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Abstract 

Evidence from animal experiments has shown that the hypothalamic paraventricular nucleus (PVN) plays a key 
role in regulating body weight and blood glucose levels. However, it is unclear whether neuron populations in the 
human PVN are involved in the development of type 2 diabetes mellitus (T2DM). To address this, we investigated 
the neuronal and glial populations in the PVN of 26 T2DM patients and 20 matched controls. Our findings revealed a 
significant reduction in oxytocin (Oxt) neuron density in the PVN of T2DM patients compared to controls, while other 
neuronal populations remained unchanged. This suggests that Oxt neurons may play a specific role in the patho‑
physiology of T2DM. Interestingly, the reduction in Oxt neurons was accompanied by a decreased melanocortinergic 
input in to the PVN as reflected by a reduction in alpha‑MSH immunoreactivity. We also analysed two glial cell popula‑
tions, as they are important for maintaining a healthy neural microenvironment. We found that microglial density, 
phagocytic capacity, and their proximity to neurons were not altered in T2DM patients, indicating that the loss of 
Oxt neurons is independent of changes in microglial immunity. However, we did observe a reduction in the number 
of astrocytes, which are crucial for providing trophic support to local neurons. Moreover, a specific subpopulation 
of astrocytes characterized by aquaporin 4 expression was overrepresented in T2DM patients. Since this subset of 
astrocytes is linked to the glymphatic system, their overrepresentation might point to alterations in the hypothalamic 
waste clearance system in T2DM. Our study shows selective loss of Oxt neurons in the PVN of T2DM individuals in 
association with astrocytic reduction and gliovascular remodelling. Therefore, hypothalamic Oxt neurons may repre‑
sent a potential target for T2DM treatment modalities.
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Introduction
Disruptions in the hypothalamic neurocircuitry that 
controls energy metabolism are associated with the 
development and progression of metabolic disorders, 
such as type 2 diabetes (T2DM) and obesity [53]. Initial 
studies on postmortem human brain tissues pointed 
to a neuropeptidergic imbalance in the hypothalamus 
of T2DM individuals, affecting neurons that control 
appetite curbing [30] and circadian rhythms [24]. Sev-
eral lines of evidence in experimental rodents indicate 
a protective role of the paraventricular nucleus of the 
hypothalamus (PVN) in neuroendocrine, autonomic 
and behavioural responses to metabolic challenges [34, 
35, 38, 57]. However, despite abundant evidence of the 
participation of the PVN in glycaemic control [27, 60], 
it remains unclear whether PVN neurons are affected 
in T2DM individuals.

Proper neuron-glia interactions are necessary for the 
optimal coordination of feeding behaviour and energy 
homeostasis [13, 20, 43]. Animal studies have shown 
that a prolonged obesogenic diet triggers hypotha-
lamic reactive gliosis, which is linked to numeric and 
functional loss of neurons in control of metabolism 
[53]. Specifically, the lack of astrocytic trophic support 
associated with microglia-driven local inflammation is 
considered a key mechanistic node in the progression 
of metabolic diseases, such as obesity and diabetes 
[46]. Although the importance of disruptive neuron-
glia interactions is broadly reported in experimen-
tal rodents, it remains unknown to what extent these 
findings can be translated to the human condition. 
Furthermore, angiogenesis, referring to the formation 
of new blood vessels from pre-existing ones, plays a 
crucial role in the progression of diabetic retinopathy 
[3, 14]. Our previous study found an increased num-
ber of arterioles in the infundibular nucleus (IFN) of 
individuals with T2DM, suggesting that angiogenesis 
can occur in the human hypothalamus during T2DM 
[56]. Whether T2DM-associated angiogenesis also 
takes place in other hypothalamic regions, including 
the PVN, remains a question.

In this study, we investigated the neuron-glia-vas-
culature in the PVN of control and T2DM individu-
als, including neurons expressing oxytocin (Oxt), 
arginine-vasopressin (AVP), or corticotrophin releas-
ing hormone (CRH), microglia, two subpopulations of 
astrocytes, and lastly, arteries and arterioles. We found 
a selective and marked reduction in Oxt-immunoreac-
tive (Oxt-ir) neurons, in association with gliovascular 
remodelling that may facilitate and contribute to the 
progression of T2DM.

