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Abstract 

Glioblastoma, IDH wild‑type is the most common and aggressive form of glial tumors. The exact mechanisms of 
glioblastoma oncogenesis, including the identification of the glioma‑initiating cell, are yet to be discovered. Recent 
studies have led to the hypothesis that glioblastoma arises from neural stem cells and glial precursor cells and that 
cell lineage constitutes a key determinant of the glioblastoma molecular subtype. These findings brought significant 
advancement to the comprehension of gliomagenesis. However, the cellular origin of glioblastoma with mesen‑
chymal molecular features remains elusive. Mesenchymal stromal cells emerge as potential glioblastoma‑initiating 
cells, especially with regard to the mesenchymal molecular subtype. These fibroblast‑like cells, which derive from the 
neural crest and reside in the perivascular niche, may underlie gliomagenesis and exert pro‑tumoral effects within the 
tumor microenvironment. This review synthesizes the potential roles of mesenchymal stromal cells in the context of 
glioblastoma and provides novel research avenues to better understand this lethal disease.
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Introduction
Glioblastoma (GB), IDH wild-type (wt) is the most com-
mon and aggressive form of glial tumors, accounting 
for almost 50% of primary malignant central nervous 
system (CNS) tumors [1, 2]. It is classified as grade 4 in 
the World Health Organization (WHO) classification 

of tumors of the CNS. It belongs to the «adult-type dif-
fuse glioma» family that also includes astrocytoma IDH-
mutant (WHO grade 2, 3, or 4) and oligodendroglioma, 
IDH-mutant and 1p/19q-codeleted (WHO grade 2 or 3) 
[1].

As opposed to astrocytoma IDH-mutant WHO grade 
4 (formerly, GB, IDH-mutant), GB, IDHwt arises de 
novo (without preexisting precursor lesion) and typically 
manifests rapidly after a short clinical history. Despite an 
aggressive multimodal therapeutic approach, GB IDHwt 
is associated with a dismal prognosis, showing a median 
survival of 8  months and an overall 5-year relative sur-
vival rate of 5.5% [2].

The exact mechanisms of glioblastoma oncogene-
sis are yet to be discovered. Over the last two decades, 
extensive and comprehensive molecular profiling of GB 
has brought new insights into gliomagenesis [3, 4]. The 
genomic and epigenomic landscape of GB have been 
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thoroughly described, and biological subgroups have 
emerged, defining three molecular subtypes based on 
gene expression profiling signatures: proneural, classical, 
and mesenchymal [3, 5–7]. To date, it has not strongly 
impacted clinical practice, likely owing to marked intra-
tumoral heterogeneity and differentiation plasticity of 
GB [8]. However, it has provided new research avenues 
to understand better the GB pathogenesis, including the 
identification of the glioma-initiating cell.

Recent studies have led to the hypothesis that GB may 
arise from neural stem cells (NSC) and glial precursor 
cells, such as oligodendrocyte and astrocytic precur-
sor cells [9, 10]. In addition, it has been shown that the 
originating cell lineage is crucial to tumor molecular 
stratification, independently of the driver mutation that it 
initially harbors [11, 12]. While glial or neuronal progeni-
tor cells have been suggested to initiate proneural and 
classical GB, the cellular origin of mesenchymal glioblas-
toma remains elusive. Studies have described a potential 
proneural to mesenchymal transition (PMT) that may 
illustrate the transcriptomic plasticity of GB upon treat-
ment or recurrence. Recently, neural crest (NC)-derived 
cells have emerged as potential cells of origin in mesen-
chymal GB [13]. Herein, we discuss perivascular mesen-
chymal stromal cells (pMSC), also referred to as vascular 
fibroblasts (vFB), which originate from the NC, as poten-
tial candidates for the initiation of GB and their role in 
GB development [14].

Glioblastoma
General characteristics
Epidemiology
GB, IDHwt is the most common malignant CNS tumor 
in adults. It accounts for approximately 15% of all intrac-
ranial neoplasms and almost 50% of all malignant CNS 
tumors. It preferentially affects older adults, with a peak 
incidence in patients aged 55–85  years (median age of 
64 years). In the United States of America, GB, IDHwt is 
more common in males compared to females (M: F ratio 
of 1.58: 1) [1, 2]. To date, the only validated risk factor is 
ionizing radiation to the head and neck [15, 16]. On the 
contrary, decreased risk has been observed among indi-
viduals with a history of allergies or atopic diseases [16]. 
Despite a multimodal therapeutic approach that includes 
surgery, radiotherapy, and chemotherapy, prognosis 
remains poor, with a 5-year survival rate of 5.5% [2, 17, 
18].

