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Abstract 

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive 
head impacts (RHI) and characterized by perivascular accumulations of hyperphosphorylated tau protein (p-tau) 
at the depths of the cortical sulci. Studies of living athletes exposed to RHI, including concussive and nonconcussive 
impacts, have shown increased blood–brain barrier permeability, reduced cerebral blood flow, and alterations in vaso-
reactivity. Blood–brain barrier abnormalities have also been reported in individuals neuropathologically diagnosed 
with CTE. To further investigate the three-dimensional microvascular changes in individuals diagnosed with CTE 
and controls, we used SHIELD tissue processing and passive delipidation to optically clear and label blocks of post-
mortem human dorsolateral frontal cortex. We used fluorescent confocal microscopy to quantitate vascular branch 
density and fraction volume. We compared the findings in 41 male brain donors, age at death 31–89 years, mean 
age 64 years, including 12 donors with low CTE (McKee stage I–II), 13 with high CTE (McKee stage III–IV) to 16 age- 
and sex-matched non-CTE controls (7 with RHI exposure and 9 with no RHI exposure). The density of vessel branches 
in the gray matter sulcus was significantly greater in CTE cases than in controls. The ratios of sulcus versus gyrus vessel 
branch density and fraction volume were also greater in CTE than in controls and significantly above one for the CTE 
group. Hyperphosphorylated tau pathology density correlated with gray matter sulcus fraction volume. These find-
ings point towards increased vascular coverage and branching in the dorsolateral frontal cortex (DLF) sulci in CTE, 
that correlates with p-tau pathology.
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Introduction
Chronic traumatic encephalopathy (CTE) is a progres-
sive neurodegenerative tauopathy caused in part by 
exposure to repetitive head impacts (RHI), such as those 
experienced through contact sport participation, military 
combat, and physical violence [49, 51, 54, 67]. RHI are a 
form of multiple brain injuries that include symptomatic 
concussion, characterized by symptoms such as head-
ache, anxiety, cognitive impairment, and sleep distur-
bances, and non-concussive asymptomatic head impacts. 
A definitive diagnosis of CTE requires post-mortem 
neuropathological exam and the presence of the pathog-
nomonic lesion, a perivascular accumulation of hyper-
phosphorylated tau (p-tau) aggregates in neurons, with 
or without astrocytic p-tau inclusions, at the depths of 
the cortical sulci [11, 50]. In 2013, McKee and colleagues 
proposed a staging scheme to characterize the severity 
of the p-tau pathology in CTE, stages I–IV, based on the 
density and regional deposition of p-tau pathology [4, 8].

Several studies have demonstrated a dose–response 
relationship between the duration of exposure to RHI 
and risk for CTE and CTE severity [4, 51, 53, 54, 56, 57]. 
In addition, the location of the diagnostic perivascular 
lesions of CTE at the sulcal depths of the frontal cortex 
parallels the areas of greatest tissue deformation and 
strain in computational and finite element models of hel-
meted head impact injury [14, 21, 83]. Exposure to RHI 
and CTE are also associated with increases in neuroin-
flammation that parallels the severity of p-tau pathology 
and correlates with years of RHI exposure [18].

Vascular dysfunction and injury have been observed 
after mild traumatic brain injuries (mTBI), RHI, and in 
CTE. Breakdown of the blood–brain barrier has been 
shown in the acute period in TBI-exposed mice [10], 
after mTBI in rodent models [28, 36, 71, 80, 81], and 
in the context of RHI in football players [75]. Reduced 
blood–brain barrier permeability regulator levels have 
been found in regions of high p-tau pathology in an indi-
vidual with pathologically verified CTE [24] and in the 
serum of military personnel after acute repetitive blast 
exposure [2]. Markers of vascular injury were increased 
in the dorsolateral frontal cortex (DLF) of individuals 
with CTE [38]. Vascular dysfunction in rodent models 
includes reduced meningeal lymphatic drainage up to at 
least one month-post TBI [13] and reduced vasoreactiv-
ity after mTBI and RHI [31, 47]. In addition, decreased 
cerebral blood flow has been observed after single mTBI 
exposure in mice [32, 33, 79], RHI exposure in mice [1, 
46], mTBI patients [42], and in elite rugby players [84].