Methods
Subject information
Postmortem hypothalamic tissue specimens of 20 non-
diabetic controls and 26 T2DM subjects were obtained 
from the Netherlands Brain Bank (NBB), through 
autopsy approved by the Medical Ethic Committee of the 
VU Medical Center, the Netherlands. These T2DM and 
control subjects were matched for age, sex, postmortem 
delay, and tissue fixation time. Furthermore, patients 
with known neurological or psychiatric disorders were 
excluded. The donors or their next of kin gave consent for 
a brain autopsy, access to medical records and utilization 
of the brain tissue for research purposes. Individuals con-
sidered controls were defined as not having any known 
endocrine or metabolic pathologies. Patients who expe-
rienced corticosteroids medication prior to death were 
excluded from the study. An overview of clinico-patho-
logical details of the subjects can be found in Table 1.

Anatomical identification
After autopsy, the hypothalami were immersed in 10% 
phosphate-buffer formalin at room temperature. After 
fixation, brain tissue was embedded in paraffin and sec-
tioned in a rostral to caudal orientation at 6  μm thick-
ness. The anatomical orientation of PVN was determined 
by Nissl staining of every 100th section available, and 
further analysed by evaluating the range of Oxt-ir. For 
histological procedures, sections were mounted on 
 Superfrost+ slides, dried on a 37 °C heating plate for 48 h. 
To remove the paraffin, the slides were immersed in 100% 
xylene, rehydrated in grading ethanol (100%–50%), and 
rinsed in distilled water.

Immunohistochemistry and immunofluorescence
As the peak level of the Oxt-ir, AVP-ir and CRH-ir neu-
rons along the rostral-caudal axis of the PVN is almost 
identical (data not shown), all the immunohistochemistry 
analysis was performed in sections adjacent to the one 
with the highest count of Oxt-immunoreactive neurons. 
To unmask epitopes, heat induced antigen retrieval was 
performed using microwave treatment (10  min at 700 
W). The requirement and conditions of antigen retrieval 
were determined in pilot studies (data not shown). 
Incubation and antigen retrieval steps for ionized cal-
cium-binding adapter molecule 1 (Iba1), CRH, cluster 
of differentiation 68 (CD68)/Iba1, alpha-smooth mus-
cle actin (alpha-SMA) were performed in citrate buffer 
(82.5  mM sodium citrate dihydrate and 17.5  mM citric 
acid; pH 6.0). Incubation and antigen retrieval for alpha-
melanocortin stimulating hormone (alpha-MSH), co-
labelling of Oxt/Iba1 or AVP/Iba1 were performed in Tris 
buffer (1 M, pH 9.0). Antigen retrieval was not required 
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for AVP, Aq4, GFAP, and Oxt single immunohistochemi-
cal staining.

After cooling, sections were washed in Tris-buffer 
saline (TBS, 50 mM Tris–Cl and 150 mM NaCl, pH 7.6) 
and treated with 3% hydrogen peroxide in SUMI buffer 
(0.25% gelatine, 0.5% Triton X-100 in TBS (pH 7.6)). The 
sections were then washed in TBS and incubated with 
primary antibody for one hour at room temperature 
followed by overnight incubation at 4  °C. The next day, 
sections were rinsed and incubated with biotinylated sec-
ondary antibody and avidin–biotin complex (1:400 horse 
anti-rabbit IgG, goat anti-rat IgG, or rabbit anti-sheep 
IgG, Vector Laboratories; according to the species in 
which the primary antibody was raised). The product was 
visualized by incubation in 0.5 mg/mL 3,3’-Diaminoben-
zidine (Sigma Chemical Co.) and 0.01% hydrogen perox-
ide (Merck).

To perform immunofluorescence, sections for stain-
ing CD68/Iba1, AVP/Iba1, Oxt/Iba1 or alpha-SMA were 
incubated with biotinylated goat anti-mouse IgG (against 
CD68, AVP or Oxt) (1:400, Vector Laboratories) for one 
hour. The sections were then rinsed and incubated with 
a corresponding fluorescent secondary anti-rabbit anti-
body (against iba1) and streptavidin-fluorescence for one 
hour. Sections were then rinsed with TBS, followed by a 
DAPI counterstaining (1:5000, 62,248, ThermoFischer). A 
list of primary antibodies used in our experiments can be 
found in Additional file 1: Table S1.

