ≥ 20 were counted for 
genomic features according to the start and end coordi-
nates derived from the ENCODE-derived [32] annota-
tion files (hg19) using FeatureCounts from Subread (v 
1.6.1) with strand information [33, 34].

Profiling of 5hmC and bioinformatic processing
Genomic DNA was isolated from tissues using the 
QIAamp DNA Mini Kit (Qiagen, Germany). DNA frag-
mentation was done by sonication, and quality and quan-
tity examined with standard molecular biology protocols 
using Qubit (Thermo Fisher, USA). Approximately 50 ng 
per sample was used to construct the 5hmC-Seal library 
as we previously described [15, 26, 35, 36], followed by 
the NGS on the NextSeq 500 platform (PE39) at the 
University of Chicago Genomics Facility. On average 
25 million read counts were obtained for each sample. 
Robustness of the 5hmC-Seal technique, including repro-
ducibility and comparison with the “gold standard” TAB-
seq has been previously described [15, 26, 36, 37].

The raw 5hmC-Seal data were summarized using 
the pipelines that we previously described [26, 35, 38]. 
Briefly, raw sequencing reads were trimmed and filtered 
for low-quality bases using the FASTX Toolkit (v 0.0.14), 
followed by alignment to hg19 using Bowtie2 (v 2.2.6) 
with the end-to-end alignment mode [39]. Read pairs 
were concordantly aligned with fragment length ≤ 500 bp 
and with up to one ambiguous base and up to four mis-
matched bases per 100  bp. Aligned read pairs were 
then sorted, indexed and deduplicated using Picard (v 
2.6.0). Alignments with mapping quality score ≥ 10 were 
counted for gene bodies, and histone modifications [35].

Differential analysis between grade 4 gliomas and normal 
brain tissues
Differential 5hmC and transcription was analyzed using 
the DESeq2 (v 1.30.1) (Fig.  1) [40] for various genomic 
features with at least 5 read counts across 80% of sam-
ples. Multivariable logistic regression models adjusted for 
gender and 10-yrs age groups were used to identify fea-
tures differentially modified or expressed at 5% false dis-
covery rate (FDR) between grade 4 gliomas and normal 
brain tissues, as well as between IDH1 mutant astrocy-
toma (Mut) and IDH1-wild type (GBM) grade 4 gliomas. 
For downstream analysis, the raw sequencing data were 
transformed using the variance stabilizing method [40]. 
All statistical analysis was performed under the R Statis-
tical Computing Environment (v 4.0.3) [41].

To determine whether the associations between gene 
expression—mRNA and local/cis-acting gene  body5hmC 
and  promoter5hmC altered in grade 4 gliomas as com-
pared to normal brain tissues or in IDH1-WT as com-
pared to IDH1-Mut, an equal number of samples (n = 9) 
were randomly selected from each group (i.e., Control, 
IDH1-WT [GBM], and IDH1-Mut astrocytoma). Pear-
son correlation coefficients (R) were computed between 
gene expression and 5hmC levels within each group 
of samples. Correlations are categorized into positive 
(R > 0), negative (R < 0), and strong correlations (|R|≥ 0.5) 
based on the R values. The over-representation analysis 
(ORA) was conducted to identify molecular pathways 
(≥ 10 component genes and hypergeometric test adjusted 
p-value < 0.05) from the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) associated with genes with altered 
correlations [42].

Co-regulation analysis between gene expression 
and 5hmC
Genomic features were first filtered based on the p-val-
ues (0.01 or the default p-value of 0.1), which were cal-
culated by modeling the variance of genes as an inverse 
gamma distribution [43]. To identify co-regulated 
5hmC–5hmC, mRNA–mRNA, or 5hmC–mRNA mod-
ules, the modified weighted gene co-expression network 
analysis (WGCNA) with improved soft-threshold selec-
tion was conducted using the CEMiTool with default 
parameters [43, 44]. Once the co-regulated modules were 
identified, ORA was conducted to assess whether these 
co-regulated modules were enriched with any KEGG 
pathways and Gene Ontology (GO) biological processes 
(≥ 5 component genes and hypergeometric test adjusted 
p-value < 0.05) [42, 45]. The Gene Set Enrichment Anal-
ysis (GSEA) [43, 46] was also conducted to evaluate the 
association between these co-regulated modules and 
clinical classes (e.g., by IDH1 mutation) based on the nor-
malized enrichment score (NES) and adjusted empirical 
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p-values. Furthermore, protein–protein interactions 
from Reactome were integrated with the co-regulated 
modules to identify master regulators/players for each 
co-regulation type (e.g., 5hmC–5hmC) [43, 46, 47].