Cerebrovascular structural changes have also been 
observed in mTBI, RHI, and CTE. Twenty-four hours 
after mTBI in rodents, microscopic changes can be seen, 
including microvascular degeneration, vascular cell 

apoptosis [37], and decreased vessel density compared to 
controls [45]. In the post-acute period in mouse models, 
cerebrovascular volume is increased after exposure to 
RHI [1] and mTBI [34, 80]. In humans, traumatic micro-
bleeds can be found after acute TBI [30], and individuals 
with CTE show a propensity toward comorbid arterio-
losclerosis [7]. RHI exposure has been associated with 
increased white matter hyperintensities on FLAIR mag-
netic resonance imaging (MRI), possibly due to micro-
vascular injury [5, 74]. Microvascular abnormalities have 
also been observed in postmortem brain of individuals 
with CTE [7, 52, 53, 69]. Studies of the chronic effects of 
repetitive mTBI on vascular morphology in human sub-
jects have demonstrated an expanded perivascular space 
around large caliber vessels on MRI [64]. Given the evi-
dence for vascular structural changes, functional altera-
tions and cognitive impairment in rodent models [42, 46, 
78] and vascular comorbidities in human subjects with 
CTE, we sought to investigate the vascular changes in 
CTE DLF cortex using fluorescent microscopy and three-
dimensional (3-D) imaging of blood vessel morphology 
within optically cleared tissue blocks.

Light microscopic studies are limited in detecting and 
quantifying morphologic changes in brain capillaries 
due to the sparse sampling of vascular cross-sections 
in two dimensions. In contrast, tissue clearing methods 
are well suited for characterizing small 3-D structures in 
the brain, as light scattering is minimized and vascular 
branching can be assessed using 200 µm tissue sections. 
Electrophoresis-driven clearing and fluorescent labeling 
have been successfully employed to image whole mouse 
brains [19, 37, 82] and many human organs, including 
the kidney, pancreas, heart, lung, spleen, and brain [48, 
68]. Previous studies clearing postmortem human brain 
sections have either required minimal fixation, several 
months of clearing [20, 41, 43, 44, 60, 63], or the use of 
100  µm sections cleared over a few weeks that warped 
the tissue surface [61]. The utility of tissue clearing has 
been demonstrated through the qualitative visualization 
of Alzheimer’s Disease (AD) plaques in the human brain 
[8]. Recently, SHIELD postfixation has been developed 
for single cell three-dimensional microscopy with various 
methods of tissue clearing [62].

Here, we applied SHIELD, tissue clearing and stain-
ing protocols over 2 weeks using 200 µm thick slices of 
postmortem human brain to visualize DLF capillary mor-
phology in brain donors with and without CTE.

Materials and methods
Study design and brain donors
Autopsy participants included 41 male brain donors 
from three brain banks housed at VA Boston Healthcare 
System with harmonized neuropathological processing 
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protocols and diagnostic procedures: Understanding 
Neurological Injury and Traumatic Encephalopathy 
(UNITE, n = 31), Boston University Alzheimer’s Disease 
Research Center (ADRC, n = 1) and the National Post-
traumatic Stress Disorder Brain Bank (PTSD, n = 9). For 
this study, participants were categorized based on their 
CTE diagnosis into two groups: "non-CTE" (n = 16) and 
"CTE" (high and low severity), n = 25. Participants were 
excluded if there was neuropathological evidence of co-
morbid neurodegenerative disease [i.e. Alzheimer’s dis-
ease, Lewy body disease, amyotrophic lateral sclerosis, 
significant vascular disease (including infarcts, micro-
infarcts, and lacunes in the DLF) or causes of death that 
might affect tissue integrity (e.g., gunshot wounds to the 
head, drowning) as well as for missing primary study vari-
ables (CTE severity, CAA status)]. Participants with arte-
riolosclerosis and/or mild to moderate atherosclerosis 
were included and adjusted for statistically. Participants’ 
causes of death and comorbidities are listed in Additional 
file 1: Table S1. The donors’ next of kin provided consent 
for brain donation and research participation. Institu-
tional review boards from the Boston University Medi-
cal Center approved brain donation, postmortem clinical 
record review, neuropathological evaluation, and clinical 
interviews with donor family members.