Images acquisition and quantitative analysis
The immunohistochemically stained sections were cap-
tured using an Axio Scanner (Zeiss) and analysed with 
FIJI and/or QuPath software. Analysis of Oxt-ir, AVP-
ir and CRH-ir neurons was performed by outlining the 
total area covered by positive signal in two consecutive 
sections. Total area outlined, number of particles, par-
ticle size and area of coverage of positive signal were 
measured through the employment of the software tool 
“particle analysis” (FIJI). Neuronal soma was considered 
particles with areas between 30 and 300 µm2; and the 
total soma number obtained was divided by total area, 
resulting in soma number/mm2. The average soma size 
was obtained by calculating the mean area of the positive 
particles. Relative area of coverage of positive particles 
was calculated by determining the percentage of area of 
positive signal in relation to the total area.

To assess glial markers and alpha-MSH-ir, consecutive 
sections were examined, focusing on those that had the 
highest number of Oxt-ir neurons. Given the significant 
overlap between Oxt-ir/AVP-ir areas and CRH-ir cov-
ered area (as shown in Fig. 1), in contrast to their largely 
separate compartments within the rodents’ PVN [10] 
and the lack of observed changes in CRH-ir neurons, the 

corresponding areas covered by Oxt-ir neurons in adja-
cent sections were outlined for quantification of these 
markers.

For microglia and astrocytes, a similar strategy was 
employed. Microglial (Iba1-ir) and astrocytic (GFAP-ir 
and Aq4-ir) soma were considered particles with areas 
ranging from 20 µm2—100 µm2 according to previ-
ously published material [30] and pilot studies (data not 
shown). Alpha-MSH-ir relative area of coverage was 
obtained through a masked representation of the staining 
using the “pixel classification” tool in QuPath. The rela-
tive microglial area surrounding AVP-ir and Oxt-ir neu-
rons was calculated using QuPath software [7].

In brief, the positive signal for neurons and microglia 
was masked using the “pixel classification” tool. Masked 
signal ranging from 30 and 300 µm2 and minimum hole 
size of 100 µm2 were used as criteria to create objects 
reflecting neuronal staining. Following this, a circular 
area of 10 µm2 radius was created for every neuronal 
annotation using the “expand annotation” tool. Then, a 
masked signal for Iba1-ir was created, but no minimum 
particle area or hole size was imposed. The area of Iba1-ir 
signal was calculated within every expanded object and 
averaged by subject.

Images from immunofluorescent experiments were 
acquired using a SP8 SMD confocal microscope (Leica) 
for Iba1/CD68 co-labelling or Axio Scanner (Zeiss) for 
Oxt and AVP/Iba1 co-labelling, and single alpha-SMA. 
Analysis of 3D volumes of Iba1-ir and CD68-ir was per-
formed in Imaris 9.0. Specifically, a surfaced rendering of 
each marker was generated for individual cells and the 
CD68/Iba1 ratio was calculated. An averaged value of 
this ratio was used for each subject. For images acquired 
using the Axio Scanner, pilot sections were used to 

Fig. 1 An overview of AVP‑ir, Oxt‑ir and CRH‑ir neurons in the PVN 
of the same subject. a Representative image of AVP‑ir neurons 
distribution in the PVN; b representative image of Oxt‑ir neurons 
distribution in the PVN and c representative image of CRH‑ir neurons 
distribution in the PVN. fx: fornix; 3v: third ventricle. d A diagram 
depicts the human hypothalamus showing the areas of AVP‑ir, Oxt‑ir 
and CRH‑ir. Scale bar: 250 μm
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determined laser intensity for each marker. All sections 
of the same marker were acquired consecutively within a 
manually outlined region of interest.

Statistical analysis
Data are expressed as mean ± SEM. All markers evalu-
ated passed a normality test (D’Agostino and Pearson 
test) and statistical comparisons were performed by 
Student`s t test and a p value bellow 0.05 was considered 
significant. Mean values, standard deviation and associ-
ated p values can be found in Additional file 1: Tables S2 
and S3. All statistic tests were performing using Graph-
Pad Prism 8.12.