Prognostic significance of co-regulated modules
Cox models were developed for individual modules and 
the combined modules within each co-regulation type to 
assess whether their prognostic significance. Specifically, 
univariate Cox models were first constructed to evalu-
ate the association between the eigengene values (i.e., 
the first principal component) of individual modules and 
OS. Within each interaction type (e.g., mRNA–mRNA), 
multivariable Cox models were further constructed using 
all modules. A weighted Co-regulated Module-based 
Prognostic Score (CMPS) was then calculated for each 
sample. Samples were categorized into low- and high-
risk groups based on the median of CMPS. The Kaplan-
Meir (KM) models were built to evaluate differential OS 
survival. Multivariable Cox models adjusting for covari-
ates such as age, gender, or IDH1 mutation were also 
developed to evaluate the association between CMPS 
(numeric) and survival probability. The time-dependent 
Receiver Operating Characteristic (ROC) curve and the 
Area under the ROC Curve (AUROC) were plotted to 
compare the performances between CMPS and conven-
tional prognostic factors, such as IDH1 mutation.

Developing integrative prognostic models for grade 4 
gliomas
To identify prognostic signatures that are independent of 
conventional prognostic factors such as IDH1 mutation 
status, the 5hmC-, mRNA-based prognostic models were 
developed using a two-step procedure for each genomic 
feature type (i.e.,  promoter5hmC,  H3K27ac5hmC and gene 
 body5hmC, and mRNA, separately (Fig.  1). In Step 1, 
for more efficient modeling and feature selection, we 
selected a list of candidate features by filtering out those 
with less variation (i.e., less informative), based on coeffi-
cient of variance (CV) < upper quartile (CV) across grade 
4 gliomas. In Step 2, the candidate features from step 1 
were further ranked and selected to build a final prog-
nostic model by applying machine learning algorithms 
or statistical models, such as random forest, univari-
ate Cox model, and generalized linear model via penal-
ized maximum likelihood. Specifically, genomic features 
will be ranked by importance using the abovementioned 
methods, separately. The top 10, 20, 30, 40 and 50 fea-
tures that were present in each feature selection method 
were retained and evaluated using 50 repeated three-
fold stratified cross-validation under survival prediction 
models such as univariate Cox model, gradient boosted 
generalized linear survival learner (glmboost), and the 
generalized linear survival learner with elastic net regu-
larization (glmnet). In addition, gender (categorical), 

Fig. 1 Study population and an overview of workflow. The 5hmC and transcriptomic profiles obtained in tissue samples from a set of patients 
with grade 4 gliomas (n = 61) and normal controls (n = 9) are investigated for grade 4 gliomas‑associated expression and 5hmC, as well 
as co‑regulated modules by interaction type (i.e., mRNA–mRNA, 5hmC–5hmC, 5hmC–mRNA). The 5hmC‑derived prognostic scores based 
on co‑regulated modules are explored for patient overall survival using machine learning algorithms, such as elastic net and random forest, 
and the Cox proportional hazards model. 5hmC: 5‑hydroxymethylcytosine, C‑index: Harrell’s C‑index (the concordance index)
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age (continuous), and IDH1 mutation (categorical) were 
added into the survival prediction models [48, 49]. The 
Harrell’s concordance index (i.e., c-index, a weighted 
average of time-specific AUCs) and 95% confidence inter-
vals (CI) of the testing set within each iteration were used 
as the performance metrics to select the best models [50]. 
Patients with grade 4 gliomas were further classified into 
low- and high- risk groups based on the predicted risk 
scores obtained from the best model by summing up the 
products of coefficients and final variables. The KM sur-
vival analysis was conducted to evaluate differential OS 
between the low- and high-risk groups, as determined by 
the log-rank test.

Results
Genome-wide distributions indicate re-wiring of 5hmC 
and gene expression relationships in grade 4 gliomas
The distributions of 5hmC were compared across vari-
ous genomic features. Similar to our observations in 
the cfDNA samples from gliomas [35], the 5hmC-Seal 
reads profiled in these tissues were more abundant in 
gene bodies and exonic regions relative to their flanking 
regions and depleted at the promoter regions (Fig.  2A). 
Notably, the distribution of 5hmC-contatining reads 
from both grade 4 gliomas and normal controls showed 
more co-localization with brain-derived enhancer mark-
ers, e.g., H3K27ac loci, when compared with other tissue 
types (pair-wise one-tailed z-test p < 0.01), including liver, 
lung, and ovary from the Roadmap Epigenomics Project 
(Fig. 2B), consistent with the tissue-specificity and puta-
tive roles of 5hmC in gene activation.