Clinical assessment and diagnosis
Demographic information, medical history, and other 
antemortem clinical variables were obtained during ret-
rospective clinical evaluation with informants for all 
brain donors and included a detailed assessment of RHI 
exposure, including sports played, primary sport, posi-
tion, age at first exposure, years played, concussion his-
tory, and all other TBI history [58].

Tissue processing and pathological assessment
Postmortem brain tissue was fixed in periodate-lysine-
paraformaldehyde (PLP) for at least 3  months at 4  °C. 
The neuropathological assessment was performed using 
procedures previously established [58, 76]. Neuropatho-
logical evaluations were made by board-certified neuro-
pathologists (ACM, TDS, BRH) according to published 
diagnostic criteria and were kept blinded to antemortem 
clinical information [58]. Cerebral arteriolosclerosis, ath-
erosclerosis, and CAA were evaluated on a semiquantita-
tive scale [12, 73].

For immunohistochemical assessment, 20  µm slides 
from paraffin-embedded tissue blocks from the DLF were 
prepared and stained for AT8 as previously described 
[16]. Slides were scanned, digitized at 20× magnifica-
tion, and analyzed for AT8 density (total area in the sul-
cus positive for AT8 staining divided by the total area 
of tissue analyzed) using Aperio Scanscope (Leica) as 

previously described [17]. The depth of the cortical sul-
cus was defined as the bottom third of two connecting 
gyri. Ki67 staining was completed using Leica’s Ready-to-
Use Ki67 antibody reagent on the BOND staining system 
(Leica, Deer Park, IL) and imaged on the Vectra Polaris 
slide scanner (Akoya, Marlborough, MA).

Passive tissue clearing and labeling
PLP-fixed DLF (Brodmann area 46) tissue blocks were 
harvested with a  16mm2 leather punch with a thick-
ness of 3 mm. Tissue harvesting was performed blinded 
to CTE status based on a standardized blocking scheme 
that is used in al cases. The 16 × 16 × 3  mm tissue sec-
tions were incubated in SHIELD OFF solution (LifeCan-
vas SHIELD-buffer solution, LifeCanvas SHIELD-Epoxy 
solution, and deionized water) for three days with 
shaking at 4  °C, transferred to SHIELD ON buffer and 
incubated for 24  h with shaking at 37  °C, and stored in 
phosphate-buffered saline (PBS) with 0.02% sodium azide 
for up to several weeks. SHIELD-preserved sections were 
embedded in 2% agarose gel and cut into 200 µm slices 
using a vibratome (VF-700-0Z Microtome, Precision-
ary Instruments, Inc, Natick, MA). Slices were stored in 
PBS with 0.02% sodium azide. To delipidate, slices were 
incubated overnight at 37 °C with light shaking in passive 
clearing buffer [300  mM sodium dodecyl sulfate (SDS), 
10 mM boric acid, 100 mM sodium sulfite, pH 9]. Slices 
were subsequently washed twice with PBST (PBS + 0.4% 
Triton-X) at room temperature with light shaking to wash 
out the SDS then photobleached for five days in PBST 
as previously described [40]. Slices were incubated with 
40 µg tomato  lectin649 in 1 mL of PBST for 24 h with light 
shaking. Samples were washed three times with PBST for 
30 min and incubated overnight in 4% PFA (Affymetrix) 
to post-fix the dye to the tissue. The next day the samples 
were washed three times, two hours per wash, in PBS. 
Samples were incubated overnight in EasyIndex (Lif-
eCanvas) before mounting onto a 25 × 75 × 1.0 mm glass 
slide (Fisher, Pittsburgh, PA) and covered with a No. 1 
22 × 30 mm glass coverslip (Corning GlassWorks, Corn-
ing, NY). Imaging was performed with a Nikon Eclipse 
Ti2-E spinning disk confocal microscope and Nikon Ele-
ments software (Nikon, Melville, NY) (Fig. 1).