Results
Selective reduction of oxytocin neurons in the PVN 
of the T2DM individuals
To investigate the neuroendocrine and autonomic 
components of the PVN, we characterized the Oxt-ir, 
AVP-ir and CRH-ir neurons. We observed a significant 
reduction in cell density, soma size and relative area 
of coverage of Oxt-ir neurons in the T2DM individu-
als, compared to the control group (Fig.  2a–d). Inter-
estingly, the loss of Oxt-ir neurons was more severe 
in T2DM patients who were not treated with insulin 
(Additional file  2: Fig. S2 a-c). Although the cell den-
sity of AVP-ir neurons (Fig.  2e) was similar in T2DM 
and controls (Fig.  2f ), the size of their soma and the 

Fig. 2 Selective reduction of Oxt‑ir in the PVN of T2DM subjects. a Representative images of Oxt‑ir neurons in the PVN of control (n = 20) and 
T2DM (n = 26) subjects. Plot of neural parameters specifying b Oxt‑ir soma number /  mm2 (neuronal density), c Oxt‑ir average soma size and d 
relative masked area by the Oxt‑ir cells. e Representative images of AVP‑ir neurons in the PVN of control and T2DM subjects. Quantitative analysis of 
f AVP‑ir soma number /  mm2 (neuronal density), g AVP‑ir average soma size and h relative masked area by the AVP‑ir cells. i Representative images 
of CRH‑ir neurons in the PVN of control and diabetic subjects. Plot of j CRH‑ir soma number /  mm2 (neuronal density), k CRH‑ir average soma size 
and l relative masked area by the CRH‑ir cells. Note that Oxt‑ir neurons are drastically reduced in the PVN of diabetic subjects, whereas AVP‑ and 
CRH‑containing neurons are unaltered in number, suggesting a selective effect of T2DM pathophysiology in Oxt neurons. Also note that the soma 
size of the CRH neurons is substantially smaller than the Oxt and AVP neurons, as CRH neurons only belong to the parvocellular component of PVN. 
Scale bar: 50 µm in a, e and i. Data are represented as mean ± SEM. *p < 0.05. Significance was calculated using Student`s t test in b–d, f–h and j–l 
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relative area of coverage were smaller in the T2DM 
group (Fig.  1g, h). In contrast, we did not observe 
any changes in CRH-ir neurons in T2DM individu-
als (Fig. 2 i-l). Furthermore, insulin treatment did not 
affect AVP-ir or CRH-ir neuronal parameters as it did 
with the Oxt neurons (Additional file  2: Fig. S1d-i). 
Owing to these results, we evaluated malanocortiner-
gic innervation into the PVN through alpha-MSH-ir 
fibers. We observed a significant reduction of alpha-
MSH-ir fibers in the PVN (Additional file  2: Fig. S2a, 
b), indicating a defective melanocortinergic signalling 
pathway in the PVN of T2DM subjects. Taken together, 
our results suggest that a hypothalamic neuropeptider-
gic imbalance associated with T2DM pathophysiology 
occurs in the PVN, with a selective reduction of oxyto-
cinergic neurons.

Microglial activity in the PVN is unaltered in T2DM 
individuals
To investigate whether the Oxt-ir neuronal reduction 
was associated with increased microglial activity, we 
profiled Iba1-ir microglia in the PVN. Number, size and 
relative area of coverage of Iba1 + cells were comparable 
in both control and T2DM subjects in the Oxt-ir region 
(Fig.  3a–d). Comparably, we did not detect numeric 
changes in AVP-ir and CRH-ir covered areas (Additional 
file 2: Fig. S3). We also measured the phagocytic capac-
ity using Iba1-ir and CD68-ir co-staining and found no 
differences in CD68-ir content between T2DM and con-
trols, suggesting similar microglial immune surveillance 
and phagocytic capacity (Fig. 3e–g). Furthermore, insulin 
treatment in T2DM did not influence microglial abun-
dance or phagocytic activity (Additional file 2: Fig. S4a-e).