In contrast to the well-established inverse correlation 
between promoter methylation and gene expression, the 
relationship between 5hmC modifications  (promoter5hmC 
or gene  body5hmC) and gene expression (mRNA) appeared 
to be bidirectional, and significantly more positive cor-
relations (R > 0) were observed in IDH1-WT tumors 
as compared to normal controls or IDH1-Mut tumors 
(one-tailed z-test p < 0.001) (Fig. 2C–E). For example, in 
normal controls, 47.4% of genes showed positive correla-
tions between  promoter5hmC and mRNA of its host gene, 
while that proportion increased to 60.6% and 55.0% in 

IDH1-WT and IDH1-Mut tumors, respectively. Notably, 
the proportions of those strong correlations (|R| ≥ 0.5) 
between  promoter5hmC and mRNA remained to be signif-
icantly higher in IDH1-Mut tumors (42.7%) as compared 
to IDH1-WT tumors (28.4%) or normal controls (17.4%) 
(Fig.  2D). The same trend was also observed between 
 promoter5hmC and gene  body5hmC (Fig. 2C) and between 
gene  body5hmC and mRNA (Fig. 2E). Of note, ~ 22.5% of 
the genes showed negative correlations between gene 
 body5hmC and host-gene mRNA in normal controls but 
positive associations in grade 4 gliomas (i.e., re-wired 
5hmC-expression features) were found to be significantly 
associated with pathways such as focal adhesion, tight 
junction and PI3K-Akt signaling pathway (hypergeomet-
ric test p < 0.01 and gene count ≥ 10) (Fig. 2F–G).

Differentially modified/expressed genomic features 
associated with grade 4 gliomas
Differential analyses of 5hmC modifications identi-
fied 601 gene bodies, 1407 promoter regions, and 4120 
H3K27ac loci between patients with grade 4 gliomas 
and normal controls at 5% FDR and fold change > 50% 
(Fig.  2H, Additional file  4: Table  S1). In contrast, 1895 
mRNAs were found to be differentially expressed 
between patients with grade 4 gliomas and normal 
controls at 5% FDR and fold change > 4 (Fig.  2H, Addi-
tional file  4: Table  S1). Additionally, differential analy-
ses between IDH1-WT and IDH1-Mut tumors (Fig. 2H, 
Additional file  5: Table  S2) showed 85 gene bodies, 127 
promoter regions, and 532 H3K27ac loci with differential 
5hmC modification levels, while 598 mRNAs showed dif-
ferential expression associated with the mutation status 
(Fig. 2H, Additional file 5: Table S2), as demonstrated by 
hierarchical clustering as well (Fig. 2H). Of note, KEGG 
enrichment analysis of genes with both higher 5hmC 
modifications and gene expressions in grade 4 gliomas 
suggested their enrichments with molecular pathways 
involved in transcriptional mis-regulation in cancer.

Interestingly, we observed a higher proportion of dif-
ferential features (e.g., gene bodies) in expression levels 
compared to corresponding 5hmC modifications, inde-
pendent of the fold change thresholds (Additional file 1: 

(See figure on next page.)
Fig. 2 Genome‑wide 5hmC and transcriptomic landscapes in grade 4 gliomas and normal brain tissues. A The 5hmC modifications are 
distinctly distributed across various genomic features. The read counts are normalized to per million counts. TSS, transcription start site; TES, 
transcription end site; A, splicing acceptor site; D, splicing donor site. B The 5hmC profiles in grade 4 gliomas and normal brain tissues are featured 
with tissue‑specificity with a higher co‑localization proportion of brain‑derived enhancer markers (H3K27ac), compared with other organs. Distinct 
correlation patterns are observed for grade 4 gliomas and normal controls between: C local 5hmC features (i.e., promoters and gene bodies); 
D local 5hmC promoter and gene expression; and E local gene body 5hmC and gene expression. F Dissection of genes with re‑wired 5hmC 
and transcription relationships in grade 4 gliomas. G Shown are KEGG pathways enriched among genes with re‑wired 5hmC and transcription 
relationships in grade 4 gliomas. H The heatmaps show differential 5hmC features (FDR < 0.05) and mRNA transcripts (FDR < 0.05) detected 
between patients with grade 4 gliomas and normal controls, or between IDH1 (encoding isocitrate dehydrogenase 1) wild‑type (WT) tumors (GBM) 
and mutants (grade 4, IDH mutant astrocytoma) in grade 4 gliomas. FDR, false discovery rate; Molecular subtypes are annotated as C (classical), N 
(neural), M (mesenchymal), and P (proneural)
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Fig. 2 (See legend on previous page.)
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Fig.  S1A). For example, approximately 60% of mRNAs 
were differentially expressed (FDR < 0.05) while less than 
25% of mRNAs showed differential hydroxymethylation 
(FDR < 0.05) between patients with grade 4 gliomas and 
normal controls, and only less than 25% mRNAs were 
both differentially expressed and hydroxymethylated 
(Additional file 1: Fig. S1A). In addition, the majority of 
differential 5hmC features (> 95%) showed higher modi-
fication levels in grade 4 gliomas compared to normal 
controls (Additional file  1: Fig.  S1A). In contrast, gene 
expression showed a more even proportion of both up- 
and down-regulation in grade 4 gliomas compared to 
normal controls (Additional file 1: Fig. S1A).