Definition of GB
GB, IDHwt is a diffusely infiltrating high cellular glioma 
that characteristically shows microvascular proliferation 
and/or necrosis. As the former term «  GB multiforme» 
suggests, GB morphology has remarkable inter-tumoral 

and intra-tumoral heterogeneity. Cellular pleomorphism 
includes small, undifferentiated, spindled, lipidized, gran-
ular, epithelioid, and/or giant cells. Secondary structures 
of Scherer illustrate the different routes that glioma cells 
can take to invade the brain: 1) the white matter tracts, 2) 
the vasculature (perivascular satellitosis), 3) the leptome-
ningeal space and 4) the brain parenchyma.

By definition, GB, IDHwt lacks mutations in IDH1 
codon 132 and IDH2 codon 172. Molecularly, dem-
onstration of TERT promoter mutations, EGFR gene 
amplification, and/or a gain of chromosome 7/ loss of 
chromosome 10 genotype is sufficient for the diagnosis of 
GB [1].

GB Molecular pathways
PI3K–AKT–mTOR and Ras/MAPK/ERK pathways
The PI3K and MAPK pathways, both activated by recep-
tors tyrosine kinase (RTK), regulate many cellular pro-
cesses, including cell proliferation. In approximately 90% 
of IDHwt GB, at least one activating alteration in the 
PI3K pathway is observed, including alterations of RTK 
genes, PI3K genes, and PTEN [3, 19]. Alterations of RTK 
genes are common in GB, involving EGFR (60%), PDG-
FRA (10–15%), MET (2–5%), or FGFR3 (~ 3%) [3, 5, 20]. 
PI3-kinase mutations are found in about 25% of GB [3]. 
In addition, the NF1 gene, which encodes neurofibromin 
that functions as a negative regulator of RAS signaling, is 
deleted or mutated in 10% of cases [3].

p14ARF–MDM2–MDM4–p53 pathway
The p53 pathway is altered in a large variety of cancer, 
including GB. Indeed, up to 90% of GB have an altered 
p53 signaling pathway, with mutation or deletion of TP53 
in 20–25% of cases [3, 19]. In about 15% of GB, an ampli-
fication of MDM2 or MDM4 is observed, thus inhibiting 
p53 [3]. Homozygous deletion of CDKN2A locus, which 
encodes the p14ARF protein that inhibits MDM2, is 
detected in about 60% of GB, resulting in an inactivation 
of the p53 pathway and the pRB pathway (see below) [3].

CDK4/6–CDKN2A/B–RB1 cell‑cycle pathway
The pRB pathway represents a critical cell cycle check-
point, suppressing cell cycle entry (Fig.  1). CDK4 and 
CDK6 suppress the downstream inhibition of pRB, allow-
ing the progression from G1 to S phase of the cell cycle. 
P16, encoded by CDKN2A, inhibits CDK4 and CDK6. 
Up to 80% of GB show at least one alteration of the pRB 
pathway, including CDKN2A deletions, amplifications of 
CDK4/CDK6, and inactivating alterations of RB1 [3, 19].

GB molecular subtypes and the mesenchymal signature
Gene expression profiling has allowed the classification 
of GB into three distinct molecular subtypes: proneural, 
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classical, and mesenchymal [3, 5–7]. Initially, this classi-
fication was based on the expression profile of 840 genes, 
but subsequent studies have shown that it can be sim-
plified to rely on just 12 genes with good concordance 
(Table  1) [21]. However, despite their correlation with 
distinct genetic aberrations and clinical characteristics, 
these molecular subtypes have not gained clear signifi-
cance in clinical practice.

The proneural subtype is characterized by specific 
genetic alterations, including IDH1 mutation, TP53 

mutation, PDGFRA amplification and/or mutation, and 
a glioma-CpG island methylator phenotype (G-CIMP) 
[5, 22]. Notably, both IDH1 mutations and G-CIMP are 
considered favorable prognostic factors. However, when 
excluding IDH-mutant tumors, the proneural subtype 
exhibits the worst prognosis among all subtypes [23].

The classical subtype is characterized by EGFR muta-
tion/amplification and CDKN2A homozygous deletion.