Imaging of cleared tissue
Tomato  lectin649 was excited using the 633 nm laser line 
of a Celesta light source, at 72.8% power with an expo-
sure time of 400  ms. A Plan Apo λ 20 × air objective 
(Nikon, Melville, NY) was used to acquire up to four 
regions each in the gray matter crest, gray matter sul-
cus, white matter crest, and white matter sulcus. Sulcus 
imaging regions were randomly selected in the bottom 
third of two connecting gyri, and crest imaging regions 
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were randomly selected in the top third of the gyrus. 
For each image stack, image slices were taken 0.9  µm 
apart. To capture the highest resolution images, we 
used a Plan Apo λ 60 × oil-immersion objective (Nikon, 

Melville, NY). Tissue imaging and image analysis were 
performed blinded to CTE status.

Quantification of blood vessels and variables measured 
using fluorescence microscopy
Passively cleared DLF samples were quantified using 
Imaris 9.6 and 9.7 (Oxford Instruments, Abington, 
Oxfordshire UK), (Table 1). For each image, a surface was 
generated in Imaris using the Surface Tool to represent 
blood vessels based on fluorescent intensity and volume. 
Pixels outside of the generated surface were set to zero 
to eliminate non-specific background fluorescence. The 
volume of that surface divided by the total volume of 
the image stack represented the unitless fraction volume 
calculation. Blood vessel branches were drawn manu-
ally using the Imaris Filament Tool. The total number of 
drawn filament segments was divided by the total volume 
of the image stack to calculate branch density in units of 
branches/µm3. For each case, the fraction volume and 
branch density measurements were an average of the 
measurements made from the replicate image stacks per 
region.

In order to quantify differences in vascular morphol-
ogy, we quantified blood vessel branch density via the 
number of blood vessel branches per unit volume. We 
used blood vessel fraction volume, the fraction of the 
image volume composed of blood vessels, to quantify 
vascular coverage. Because the pathognomonic CTE 
lesion is in sulcal depths, we compared measurements 
in the sulcus vs the gyrus. Similarly we correlated the 
vascular fraction volume and branch density with p-tau 
pathology to determine if p-tau accumulation colocalized 
with altered vascular morphology.

Statistical analyses
The fluorescence microscopy data were analyzed using 
SPSS (v.27, IBM, Inc, Armonk, NY) and GraphPad Prism 
(v.9.0.0, GraphPad Software, La Jolla, CA). An analysis 
of covariance (ANCOVA) was used to compare fraction 
volume or branch density changes among control and 
CTE groups. Age at death was included in all analyses 
as a covariate to control for age-associated differences. 

Fig. 1 Workflow for tissue clearing and staining. a Before the clearing 
process, tissue is prepared for clearing by cross-linking proteins 
and nucleic acids using epoxides. This cross-linking provides 
increased structural stability in preparation of lipid removal 
from the tissue [62]. Lipids are washed from the tissue using sodium 
dodecyl sulphate (SDS). The fully cleared tissue can be fluorescently 
labeled and incubated in an index of refraction matching solution 
so that its refractive index matches that of a glass cover-slip. b Passive 
tissue clearing is diffusion based using a floating sections protocol. 
c Fluorescent molecules diffuse to their target sites in the floating 
section. d After the fluorescent dyes have been fixed in place 
and the sample has been refractive-index (RI) matched to the glass 
coverslip, the tissue becomes translucent. Fluorophores can be 
visualized at any point in the Z-dimension of the respective samples. 
Created with www. BioRe nder. com

Table 1 Summary of variables used to quantify vascular density and branching

Measured variable Calculation

Branch Density (branches/µm3) Number of branches/volume of image stack

Fraction Volume (unitless) Volume of blood vessels/volume of image stack

Gray Matter Branch Density Ratio (unitless) Gray matter sulcus branch density/gray matter crest branch density

Gray Matter Fraction Volume Ratio (unitless) Gray matter sulcus fraction volume/gray matter crest fraction volume

White Matter Branch Density Ratio (unitless) White matter sulcus branch density/white matter crest branch density