We further investigated the relationship between 
microglial and neuronal parameters by linear regression 

Fig. 3 Microglia number and function are unaltered in the PVN of T2DM individuals. a Representative images of Iba1‑ir in the PVN of control 
(n = 20) and T2DM (n = 26) subjects. Plot of microglial parameters b Iba1‑ir soma number/mm2 (cell density), c Iba1‑ir average soma size and d 
relative masked area by the Iba1‑ir microglial cells. e Co‑localization of CD68 (a phagosome indicator) and Iba1 in the PVN and f Quantitative 
analysis of CD68‑ir positive microglia in percentage and g volume percentage of CD68‑ir in relation to Iba1‑ir. h Co‑labelling of Oxt and Iba1 in the 
PVN and mean relative area masked (%) of Iba1‑ir particles surrounding Oxt‑ir neurons within 10 µm radius (i). j Co‑labelling of AVP and Iba1 in the 
PVN and k mean relative area of coverage (%) of Iba1‑ir particles surrounding AVP‑ir neurons within 10 µm radius. Scale bar: 20 µm in a; 10 µm in e 
and 8 µm in h and j. Data are represented as mean ± SEM. *p < 0.05. Significance was calculated using Student`s t test in b–d, f, g, i, k 



Page 8 of 13Correa‑da‑Silva et al. Acta Neuropathologica Communications          (2023) 11:107 

analysis (Additional file  2: Figs. S5–S7). In T2DM sub-
jects, we observed a positive correlation between Oxt-
ir neurons soma size/total masked area and microglial 
density/ total area masked (Additional file 2: Fig. S5b, c, 
e, f ). We also found a positive correlation between AVP-
ir soma size and microglial cell density and total masked 
area in individuals with T2DM (Additional file  2: Fig. 
S6b, e). Lastly, CRH-ir soma size and total area were 
positively correlated to microglial total area (Additional 
file 2: Fig. S7e, f ). However, no correlation was found in 
the control group, nor for the remaining comparisons in 
diabetic subjects (Additional file 2: Figs. S5–S7).

To investigate whether the observed changes in Oxt 
neurons were due to augmented neuron-microglia con-
tacts, as previously reported between reactive micro-
glia and proopiomelanocortin (POMC) neurons in mice 
with diet-induced obesity [58], we evaluated microglial 
presence surrounding Oxt-ir and AVP-ir neurons. We 
co-labelled Oxt or AVP with Iba1 and evaluated Iba1-ir 

within 10  µm radius from each individual neuron ren-
dered. However, we found no differences in microglial 
proximity to Oxt-ir neurons (Fig.  3h–i) or AVP-ir neu-
rons (Fig.  3j–k). Nevertheless, we observed increased 
microglial-occupation neighbouring Oxt neurons in 
T2DM subjects who were not undergoing insulin treat-
ment prior to their demise in comparison to those with 
insulin treatment (Additional file 2: Fig. S4f ). Microglial 
representation neighbouring AVP-ir neurons was unal-
tered regardless of treatment (Additional file 2: Fig. S4g).

Reduced GFAP-ir astroglia and overrepresented 
glymphatic components in the PVN in T2DM
Next, we assessed hypothalamic astrocytes in the region 
of Oxt-ir neurons (Fig.  4a). We found that GFAP-ir cell 
density and area of coverage were reduced compared to 
controls (Fig. 4b, d), while soma size remained compara-
ble (Fig. 4c). Recent evidence suggested that a subpopula-
tion of astrocytes characterized by Aq4, a water channel, 