Co-regulation between gene expression and local 5hmC
The co-regulation analysis was conducted on the 12,975 
genes with both 5hmC and gene expression data. Five 
co-regulated 5hmC–mRNA modules were identified and 
were associated significantly with normal controls and 
IDH1-WT (FDR < 0.05), while two of them (module M2 
and M3) were significantly associated with IDH1-Mut 
(Fig. 3A, Table 2). Module M2 (NES = 5.12, FDR < 0.001), 
module M4 (NES = 4.18, FDR < 0.001), and module M5 
(NES = 4.3, FDR < 0.001) that contained expression data 
of 68, 40, and 38 genes, respectively, were significantly 
up-regulated in patients with IDH1 wild-type alleles 
(Fig. 3A, Table 2 & Additional file 6: Table S3), while in 
IDH1-Mut, module M2 was significantly down-regu-
lated (NES = −  2.78, FDR < 0.001). Interestingly, module 
M2 was significantly enriched with pathways relevant 
to epithelia mesenchymal transition, integrin-related 
pathways, and extracellular matrix organization, while 
module M4 is primarily enriched with inflammatory 
response such as neutrophil degranulation, and mod-
ule M5 is primarily enriched with cell-cycle related 
pathways (Fig.  3B, Additional file  7: Table  S4). Module 
M1 comprised of 366 mRNAs and EGFR’s 5hmC level, 
was significantly down-regulated in IDH1-WT tumors 
([NES = −  5.23, FDR < 0.001) and up-regulated in nor-
mal controls (NES = 5.59, FDR < 0.001) (Fig.  3A, Addi-
tional file  6: Table  S3). Notably, module M1 was found 
to be enriched with pathways involved in synapses and 
neuronal system (Fig. 3B, Additional file 7: Table S4). Of 
note, the pathways underlying the co-expression of genes 

(mRNA modules) were similar compared to those in the 
5hmC–mRNA modules. For example, pathways such as 
“Neuronal system” and  “Transmission across chemical 
synapses” were identified in M1 from both “only mRNA” 
(Additional file 1: Fig. S1B, C) and “5hmC–mRNA” analy-
sis (Fig. 3A, B), which however were different from path-
ways involved in “only 5hmC modules” (Fig. 3C, D).

Moreover, the integrative analysis of protein–protein 
interactions and co-regulated 5hmC–mRNA modules 
highlighted important genes as the network hubs, such as 
VIM (encoding vimentin) and SERPINE1 (encoding ser-
pin family E member 1) in module M2 (Fig. 3E), MOBP 
(encoding myelin associated oligodendrocyte basic pro-
tein) and SH3GL3 (encoding SH3 domain containing 
GRB2 like 3) in module M3 (Fig. 3F), as well as LAPTM5 
(encoding lysosomal protein transmembrane 5) in mod-
ule M4 (Fig. 3G, Additional file 2: Fig. S2A-B). Of note, 
these genes have been implicated in grade 4 glioma biol-
ogy. For example, LAPTM5 can suppress invasion and 
sensitize TMZ treatment [51]. SERPINE1 is a well-known 
mesenchymal signature related with cancer progression 
and poor prognosis in patients with grade 4 gliomas [52].