White Matter Fraction Volume Ratio (unitless) White matter sulcus fraction volume/white matter crest fraction volume

http://www.BioRender.com
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Arteriolosclerosis and atherosclerosis were not included 
as covariates, as the F-statistic was not significant for 
any measured variables. Cerebral amyloid angiopathy 
(CAA) was also included as a covariate. Associations 
among p-tau burden and vascular variables were meas-
ured with multiple linear regression models with p-tau 
staining density, age of death, and CTE status as the inde-
pendent variables and gray matter vessel fraction volume 
or branch density as the dependent variable. Cases with 
p-tau staining data were those with CTE (n = 22) and a 
subset of non-CTE controls (n = 8). Descriptive statis-
tics were generated with SPSS. The significance level 
was set a priori to 5%. Statistical power was calculated 
with MATLAB 2020a’s samplesizepwr function. The full 

dataset  with clinical, neuropathological, and measured 
vascular variables can be found in Additional file 2.

Results
Demographic statistics of experimental groups
Experimental groups were all male did not differ in mean 
age at death (Table 2). Individual participants may have 
more than one RHI exposure source.

Visualization of microvascular networks with tomato 
 lectin649 fluorescence (Fig. 2)
SHIELD tissue treatment, passive delipidation, and 
staining was successful for visualizing blood vessels in 
three dimensions. The patterns of tomato  lectin649 fluo-
rescence were distinctive in the gray and white matter, 
with many branching curving vessels in the gray matter 
and more linear vessels in the white matter with fewer 
branches (Fig.  2a, top). As seen in Fig.  2b–e, a branch-
ing blood vessel visualized in a single plane can appear 
as either one (Fig. 2c), an individual vessel with multiple 
lumina (Fig. 2d), or as two vessels (Fig. 2e) depending on 
the focal plane. Imaging a 200  µm tissue section allows 
visualization of the vessel in 3-D and captures vascular 
branching points and vascular network structure.

CTE is associated with increased vascular branching 
in the gray matter sulcus
Vascular density and blood vessel branching could be 
qualitatively observed in image stacks of at least 100 µm 
thickness. In general, blood vessel density was greater, 
and there were more branching blood vessels in CTE 
compared to control cases (Fig.  2f–g). Blood vessel 
branch density was increased in the DLF gray matter 
sulcus of the CTE group compared to the control group. 
Means of blood vessel branch densities were compared 
using an ANCOVA with the age of death as a covari-
ate. The CTE group had a 24% higher branch density 
than the controls. Gray matter sulcus branch density of 
the CTE group (1180 ± 40 branches/mm3) was signifi-
cantly higher than controls (950 ± 50 branches/mm3), 
p = 0.0011. The statistical power for this difference was 
0.9963. There were no significant differences in blood 
vessel branch density among groups in the white matter. 

Table 2 Donor demographic statistics

Data are presented as mean (SEM) years for age at death and contact sports 
exposure and as # yes/# no (%) unless otherwise indicated

CTE: chronic traumatic encephalopathy; RHI: repetitive head impacts
* data was unavailable for one participant in this group

Controls CTE p-Value

Sample size (n) 16 25

Age at death (S.E.M), range, years 65 (3), 46–86 62 (4), 31–89 P = 0.694

Race or ethnicity (n)

 White/Caucasian, n (%) 14 (88%) 18 (72%)

 Black/African American, n (%) 1 (6%) 6 (28%)

 Hispanic, n (%) 1 (6%) 0 (0%)

RHI y/n (%exposed) 7/9 (44%) 25/0 (100%)

Exposure source, n (%)

 Football 6 (38%) 25 (100%)

 Combat veteran 0 (0%) 2 (8%)

 Rugby 2 (12%) 2 (8%)

 Soccer 0 (0%) 1 (4%)

 Wrestling 1 (6%) 0 (0%)

 Hockey 1 (6%) 3 (12%)

 Boxing 1 (6%) 2 (8%)

 Lacrosse 0 (0%) 1 (4%)

RHI Exposure years (S.E.M.) 11(3)* 15(1) P = .284

CTE Severity

 Low 0% (0) 48% (12)

 High 0% (0) 52% (13)