Fig. 4 Loss of GFAP‑ir astrocytes and overrepresentation of gliovascular components Aq4‑ir astrocytes in the PVN of T2DM individuals. a 
Representative images of GFAP‑ir in the PVN of control (n = 20) and T2DM (n = 26) subjects. Plot of astrocytic parameters b GFAP‑ir soma number/
mm2 (cell density), c GFAP‑ir average soma size and d relative masked area by GFAP‑ir astrocytes. e Representative images of Aq4‑ir in the PVN of 
control and T2DM subjects, the cells framed in the left panel (e1 and e3) are displayed at a high magnification in the right panel (e2 and e4). f 
Quantitative analysis of Aq4‑ir cells/mm2 (density) and g relative masked area of Aq4‑ir astroglia. h Representative images of alpha‑SMA‑ir in the 
PVN of control and T2DM subjects and i plots of alpha‑SMA‑ir vessel number in the PVN; j quantitative analysis of alpha‑SMA‑ir masked area. Scale 
bar: 10 µm in a, e2 and e4, 50 µm in e1 and e3; 40 µm in h 
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is involved in the progression of neuropathology [31]. We 
evaluated Aq4-ir in the PVN (Fig. 4e) because Aq4 par-
ticipation in hypothalamic dysfunction is virtually unex-
plored. Our findings showed an increased cell density 
and area of coverage of Aq4-ir astrocytes in the T2DM 
group (Fig.  4f, g), indicating a potential higher demand 
for drainage of unneeded cellular and metabolic wastes 
in the hypothalamic microenvironment. Furthermore, as 
Aq4 is an essential component of the glymphatic system 
[4], we also evaluated alpha-SMA, an endothelial marker 
for arteries and arterioles. We detected an increased 
area of coverage of alpha-SMA-ir in the PVN of T2DM 
subjects (Fig.  3h-j, Additional file  2: Fig. S8), indicating 
T2DM-associated angiogenesis also takes place in the 
PVN. Importantly, insulin treatment had no effect on 
any of these astrocytic or gliovascular markers (Addi-
tional file 2: Fig. S9). These results indicate that astrocytic 
dysfunction may contribute to T2DM pathophysiology, 
which is associated with hypervascularization in the 
PVN.

Putative confounder analysis
We conducted a confounder analysis to account for 
potential influences from age, fixation time, postmortem 
delay, body mass index (BMI), post-absorptive glucose, 
and pH of cerebrospinal fluid (CSF). All of these factors 
were well-matched between the control and T2DM sub-
jects. Although linear regression analysis showed some 
parameters to be incidentally significant, this did not 
affect the implications of our findings (Additional file 2: 
Figs. S10-S30 with statistics summarized in Additional 
file 1: Tables S4-S6).

Discussion
In this study, we examined the neuronal and glial popula-
tions in the PVN of the hypothalamus in T2DM subjects 
and matched controls. Our analysis revealed a selective 
reduction in the density of PVN Oxt-ir neurons com-
pared to other PVN neural populations in T2DM individ-
uals. To investigate potential underlying mechanisms for 
the loss of oxytocinergic neurons we also profiled micro-
glial and astroglial cells in the PVN. We found no changes 
in the microglia population, but our results showed a 
reduction in GFAP-ir astrocytic cells, while a subpopula-
tion of Aq4-ir astrocytes was overrepresented in the PVN 
of T2DM individuals compared to the controls. These 
Aq4-ir astrocytes are important for the make-up of the 
glymphatic system. We also observed an increased pres-
ence of alpha-SMA in the PVN, indicating angiogenesis 
in the T2DM human brain. These findings suggest a dis-
turbance of the Oxt neuron-astrocytes-vasculature sys-
tem in the PVN of individuals with T2DM.

To gain more insight into the hypothalamic control of 
energy homeostasis, much research has focused on the 
POMC and neuropeptide Y / agouti-related peptidergic 
neurons in the Arc (IFN in human) [25, 33]. However, 
this is just one component of a complex and multi-lay-
ered control system that involves a range of neural net-
works and glia cells. The PVN acts as a central hub for 
metabolic control, as it receives and integrates afferent 
inputs from various intra- and extra-hypothalamic areas, 
such as the IFN, suprachiasmatic nucleus (SCN), and 
hindbrain [49]. Previous observations of loss of specific 
metabolism-controlling neurons in postmortem hypo-
thalamic material suggest an imbalance of IFN [30] and 
SCN [24] neurons in T2DM, confirming changes in the 
human brain in this pathology [36]. However, despite its 
highly integrative role, the involvement of the PVN in 
diabetes progression has remained unexplored. Dysfunc-
tion in this nucleus is likely to be intimately associated 
with hyperglycemia and body weight fluctuations. Our 
study addresses this knowledge gap and highlights the 
importance of the PVN in T2DM pathology.