Accounting for approximately 34% of GB, the mesen-
chymal subtype displays an expression profile character-
ized by mesenchymal markers, such as CHI3L1 and MET 
[5–7]. Mesenchymal subtype tumors are predominantly 
IDHwt and G-CIMP- and commonly harbor NF1 muta-
tion [5, 22, 24]. In addition, they tend to correlate with 
poor response to radiation therapy and relatively poor 
outcome [7, 24]. The mesenchymal subtype is also char-
acterized by high levels of angiogenic markers, such as 
CD31/PECAM-1, VEGF, flt1/VEGFR1, and kdr/VEGFR2 
[6]. Furthermore, it exhibits high expressions of immune-
related genes, particularly proinflammatory genes and 

Fig. 1 Signaling pathways involved in GB. Alteration rates are summarized for PI3K/MAPK, p53 and pRb regulatory pathways (created with 
Biorender.com)

Table 1 Glioblastoma molecular subtypes

Glioblastomas can be classified into three molecular subtypes based on the 
expression profile of 12 genes

GB subtypes Marker genes

Proneural P2RX7, STMN4, SOX10 and ERBB3

Classical ACSBG1 and KCNF1

Mesenchymal S100A, DAB2, TGFB1, THBS1, COL1A2, COL1A1
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immunosuppressive genes [3, 5, 6, 25]. Several of these 
genes are involved in the recruitment of monocytes/mac-
rophages (CSF-1, CCL2, CCL-22, TREM1, and TREM2) 
and in the macrophage-polarization towards an immu-
nosuppressive M2-phenotype (CD163, CD204) [25]. 
Notably, the mesenchymal subtype shows enrichment of 
macrophages and microglial cells, constituting the largest 
stroma cell population in GB [26–28].

It is important to note that while an initial neural sub-
type was described in this classification, it was later con-
sidered to be the result of contamination with normal 
cells [5, 21, 23].

The origin of GB
The exact cell of origin of GB has yet to be definitively 
identified. Several CNS cell types within the CNS, includ-
ing neural precursor cells (NPC), oligodendrocyte pre-
cursor cells (OPC), and astrocytic precursor cells (APC), 
have been proposed as potential candidates for initi-
ating GB (Fig.  2) [9, 29, 30]. Moreover, emerging evi-
dence indicates that the cell lineage plays a crucial role 

in determining the molecular subtype of GB. Indeed, 
the introduction of identical driver mutations in differ-
ent precursor cells leads to the development of distinct 
molecular subtypes [11, 12]. Studies have demonstrated 
that neural stem cells (NSC) in the subventricular zone 
carry the driver mutations responsible for GB, suggest-
ing them as a potential cell of origin [10, 31, 32]. Further 
supporting this notion, single-cell RNA-sequencing (scR-
NAseq) studies have identified profiles resembling NPC, 
OPC, and APC, providing evidence for a neuronal/glial 
origin of GB [8, 33]. However, the cellular origin of GB 
with mesenchymal features, despite the well-described 
mesenchymal transcriptomic profile, remains elusive. 
The hypothesis of pMSC as GB-initiating cells will be dis-
cussed further (Fig. 2).

To support the hierarchical development model, 
CD133+ glioma stem cells (GSC) have been identified 
within GB tumors. These GSC exhibit remarkable prolif-
eration capacity, self-renewal abilities, and differentiation 
potential [34, 35]. They are characterized by the expres-
sion of CD133, OCT4, CD44, nestin, and SOX2, although 

Fig. 2 The origin of glioblastoma. During normal embryonic development and in the adult brain, normal neural stem cells generate glial and 
neuronal cells. Glioblastoma stem cells may arise from neural stem cells and/or glial precursor cells through the activation of oncogenic pathways. 
They may also originate from neural crest (NC)‑derived, pMSC. During development, the NC arises from the neural tube and its component cells 
migrate and invade virtually all tissues, giving rise to numerous differentiated cells, such as pMSC, melanocytes, chondrocytes, peripheral neuronal 
and glial cells, thyroid C cells, and adrenergic cells (created with Biorender.com)
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a specific marker exclusive to GSC has not yet been iden-
tified [34, 36, 37]. GSC are described as slow-dividing or 
quiescent cells that reside in protective microenviron-
ments called GSC niches, contributing to intratumoral 
heterogeneity and therapy resistance [34, 38, 39]. GSC 
preferentially reside in the perivascular niche, interacting 
with endothelial cells in intricate bidirectional crosstalk, 
and in the perinecrotic niche (Fig. 3) [40].