(See figure on next page.)
Fig. 2 Images of blood vessels labeled with tomato  lectin649 (green) in cleared and labeled PLP-fixed human DLF tissue. a 200 µm thick DLF 
tissue section after clearing and staining with tomato  lectin649, imaged at 4x. Overlaid squares represent the areas sampled per case: gray matter 
crest (red), white matter crest (white), gray matter sulcus (red dashed), and white matter sulcus (white dashed). 20 × images of each region are 
shown at top, dimension of each 347 × 336 × 91 µm. b 20 × image of a branching blood vessel and 60 × optical slices taken at 9 µm (c), 27.6 µm 
(d), and 35.4 µm into the tissue slice (e). f and g both show 20 × images of passively cleared and tomato  lectin649-stained DLF tissue from different 
cases in the gray matter sulcus. A CTE case with high blood vessel fraction volume and branch density is shown in (f), with fraction volumes of 0.10 
and and branch densitiy of 1500 branches/mm3. g shows an image stack from a non-CTEcontrol with lower vessel fraction volume (of 0.069) 
and branch density (980 branches/mm3). Each image stack is 81 µm thick
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Fig. 2 (See legend on previous page.)
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The significance between groups was unaffected whether 
or not CAA, arteriolosclerosis, and atherosclerosis were 
included as covariates.

Vascular branching and density are greater in the sulcus 
than the crest in CTE but not controls
We compared vascular density and branching in the sul-
cal depth to that in the gyral crest by dividing the mean 
branch density and fraction volume in the sulcus by 
the measurements in the crest for each case. The group 
means of the calculated ratio were compared between 
groups with ANCOVA using the age of death as a covari-
ate. The ratio of gray matter blood vessel branch density 
in the sulcus compared to the crest was 1.25 ± 0.04 for the 
CTE group and 1.04 ± 0.06 for the control group, a sig-
nificant difference (p = 0.0076) with a power of 0.9613, 
(Fig. 3b).

The CTE group also had a higher ratio of sulcus:crest 
fraction volume than controls. Controls showed a frac-
tion volume of 1.00 ± 0.05. The CTE group had a sig-
nificantly greater fraction volume ratio, 1.15 ± 0.04, 
p = 0.0336, (Fig.  3c). The statistical power of this differ-
ence was 0.8445. No significant differences between CTE 
and controls were seen with the blood vessel branch den-
sity ratios or fraction volume in the white matter. Arte-
riolosclerosis and atherosclerosis were not significant 
predictors of blood vessel fraction volume ratio or blood 
vessel branch density ratio.

CTE is associated with greater vascular coverage 
in the absence of CAA 
When cases with CAA were removed from the analy-
sis, CTE cases had a higher gray matter sulcus frac-
tion volume than control cases. With our full dataset, 
changes in fraction volume were driven primarily by 
CAA (p = 0.007 for gray matter sulcus fraction volume), 
as calculated via ANCOVA with the age of death as a 
covariate comparing groups with and without CAA. 
As CAA is characterized by amyloid-beta deposits in 
the vessel walls, it is likely that there is a greater frac-
tion volume detected in CAA cases because of the 
thickened vessel walls. To eliminate the effect of CAA 
on comparisons between CTE and controls, cases 
with CAA were eliminated from the analysis such that 
n = 13 control cases without CAA and n = 17 CTE 
cases without CAA. With this subset of data, there was 
a 17% increase (p = 0.0282) in gray matter sulcus ves-
sel fraction volume of CTE cases compared to controls 
(Fig. 4a). Removing cases with CAA did not take away 
statistical significance from any of the other compari-
sons of measured vascular variables (Fig. 4b–d).

P-tau pathology correlates with increased DLF gray matter 
vascular density
We compared p-tau pathology with blood vessel branch 
density and fraction volume in the gray matter sul-
cus. We pooled the control and CTE groups and con-
ducted multiple linear regression with the age of death 
and CTE status as a covariate, p-tau staining density as 
the independent variable, and branch density or frac-
tion volume as the dependent variable. P-tau staining 

Fig. 3 Quantification of DLF vascular branching and coverage. Differences between groups were established by ANCOVA with means adjusted 
for evaluation at mean age of death = 64.2 years and CAA = 0.3659. The gray matter branch density and fraction volume ratios were calculated 
by dividing the branch density or fraction volume of the sulcus by the branch density or fraction volume of the crest. a Gray matter sulcus branch 
density, b Gray matter branch density ratio c Gray matter fraction volume ratio. *p < 0.05, **p < 0.01, ***p < 0.001. CTE n = 25, controls n = 15
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density in the sulcus correlated positively with sulcal 
gray matter fraction volume (Table  3).  The correlation 
coefficient between the two variables was 0.472 with a 
corresponding p-value of 0.013 (indicated in bold). Age 
at death did not significantly predict gray matter frac-
tion volume or branch density. The correlation between 
AT8 staining density and gray matter sulcus fraction 
volume was not driven by CTE status.