Co-regulation of 5hmC modifications over gene bodies
Because the co-regulation between 5hmC modification 
and gene expression primarily reflected the co-expres-
sion of genes (Fig.  3A, C, Additional file  1: Fig.  S1B-C, 
Additional file  6: Table  S3), we further investigated the 
co-regulation of 5hmC modifications over gene bodies. 
Six co-regulated 5hmC modules were identified. Among 
them, five were associated significantly with normal 
controls and IDH1-WT tumors (FDR < 0.05), and four 
were significantly associated with IDH1-Mut (Fig.  3C, 
Table 2). Module M2, M4, and M5 that contained 5hmC 
data of 181, 97, and 77 genes, respectively, were signifi-
cantly up-modified in patients with IDH1-WT tumors, 
while module M3 and module M6 were down-modified 
(Fig. 3C, Additional file 6: Table S3). In tumors with IDH1 
mutations, module M2, M3, and M6 were significantly 
up-modified, while module M5 was down-modified. 
Though module M1 was enriched with genes involved 
in integrin-related pathways, TYROBP casual network, 
and neutrophil degranulation, no significant associations 
were observed between module M1 and normal controls 

Fig. 3 Integrative analysis of co‑regulated modules in grade 4 gliomas and normal brain tissues. Co‑regulated 5hmC and transcription modules 
are derived from the modified weighted gene co‑expression network analysis (WGCNA) in grade 4 gliomas and normal brain tissue samples, 
separately. A Enriched co‑regulated 5hmC–mRNA modules are identified in normal controls, IDH1 (encoding isocitrate dehydrogenase 1) mutants 
(IDH1-Mut astrocytoma), and IDH1 wild‑type (IDH1-WT GBM) tumors. B Top five enriched GSEA gene sets associated with 5hmC–mRNA co‑regulated 
modules (FDR < 0.05 and gene count > 5) are shown. C Enriched co‑regulated 5hmC–5hmC modules are detected in normal controls, IDH1‑Mut, 
and IDH1‑WT tumors. D Top five enriched GSEA gene sets associated with 5hmC–5hmC co‑regulated modules (FDR < 0.05 and gene count > 5) 
are shown. E–G Network hubs of co‑regulated 5hmC–mRNA modules are shown for respective modules. H, I Network hubs of co‑regulated 5hmC 
modules are shown for respective modules. FDR false discovery rate, GSEA Gene Set Enrichment Analysis. CE denotes co‑expression/regulation 
hubs; INT denotes protein–protein interaction hubs; CE + INT denotes co‑expression/regulation and protein–protein interaction hubs

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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and tumors regardless of IDH1 mutation status (Fig. 3D, 
Additional file  6: Table  S3). Despite no pathways over-
represented in module M3 and module M5, module M2 
and M6 were found to be enriched with genes involved 
in neuronal system, while module M4 was primarily 
enriched with Ras signaling (Fig.  3D, Additional file  7: 
Table  S4). The integrative analysis of protein–protein 
interactions and co-regulated 5hmC modules highlighted 
cancer relevant genes as the network hubs (Fig.  3H, 
I, Additional file  2: Fig.  S2D-F), including CCDC125 
(encoding coiled-coil domain containing 125) in module 
M1 (Fig.  3H) and CTNNA3 (encoding catenin alpha 3) 
in module M3 (Fig. 3I), distinct from what was observed 
from the mRNA–5hmC co-regulation analysis.

Prognostic significance of co-regulated modules
In the 61 grade 4 glioma samples with complete 
survival and clinical information, age at diagno-
sis (p < 0.05), gender (p < 0.01), IDH1 mutation sta-
tus (p < 0.05), post-radiotherapy treatment (p < 0.001), 
and post-TMZ treatment (p < 0.0001) after sample 
collection were found to be potential prognostic fac-
tors. Module-wise, co-regulated mRNA module M4 
 ([log10(HR) = 4.40 (1.73–7.07)]) and 5hmC–mRNA 
module M5  ([log10(HR) = 4.33 (1.73–6.93)]) were sig-
nificantly associated with survival, and both modules 
are significantly associated with IDH1-WT tumors 
(Figs.  3A, C, 4A). Two groups’ Kaplan–Meier survival 
curves showed that samples with higher mRNA-, and 

5hmC–mRNA-derived CMPS had significantly shorter 
survival time, with 5hmC–mRNA-derived CMPS per-
forming comparably equal or better than conventional 
prognostic factor IDH1 mutation status in predict-
ing survival probability (Fig.  4B–E). Time-dependent 
ROC and AUC analyses showed that 5hmC-derived 
CMPS (AUC = 0.78) discriminated patients with 
higher risk at Year 1 with better accuracy than IDH1 
(AUC = 0.74); when combined with IDH1, 5hmC-
derived CMPS discriminated patients with higher risk 
at all years with comparable or even better accuracy 
than IDH1 (Fig.  4F). As for 5hmC–mRNA-derived 
CMPS, its discriminatory performance peaked at Year 
3, and outperformed IDH1 at both Year1 and Year2 
(Fig. 4G). Of note, within those IDH1-WT tumors, the 
time-dependent ROC and AUC analyses showed that 
the 5hmC-derived CMPS (AUC = 0.81) discriminated 
patients with higher risk at Year 1, and its discrimina-
tory performance peaked at Year 3 (Additional file  3: 
Fig. S3A). As for the 5hmC–mRNA-derived CMPS, its 
discriminatory performance was found to peak at Year 
2 (AUC = 0.79), suggesting that the 5hmC-based signa-
tures would be identifying high risk cases in the IDH1-
WT  cohort, independent from the mutation status 
(Additional file 3: Fig. S3B).