GB immune microenvironment
GB is a highly complex tissue composed of tumor cells 
and their surrounding microenvironment which supports 
tumor growth through a permissive neighborhood. The 
tumor microenvironment (TME) consists of cells (includ-
ing immune cells, vascular cells, glial and neuronal cells, 
and stem cells), soluble factors, signaling molecules, and 
an extracellular matrix. It is a dynamic milieu considered 

to play an active role in tumorigenesis through reciprocal 
communication with cancer cells [41]. GB TME is com-
partmentalized in tumor niches which are critical regions 
where interactions between cancer cells and host cell 
populations are promoted (Fig. 3).

Tumor vasculature
One of the main features of GB is microvascular prolif-
eration. The tumor vasculature plays a crucial role in 
supporting tumor growth through various mechanisms, 
including:

– Angiogenesis This is the primary process involved 
in GB vascularization, triggered by the release of 
pro-angiogenic factors, such as vascular endothelial 
growth factor (VEGF), by tumor cells.

Fig. 3 Glioblastoma tumor micro‑environment. GB TME is compartmentalized in perivascular, perinecrotic and peritumoral niches. 
Tumor‑associated macrophages (Bone marrow‑derived macrophages and microglia) and mesenchymal stromal cells play key roles in supporting 
GB proliferation, invasion and angiogenesis (created with Biorender.com)
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– Vessel co-option Tumor cells possess the ability to 
migrate along existing blood vessels, enabling inva-
sion of the brain through vascular routes [42].

– Vasculogenesis This process involves the recruitment 
of endothelial cell progenitors derived from the bone 
marrow, contributing to the assembly of neo-vessels 
[43].

– Transdifferentiating process GSC demonstrate the 
capacity to differentiate into tumor-derived endothe-
lial cells, a phenomenon known as the transdifferen-
tiating process [44, 45].

– Vascular mimicry This refers to the presence of vas-
cular structures within the tumor that result from 
GSC differentiating into vascular smooth muscle cells 
(vSMC) or pericytes (PC) [46, 47].

Macrophages
Immune cells may represent up to 50% of the GB tumor 
bulk [48]. Among these immune cells, tumor-associated 
macrophages (TAM) are the predominant population 
and are characterized by their origin, localization, and 
functions, encompassing both microglia and bone mar-
row-derived macrophages (BMDM) [49–51]. Notably, 
BMDMs represent approximately 85% of TAM and are 
primarily found in perivascular regions within the tumor, 
while microglia are localized in peri-tumoral areas [51, 
52].

TAM can exhibit different activation states depend-
ing on environmental cues, polarizing into either type 
I response (M1 TAM) or type II response (M2 TAM) 
through classical or alternative activation, respectively. 
M1 TAM promote inflammation by producing pro-
inflammatory cytokines, such as IL- 12, IL-1β, TNF-α, 
IL-6, and IL-23, while M2 TAM suppress inflammation 
by producing ARG1, IL-10 and IL-4 [53]. Initially, once 
recruited within the GB TME, TAM were considered to 
polarize toward an M2-like phenotype that promotes 
invasion, angiogenesis and immunosuppression [54–56]. 
However, recent studies have revealed that TAM encom-
pass a dynamic entity that includes antitumoral M1-like, 
pro-tumoral M2-like, and non-polarized M0 phenotypes 
[27, 57].

Regarding GB molecular subtypes, mesenchymal GB 
exhibit higher AIF1 expression (encoding for IBA1), a 
marker associated with TAM [28]. These findings is con-
sistent with previous studies showing increased infiltra-
tion of TAM in NF1-altered GB [7, 58]. In addition, it has 
been suggested that PMT was associated with increased 
TAM infiltration [24].