Discussion
Using SHIELD postfixation and passive delipidation, 
we found increased vascular branching and coverage in 
the gray matter sulcus in CTE and increased vascular 
branching and coverage in the sulcus compared to the 
crest in CTE. We also found that vascular coverage in the 
sulcus correlated with p-tau pathology. These findings 
suggest that there is increased vascular branching and 
coverage in regions with p-tau pathology in CTE. Fig-
ure 5 outlines vascular branching in the DLF gray matter 
sulcus as seen in our measurements.

The increased vessel branching and coverage found 
in DLF gray matter sulcus in CTE may be explained by 
prior angiogenesis. Cortical neovascularization may be 
a chronically active process that occurs in parallel with 
CTE p-tau pathology development and progression. 
The combination of direct injury to vascular endothe-
lial cells, inflammation, and secondary tissue hypoxia 
creates a proangiogenic environment. Chronic neuro-
inflammation and tissue hypoxia due to compromised 
vasculature results in the release of proangiogenic pro-
teins [3, 9, 25, 59, 66, 70]. Neoangiogenic processes 
are activated by inadequate tissue oxygenation and 
hypoxia to increase vascular coverage [65]. RHI itself 
may also induce angiogenesis mechanically [29, 35]. 
Military veterans that have mTBI from blast expo-
sure have increased serum concentrations of vascular 
endothelia growth factor (VEGF-A), indicating a corre-
lation between mTBI and pro-angiogenic signaling [55]. 
Molecular markers of vascular injury have also been 
observed in tissue from the biorepositories used in this 
study [38]. The observed increased vessel branch den-
sity in CTE cases compared to controls supports prior 
angiogenesis due to the branching progression of new 
vessel formation [15, 23, 65]. If the increased branching 
observed in CTE cases is due to angiogenesis, it is likely 
to have occurred in the distant past. None of our cases 
showed positive staining for Ki67, a marker of cellular 
proliferation (Additional file 3: Supplementary Fig. S1). 
Another putative line of evidence for prior angiogenesis 
is increased vascular coverage, measured as increased 

Fig. 4 Quantification of DLF vascular branching and coverage 
in cases without CAA. Differences between groups were established 
by ANCOVA with means adjusted for evaluation at mean age 
of death = 61.4 years. The gray matter branch density and fraction 
volume ratios were calculated by dividing the branch density 
or fraction volume of the sulcus by the branch density or fraction 
volume of the crest. a vessel fraction volume in the gray matter 
sulcus, b vessel branch density in the gray matter sulcus, c gray 
matter fraction volume ratio, and d gray matter branch density ratio. 
*p < 0.05, **p < 0.01, ***p < 0.001. CTE n = 17, controls n = 13

Table 3 Multiple linear regression model demonstrating that p-tau pathology (AT8 staining density) in the DLF sulcus correlates with 
vascular branch density and fraction volume. β = standardized Beta, SE = standard error

GM sulcus fraction volume GM sulcus branch density (branches/mm3)

β SE p-value β SE p-value

AT8 density 0.472 6 ×  10–8 0.013 0.203 9 ×  10–12 0.284

age at death 0.232 2 ×  10–4 0.189 0.072 2 ×  10–8 .695

CTE 0.139 6 ×  10–3 0.445 0.384 8 ×  10–7 0.053
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vessel fraction volume. The ratios of gray matter branch 
density and fraction volume were greater than 1 in CTE 
but below 1 in controls, suggesting that sulcus-specific 
increased vascular branching and coverage are associ-
ated with CTE. Previous antemortem MRI work has 
highlighted the susceptibility of blood vessels in the 
gray matter sulci to damage as a result of impact forces 
[39]. In CTE, gray matter sulci have been exposed to 
repetitive forces and secondary hypoxia from ves-
sel damage that creates a proangiogenic environment. 
Cortical neovascularization may be a chronically active 
process that occurs in parallel with CTE p-tau pathol-
ogy development and progression.