Prognostic models for OS
To identify prognostic signatures without the influence 
of prior prognostic information (e.g., association with 
IDH1), The 5hmC modification levels over annotated 

Table 2 Enrichment of co‑regulated 5hmC and transcriptomic modules by phenotype

NES normalized enrichment score, FDR false discovery rate for the hypergeometric test, IDH1 isocitrate dehydrogenase 1

Module Type Module Number of Features Control
NES (FDR)

GBM
NES (FDR)

IDH1-Mut astrocytoma
NES (FDR)

5hmC–mRNA M1 367 5.59 (0) − 5.23 (0) 0.87 (0.88)

M2 68 − 4.91 (0) 5.12 (0) − 2.78 (0)

M3 66 2.13 (0) − 2.53 (0) 2.65 (0)

M4 40 − 4.59 (0) 4.18 (0) 1.31 (0.113)

M5 38 − 4.48 (0) 4.3 (0) − 1.49 (0.063)

5hmC only M1 213 − 0.92 (0.771) 0.99 (0.6) − 1.15 (0.155)

M2 181 − 2.43 (0) 1.49 (0.005) 1.72 (0)

M3 106 3.42 (0) − 3.22 (0) 2.11 (0)

M4 97 − 1.85 (0) 1.77 (0.001) − 1.19 (0.155)

M5 77 − 2.41 (0) 3.07 (0) − 2.91 (0)

M6 54 2.69 (0) − 2.34 (0) 1.54 (0.032)

Transcripts only M1 463 6.48 (0) − 6.54 (0) 1.29 (0.009)

M2 92 − 4.49 (0) 4.93 (0) − 2.63 (0)

M3 89 − 5.17 (0) 4.74 (0) 1 (0.445)

M4 53 − 4.65 (0) 4.49 (0) − 1.83 (0.001)

M5 40 − 2.63 (0) − 2.04 (0.001) 2.45 (0)
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mRNAs, promoters, brain-derived H3K27ac histone 
markers as well as gene expression were selected, 
modeled, and evaluated separately and integratedly 
for association with patient survival under repeated 
threefold cross validation. The prognostic model com-
prised of the 5hmC modification levels of 30 promot-
ers (Additional file 3: Fig. S3D) alone achieved the best 

performance in predicting OS in the testing datasets 
(average c-index = 74%, 95% CI, 60–87%), outper-
forming other genomic features or conventional prog-
nostic factors (Table  3). However, when combined 
with IDH1 mutation status or other covariates such 
as age and gender, the average c-index of this 5hmC-
based model could be slightly reduced to 72% (95% 

Fig. 4 Prognostic significances of co‑regulated modules and prediction models. A Forest plots showing hazard ratios (HR) of different co‑regulated 
modules. Kaplan–Meier survival curves demonstrating significant differences between B IDH1‑WT (GBM) and IDH1‑Mut astrocytoma tumors; C 
low‑ and high‑risk groups categorized based on mRNA–mRNA co‑regulated modules derived CMPS; D low‑ and high‑risk groups categorized based 
on 5hmC–5hmC co‑regulated modules derived CMPS; E low‑ and high‑risk groups categorized based on 5hmC–mRNA co‑regulated modules 
derived CMPS. F Time‑dependent ROC curves for patients’ survival with AUC measures evaluated using 5hmC co‑regulated modules derived CMPS. 
G ROC curves for patients’ survival with AUC measures evaluated using 5hmC–mRNA co‑regulated modules derived CMPS
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CI, 59–86%), suggesting its independence from other 
prognostic factors. We further retrieved the predicted 
risk scores derived from the best-performed glmboost 
prognostic model based on the 5hmC modification lev-
els of the 30 promoters as described earlier. Of note, 
patients with grade 4 gliomas with higher predicted 
risk scores (relative to median) were associated sig-
nificantly with shorter survival regardless of the IDH1 
mutation status (p < 0.05) (Fig. 5A. B). Even within the 
molecular subtypes such as classical, mesenchymal and 
proneural, patients with grade 4 gliomas can be further 

categorized into two groups with significant survival 
difference, with higher predicted risk scores associated 
significantly with shorter survival (Fig. 5C).