Functionally, TAM play a pivotal role in gliomagenesis 
through complex cross-talk with tumor and TME cells, 
contributing to tumor progression, immunosuppression, 

and cerebral edema [59]. TAM release factors such as 
TGFβ, IL-1β, IL-6, stress-inducible protein 1 (STI1), and 
epidermal growth factor (EGF) that stimulate tumor 
growth and invasion (Fig.  3) [60–63]. In addition, their 
immunosuppressive role includes the recruitment of 
CD4+ /FOXP3+ T regulatory (Treg) cells and myeloid-
derived suppressor cells (Fig.  3) [64, 65]. Furthermore, 
due to their perivascular localization, TAM have been 
investigated for their involvement in cerebral edema. 
Studies have shown that dexamethasone, commonly used 
for the management of cerebral edema, inhibits TAM 
production of IL-1β, and genetic ablation of IL-1α/β or 
IL-1β in a murine GB model or the administration of a 
potential IL-1β inhibitor (Sulfasazaline) reduces cerebral 
edema [66, 67]. The potential role of TAM in vasogenic 
cerebral edema underscores the need for further inves-
tigations into the complex interaction of TAM with the 
components of the blood–brain barrier (BBB).

These findings point out the crucial role of the perivas-
cular niche in gliomagenesis, by promoting angiogenesis, 
modulating the immune response, supporting tumor cell 
invasion, and providing a stem cell niche. Within this 
niche, pMSC are also present, and their role in GB devel-
opment and progression will be discussed below.

Perivascular mesenchymal stromal in the CNS
Definition
First identified in the bone marrow (BM) and termed 
colony-forming unit fibroblasts (CFU-F), MSC are char-
acterized in  vitro by a spindle-shaped, fibroblast-like, 
plastic-adherent appearance [68, 69]. They are multipo-
tent progenitor cells that have the ability to differentiate 
into adipocytes, chondrocytes, and osteoblasts [70–72]. 
Their multipotency has raised much interest in tissue 
engineering research for using culture-expanded MSC 
to replace injured or damaged mesenchymal tissue [73]. 
MSC express CD105 (Endoglin), CD73, and CD90 (Thy1) 
and lack the expression of CD45, CD34, CD14 or CD11b, 
CD79a or CD19, and HLA-DR [70, 71, 74]. Other mark-
ers, such as CD140b (PDGFRB), CD271 (Low-affinity 
NGF receptor), CD146 (Muc18), and CD248 have been 
suggested to identify MSC [75–78] but these markers 
are equally expressed by PC. As the concept of MSC 
was initially defined as a multipotent cell residing within 
the BM, it has evolved over the years to a wide concept 
that includes multipotent perivascular cells of any organ, 
including the CNS, as discussed below.

Origin of pMSC and PC in the CNS vasculature
MSC in adult tissues have two main embryonic origins, 
deriving either from the mesoderm or the NC [79–83]. 
During embryogenesis, MSC migrate along vessels and 
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then reside in the perivascular niche of all adult tissues, 
adopting similar features to that of PC [80, 84].

The term ‘PC’ is often used in the literature to refer to 
microvascular periendothelial cells [85]. The accepted 
definition of a PC is a cell that is embedded within the 
vascular basement membrane, as observed by electron 
microscopy. However, because ultrastructural analyses 
are impractical, most published papers may not differen-
tiate PC from other periendothelial cells, including vSMC 

and pMSC [14, 86–91]. It is now clear that different cell 
types exist in the periendothelial compartment but accu-
rately identifying their phenotypes remains a challenge. 
PC cannot be definitively identified and distinguished 
from vSMC or pMSC using a single molecular marker. 
Commonly applied markers or genes (Table  2), such as 
NG2/Cspg4, CD13/Anpep, and desmin, are not specific 
and their expression is not stable, particularly in disease 
conditions. Other markers, such as CD248 (endosialin) 

Table 2 Identification and markers (genes) of endothelial and perivascular cells in the CNS

Several markers are shared between the different subsets of periendothelial cells while others (in bold) are restricted (but not exclusive) to specific subsets. TEM1: 
Tumor endothelial marker 1

Cell types Markers Comments Reference

Endothelial cells CD31 PECAM‑1, cell adhesion [86]

CD93 CD248 family member [86, 95]

CLDN5 Claudin 5 [86]

CDH5 Cadherin 5, also expressed by CNS fibroblasts [86]

Pericytes (PC) PDGFRβ Receptor for platelet derived growth factor [85]

NG2 Encoded by Chondroitin sulfate proteoglycan 4 CSPG4. Also expressed by oligo‑
dendrocyte progenitor cells

[85]

Desmin [85]

CD13 Aminopeptidase N

CD248 Endosialin (TEM‑1), highly expressed in glioma (GBM) (PC > pMSC) [85, 96, 97]

Vascular smooth muscle cells (vSMC) PDGFRβ Levels in PC > vSMC [98]

NG2 [98]

Desmin Muscle class III intermediate filament [98]