The observed increase in vessel branching and frac-
tion volume in the sulcus compared to the crest may 
also be due to atrophy of surrounding brain tissue. 
Lower volumes of gray matter and white matter in 
the cortical sulci have been observed in individuals 
exposed to TBI compared to unexposed controls [22]. 
Individuals with postmortem neuropathologically diag-
nosed CTE also had more atrophy in the frontal cortex, 
visualized with antemortem MRI, compared to controls 
[6]. It is possible that there are more vessel branches 
per unit volume in CTE cases compared to controls, 
because there is less surrounding tissue to contribute to 
the total unit volume.

There was a correlation between p-tau density with 
increased vascular fraction volume in the gray mat-
ter sulci of individuals with exposure to RHI. This 

correlation suggests potential prior vascular remode-
ling and/or tissue atrophy of high p-tau burden in CTE. 
Vascular remodeling and p-tau accumulation may be 
dependent or independent, as mechanical force alone is 
enough to cause tau mislocalization and expression of 
pro-angiogenic factors in vitro [14, 29].

Furthermore, this work demonstrates that microvas-
cular networks in postmortem human brain tissue pre-
served for years in paraformaldehyde can be cleared, 
labeled, and confocally imaged in three dimensions. To 
the best of our knowledge, this is the first study using 
tissue clearing to probe human disease using banked, 
long-term fixed brain tissue with quantitative results.

Limitations
There are several limitations to this work. Changes 
in vascular branching in the white matter were not 
detected by our techniques because the fraction vol-
ume and branch density of white matter vasculature 
was lower and dominated by a smaller number of larger 
vessels. Imaging greater volumes of tissue would be 
needed to robustly detect white matter changes. While 
the technique used here is well suited to the micro-
vasculature, lower magnification optical coherence 
tomography is better for visualization of larger white 
matter vessels [72, 77]. Moreover, there are unavoidable 
drawbacks to using postmortem human tissue such as 

Fig. 5 Vascular branching and coverage in the setting of repetitive head impacts and CTE. Scheme for the association between vascular 
branching, RHI, and CTE in the DLF gray matter sulcus. Illustrations representing a controls and b CTE cases. Each illustration is paired 
with a 347 µm × 335 µm × 81 µm fluorescent tomato  lectin649 (green) image stack of DLF gray matter sulcus tissue from a representative case. As 
reflected in our data, b shows a significantly higher branch density in the sulcus than a 
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varying tissue extraction and fixation conditions, small 
sample size, comorbidities, clinical data collection, and 
convenience sampling. Although we adjusted for age, 
confounding by age may exist because the age ranges 
do not entirely overlap. We addressed comorbidities by 
statistically determining which comorbidities affected 
our data and included them in the models as covariates. 
The diversity of the study population was constrained 
by the tissue available in the UNITE and PTSD brain 
banks. Future work should include participants of all 
genders and races as more tissue is available.

Future directions
The results of this research suggest several avenues 
for future inquiry. The sulcus-to-crest ratios of vascu-
lar branching and fraction volume are worth further 
exploration for possible use in clinical diagnosis. In 
addition, since small vascular disease or arterioloscle-
rosis is associated with dementia in CTE [7, 26], future 
work will help determine whether the vascular changes 
found in this work are also associated with cognitive 
impairment. The SHIELD tissue post-fixing and clear-
ing techniques used here could also be combined with 
immunofluorescence to evaluate multiple markers in 
future studies.

Conclusions
We used tissue clearing to measure and compare vas-
cular coverage and branching in postmortem brain tis-
sue from individuals with CTE and controls. Our work 
suggests an association between vascular branching 
and density and CTE. Sulcus-specific vascular coverage 
increases also correlated positively with p-tau pathol-
ogy providing further evidence to suggest that micro-
vascular abnormalities and p-tau pathology might be 
mechanistically linked in CTE.
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