Oxt is a hypothalamic neuropeptide that regulates a 
broad range of physiological processes, including social 
cognition and energy homeostasis [8, 11, 23]. It is pro-
duced in the hypothalamic PVN and supraoptic nucleus 
[11, 23] and its effects are exerted throughout the cen-
tral nervous system and periphery [45, 51]. Oxt receptor 
expression is observed in key metabolic organs such as 
adipose tissue [51] and endocrine pancreas [39], indicat-
ing its role in regulating adiposity and pancreatic func-
tion. Oxt-knockout mice develop obesity and glucose 
intolerance, highlighting the importance of Oxt in these 
processes [12]. Recent research suggests that PVN Oxt 
neurons respond to glucoprivation, and are necessary for 
the pancreatic beta cells response to glucose fluctuations 
[40]. Although Oxt is well-known for its anorexic effects 
[37], direct manipulation of PVN Oxt neurons is not suf-
ficient to affect food consumption or body weight [6, 
47, 52]. Instead, neuroanatomical, and functional circuit 
mapping of feeding behaviour suggests that the partici-
pation of PVN Oxt neurons in feeding is dependent on 
synaptic inputs from the Arc (IFN in human) [6].

Interestingly, in normal weighted individuals, serum 
Oxt levels decrease during fasting and correlate nega-
tively with various metabolic parameters, such as the 
BMI, fasting and postprandial glucose/insulin concen-
trations, and insulin sensitivity [42]. However, Oxt lev-
els do not differ between glucose-tolerant overweight 
and lean subjects [42]. In T2DM individuals, serum Oxt 
levels are lower than those in nondiabetic individuals, 
irrespective of obesity [2, 42]. These findings suggest 
that glycaemic control is a central mediator of oxytocin’s 
influence on metabolic homeostasis. Whether reductions 
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in serum Oxt levels in T2DM are due to defective hypo-
thalamic neuroendocrine systems was undefined. Oxt 
has been considered as a therapeutic approach to T2DM, 
as it has been shown to lower glycaemic levels in mice 
and humans [18]. Our study reports a reduction in Oxt 
neurons in the PVN of T2DM. Notably, especially the 
absence of antidiabetic treatment (insulin) was accom-
panied by lesser Oxt-ir neurons, indicating greater 
hypothalamic dysfunction in poorly controlled T2DM, 
as suggested previously [30]. It is noteworthy that selec-
tively Oxt-ir neurons were reduced in PVN of T2DM 
individuals, indicating a greater vulnerability of this neu-
ronal population to metabolic stressors. Our findings 
suggest a central role for Oxt neurons in glucoregulation, 
with potential implications in the development and pro-
gression of T2DM.

Glia malfunctioning is considered a critical mechanis-
tic node in hypothalamic dysfunction in metabolic dis-
orders [29]. Our data showed the loss of Oxt neurons 
is associated with a reduction in GFAP-positive astro-
cytes. Similarly, GFAP-ir astrocytes were also reduced 
in the SCN of T2DM subjects, alongside the loss of SCN 
AVP- and vasoactive intestinal peptide-containing neu-
rons [24]. These results suggest that this sub-population 
of astrocytes might play a vital role in maintaining local 
homeostasis for selective populations of neurons in dif-
ferent hypothalamic regions. In recent years the essential 
role of the glymphatic system, which aids in removing 
waste products from the central nervous system, has 
become clear [28, 50, 59]. Aq4-expressing astroglia con-
tribute to this process by selectively permitting water dif-
fusion and maintaining ionic and osmotic homeostasis 
[4]. Recent studies have suggested that changes in Aq4 
expression may be linked to restrictions in CSF flow and 
the accumulation of waste products, resulting in neu-
ronal dysfunction and cognitive decline [26]. This idea is 
supported by the observation that Aq4-knockout animals 
show defective removal of amyloid beta plaques [26, 50]. 
Moreover, an increased number of Aq4-astrocytes has 
been observed in the frontal cortex of aged and cogni-
tive impaired subjects, further reinforcing their impor-
tance in draining brain wastes [59]. Interestingly, T2DM 
patients have elevated protein levels in the CSF [32]. This 
could potentially be associated with an enhanced glym-
phatic clearance activity. To investigate this hypothesis, 
techniques such as magnetic resonance imaging (MRI) 
have proven valuable in identifying glymphatic flow and 
clearance rate in humans [1, 44, 61].