Discussion
In this study, we primarily evaluated the prognostic sig-
nificance of 5hmC in grade 4 glioma tissues. We identi-
fied phenotype associated co-regulated 5hmC–5hmC or 
5hmC–mRNA modules that could provide novel insights 
into heterogeneity and tumorigenesis as well as potential 
crosstalk between 5hmC and transcription levels in grade 

Table 3 Performance of the prognostic models comprised of various 5hmC and transcriptomic features

Average Harrell’s concordance index (c-index) and 95% confidence intervals (CI) of the testing sets are shown for each model

glmboost gradient boosted generalized linear survival learner, glmnet generalized linear survival learner with the elastic net regularization, rf random forest, uc 
univariate Cox proportional hazards model, PS prognostic signatures based on 5hmC, transcriptome, or integrated, IDH1 isocitrate dehydrogenase 1

Data 5hmC Transcriptome 5hmC-Transcriptome

Feature type Promoter H3K27ac Gene body mRNA Integrated

Model Glmboost Glmnet Glmboost Glmboost Glmboost

Feature Selection Method rf uc rf rf rf

Feature Number 30 20 20 10 30

IDH1 0.57 (0.47–0.67)

Age + Gender + IDH1 0.68 (0.53–0.83)

PS 0.74 (0.60–0.87) 0.72 (0.58–0.86) 0.69 (0.53–0.85) 0.70 (0.56–0.85) 0.74 (0.60–0.88)

Age + Gender + PS 0.74 (0.61–0.87) 0.70 (0.58–0.83) 0.70 (0.57–0.83) 0.72 (0.58–0.85) 0.71 (0.57–0.86)

Age + Gender + IDH1 + PS 0.72 (0.59–0.86) 0.69 (0.55–0.84) 0.68 (0.54–0.83) 0.72 (0.59–0.85) 0.72 (0.58–0.86)

Fig. 5 Performance of prognostic models. A Kaplan–Meier survival curves demonstrating significant differences between low‑and high‑risk groups 
categorized based on the predictive risk scores from the best‑performed prediction model. Kaplan–Meier survival curves demonstrating significant 
differences between low‑and high‑risk groups categorized based on the predictive risk scores from the best‑performed prediction model in B 
IDH1‑WT (GBM) and IDH1‑Mut astrocytoma tumors; C molecular subtypes. CMPS denotes Co‑regulated Modules based Prognostic Score
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4 gliomas. Specifically, we developed prognostic models 
for grade 4 gliomas from the 5hmC/transcription levels 
of a variety of genomic features and evaluated their per-
formance in predicting patient survival. For example, in 
our tested grade 4 gliomas, IDH1 mutation status, the 
well-known prognostic factor, predicted patient sur-
vival at an average c-index of 57% (95% CI, 47–67%) in 
the testing data sets. In contrast, our best-performing 
5hmC model predicted patient survival at a much higher 
c-index of 74% (95% CI, 60–87%), representing ~ 29.8% 
improvement. In addition, the predicted risk scores com-
puted based on the best-performing 5hmC model could 
stratify patients with grade 4 gliomas into two groups 
with significant survival differences independent of IDH1 
mutations or certain molecular types, suggesting that 
the 5hmC model captured the molecular characteristics 
of tumors that are independent of IDH1 mutation status 
and gene expression-based molecular subtypes. However, 
future studies with larger sample size and independent 
validation are needed to establish the clinical validity of 
this model.

To provide more insights in the epigenetic contribu-
tion to grade 4 gliomas, we further evaluated the connec-
tion between 5hmC modification and gene expression. A 
closer look at the co-regulated modules and their asso-
ciations with key biological pathways shed some light 
into to the crosstalk between 5hmC and gene expression 
as well as molecular heterogeneity in patients with grade 
4 gliomas. For example, the 5hmC modification levels of 
EGFR were found to be co-regulated with the expression 
of genes implicated in neuronal system and synaptic sig-
nal transmission. Given that EGFR is a key driver of tum-
origenesis and has important neurotrophic functions, it 
is likely to be a crosstalk hub between 5hmC and gene 
dysregulation in tumors [53]. In addition, enrichment 
analysis identified shared pathways that were overrep-
resented in co-regulated 5hmC–5hmC/5hmC–mRNA/
mRNA–mRNA modules such as pathways involved in 
neuronal system, neutrophil degranulation, and integ-
rin cell interactions. Of note, integrated protein–protein 
interaction and co-regulation analyses identified different 
network hubs for co-regulated 5hmC–5hmC or 5hmC–
mRNA or mRNA–mRNA modules. The co-regulated 
5hmC–mRNA modules were primarily dictated by co-
expressed mRNAs, with hubs genes previously known 
to be involved in glioma tumorigenesis. Network analy-
sis of co-regulated 5hmC–5hmC modules revealed novel 
hub genes whose function or in particular their hydroxy-
methylation have been less investigated in grade 4 glio-
mas. For example, MYO1F (myosin 1F), a network hub in 
co-regulated 5hmC–5hmC module M1, was critical for 

neutrophil trafficking [54]. MSI2 (RNA-binding protein 
Musashi-2), a network hub in co-regulated 5hmC–5hmC 
module M2, has been implicated in tumorigenesis and 
progression in certain human cancers.

Technically, the 5hmC-Seal approach has showed value 
for cancer biomarker discovery in gliomas as well as other 
human cancers from tissue samples or circulating materi-
als [26, 35, 38]. Our findings utilizing tissue samples from 
patients with grade 4 gliomas further supported the tis-
sue or tumor relevance of blood-derived 5hmC profiles 
that we recently reported [35]. However, there are sev-
eral limitations that could be addressed in future studies. 
First, the current study is limited of sample size and lacks 
independent validation dataset, future studies with larger 
sample size and more comprehensive pathological (e.g., 
tumor cellularity), demographic and clinical information 
will help address problems such as the potential selec-
tion bias or suboptimal classification for our samples as 
well as population/ethnicity disparities. Second, the cur-
rent study only focused on the co-regulation over genic 
regions given the functional relevance of genic regions 
are better annotated and established, it would be interest-
ing to extend the co-regulation between gene expression 
and 5hmC modification to other genomic regions such 
as enhancer markers. Finally, future development needs 
to consider the prognostic significance of integrated 
model of 5hmC modification, transcriptomic abundance 
of noncoding transcripts, or other types of omics data. 
Nonetheless, our findings from the current study warrant 
further investigations using this novel approach in brain 
cancer.

Conclusions
In conclusion, we have developed prognostic models 
for patients with grade 4 gliomas and investigated the 
crosstalk between 5hmC and gene expression through 
an integrative co-regulation and network analysis. The 
5hmC-based prognostic model could offer a robust tool 
to predict survival in patients with grade 4 gliomas, 
potentially outperforming existing prognostic factors 
such as IDH1 mutations. The crosstalk between 5hmC 
and gene expression revealed another layer of complex-
ity underlying the molecular heterogeneity in grade 4 
gliomas, offering opportunities for identifying novel ther-
apeutic targets as well.
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Additional file 1. Fig. S1. (A) The percentages of genes with differential 
5hmC modification and expression under different fold change cutoffs. 
BG denotes background gene; FDR denotes mRNA/lncRNA with FDR 
<0.05; Up: up‑modified/expressed; down: down‑modified/expressed. 
(B) Enriched co‑regulated mRNA‑mRNA (gene expression) modules are 
detected in normal controls, IDH1‑Mut, and IDH1‑WT tumors. (C) Top five 
enriched KEGG pathways associated with mRNA‑mRNA co‑regulated 
modules (FDR < 0.05 and gene count > 5) are shown.

Additional file 2. Fig. S2. (A) Network hubs of co‑regulated 5hmC‑mRNA 
module M1. (B) Network hubs of co‑regulated 5hmC‑mRNA module M5. 
(C‑F) Network hubs of co‑regulated 5hmC‑5hmC module. (G‑K) Network 
hubs of co‑regulated mRNA modules. CE denotes co‑expression/regula‑
tion hubs; INT denotes protein‑protein interaction hubs; CE+INT denotes 
co‑expression/regulation and protein‑protein interaction hubs.

Additional file 3. Fig. S3. Time‑dependent ROC curves for IDH1‑WT tumor 
patients’ survival with AUC measures evaluated using (A) 5hmC‑5hmC co‑
regulated modules derived CMPS; (B) 5hmC‑mRNA co‑regulated modules 
derived CMPS; (C) mRNA‑mRNA co‑regulated modules derived CMPS. 
(D) Forest plots showing hazard ratios (HR) of the 30 promoters in the 
best‑performed model. HR > 1 indicates increased survival risk per unit 
change in the 5hmC value; HR < 1 indicates decreased survival risk per 
unit change in the 5hmC value.

Additional file 4. Table S1. Differentially modified 5hmC features and 
differentially expressed mRNAs between grade 4 gliomas and normal 
controls.

Additional file 5. Table S2. Differentially modified 5hmC features and 
differentially expressed mRNAs between IDH1-WT (GBM) and IDH1‑Mut 
astrocytoma tumors.
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