The role of Aq4 in the hypothalamus is still underex-
plored, although a recent study suggested increased 
activity of the glymphatic system in the hypothalamus 
in long-term high fat-fed mice [17]. Our findings regard-
ing the increased numbers of Aq4-ir astrocytes in the 

hypothalamus of T2DM subjects may indicate an ele-
vated need for microenvironmental clearance through 
the glymphatic system. This increased demand could 
be due to neuronal injury in the PVN, as evidenced 
by the loss of Oxt neurons. It could also be induced by 
T2DM-associated insulin resistance, as it is known that 
the suppression of insulin signalling in astrocytes leads 
to increased angiogenesis and altered blood flow [19]. 
Therefore, similar to what has been suggested for rodents 
on a long-term obesogenic diet [17], T2DM-associated 
insulin resistance may play a role in increased fluid traf-
ficking in the hypothalamus in an Aq4-dependent man-
ner. Another T2DM-associated pathological change that 
may contribute to the increased demand for clearance are 
disrupted circadian rhythms and impaired sleep quality, 
as adequate sleep quality ensures a sufficient removal of 
potentially neurotoxic waste products that accumulate 
in the awake central nervous system [55]. This idea is 
based on the fact that in the SCN, where the brain’s mas-
ter circadian clock is located, arginine vasopressin- and 
vasoactive intestinal polypeptide-containing neurons 
and astroglial cells, which are critical in maintaining the 
circadian clock, were significantly reduced in individu-
als with T2DM [24]. These findings also indicate that 
improving sleep quality for T2DM patients is expected 
to not only enhance waste clearance but also prevent the 
onset of AD, which is known to be highly associated with 
T2DM.

Microglia are the resident immune cells of the cen-
tral nervous system, and in diet-induced obesity, they 
are known to be activated into a proinflammatory state 
[9, 16, 21, 22]. Although the role of these cells in T2DM 
is not yet well understood, previous studies did not find 
changes in microglia number in the IFN and SCN of 
T2DM subjects [24, 30], suggesting no or a milder change 
in microglial profile in T2DM compared to obesity. Our 
current findings support these previous observations, 
as we did not observe any morphological or functional 
changes in microglia in the PVN of T2DM. Alterations 
in neuronal soma size are closely associated with neu-
ronal stress and have been reported in various neuropa-
thology studies [5, 15, 54]. Interestingly, in our study, we 
found a positive correlation between microglial density 
and PVN neuropeptide soma size (and consequently, 
total area of coverage) exclusively in T2DM subjects. This 
suggests that microglia might be more active in T2DM 
and contribute to hypothalamic neuronal dysfunction. 
Furthermore, emerging evidence indicates that distinct 
subpopulations of microglia are associated with the pro-
gression and development of diseases in the human brain 
[41, 48]. Future studies that profile microglial interactions 
with specific neuronal populations at a single-cell level 
are needed to determine whether specific and localized 
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microglial populations are linked to neurological out-
comes in T2DM. It is also worth noting that microglia 
appear to be sensitive to antidiabetic treatments, as we 
found that patients who were not undergoing insulin 
treatment had a higher microglial representation neigh-
bouring Oxt neurons. These findings suggest that micro-
glial activity in response to T2DM-related stressors may 
contribute to the observed changes in neuronal param-
eters. However, more research is needed to fully under-
stand the underlying mechanisms and implications of 
these correlations.

Taken together with our findings on astrocytes, these 
results raise fundamental questions on how the human 
brain partitions the innate immune microglia-governed 
phagolysosome cleaning system and the glymphatic 
draining system to maintain a healthy brain microenvi-
ronment that ensures neuronal survival. It is possible 
that human microglia are more resilient to immune chal-
lenges from the microenvironment than rodents, as we 
hardly detected changes in microglia in T2DM. In con-
trast, the glymphatic system might be more sensitive to 
T2DM-associated pathological changes, as evidenced by 
the increased number of Aq4-expressing astrocytes. Fur-
ther research is needed to fully understand the mecha-
nisms underlying these observations.
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