CD13

RGS5 Regulator of G protein signaling 5 GTPase activating protein [85, 99]

CD146 Melanoma cell adhesion molecule (MCAM) [85, 99]

αSMA Alpha smooth muscle cell actin encoded by ACTA2. Level of expression in 
vSMC >  > PC

[85]

TAGLN Trangelin, smooth muscle protein 22 alpha (SM22) [85]

pMSC fibroblast‑like PDGFRβ
PDGFRα [86]

CD13

COL1A1 pMSC also express high levels of COL1A2, COL3A1, COL4A1. Expressed by PC (less 
than 2%)

LAMA-1 Laminin subunit alpha 1, also expressed by epithelial cells [86]

LUM Lumican [86]

DCN Decorin [86]

MPZL2 Myelin protein zero‑like 2, adhesion [86]

SRPX2 Sushi Repeat Containing Protein X‑Linked 2 [86]

FN Fibronectin, also expressed by PC / scar tissue [100]

FBLN1 Fibulin‑1, Type I Hu pMSC/fibroblast [14]

CEMIP Cell migration‑inducing protein, Type II Hu FB [14]

KCNMA1 Potassium channel, Type III Hu pMSC/Fib [14]

Macrophages (M) CD11b / CD18 Complement receptor type 3 involved in phagocytosis of host cell debris [87, 101]

Border‑associated M (BAM) CD163 Scavenger receptor, M2 antiinflammatory [102]

CD206 Mannose receptor [88]

LYVE1 Hyaluronan receptor [88]

Astrocytes (AS) GFAP Glial fibrillary acidic protein [87]
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and CD90 (Thy-1), are highly expressed by PC but recent 
investigations revealed that they are also expressed by 
pMSC, especially in the context of GBM [86]. In addition, 
it has been demonstrated that PC, originally defined by 
their vascular mural localization, have the same osteo-
genic, adipogenic, and myogenic potential as MSC and 
also express surface markers of MSC, such as CD44, 
CD73, CD90, and CD105 in vitro [80, 92].

Recent studies utilizing cell lineage tracing and single-
cell RNA sequencing experiments have provided insights 
into the role of pMSC cells in the CNS. Garcia et  al. 
have identified 11 cell subtypes within the human CNS 
vasculature, including three distinct subtypes of pMSC 
(referred to as vFB in this study), with specific markers 
(Table 2) [14]. Type I pMSC in humans appear to be pri-
marily involved in extracellular matrix (ECM) organi-
zation and fibrosis, while type III cells express various 
growth factors, including VEGFA. Interestingly, the gra-
dient of gene expression from type I to type II pMSC was 
continuous with a subpopulation of pericytes, suggesting 
a potential lineage from type I to type II to PC [14]. Two 
of the pMSC subtypes align with the subtypes previously 
identified in mice by Vanlandewijck et al. (referred to as 
vFB in this study, type I and II) [86]. Similar findings were 
observed in a zebrafish study, which demonstrated the 
stem cell potential of pMSCs to transdifferentiate into PC 
[93].

These findings substantiate the affiliation of PC and 
pMSC, which are also referred to vFB, within a contin-
uum of differentiation [72, 94].

Physiological functions of PC and pMSC in the CNS.
The close association between PC and endothelial cells 
contributes to the formation of the BBB, the maintenance 
of vascular stability, and the regulation of vascular tone 
[103–105]. Other functions have been described, includ-
ing a role in angiogenesis and immune regulation proper-
ties, making pMSC key players in brain homeostasis and 
disease. Together with endothelial cells, astrocytes and 
neurons, they form the neurovascular unit that supplies 
nutrients and oxygen through the BBB and provides an 
optimal environment for NSC (as well as GSC) homing 
and proliferation (Fig. 4) [106, 107].

Injury repair
Many studies have demonstrated the ability of MSC to 
differentiate toward a neuronal/glial phenotype in  vitro 
and therefore, have suggested a potential role of MSC 
in brain repair [108–112]. However, while transplanta-
tion of MSC in brain and spinal cord injury models tends 
to improve the functional outcome, the transforma-
tion of MSC into neurons/glial cells in  vivo is rare and 
partly results from the fusion of MSC with brain cells 

[113–116]. Consequently, it has been suggested that the 
role of MSC in brain injury mostly relies on their immune 
regulation properties rather than their neuronal differen-
tiation ability. In fact, this paradigm shift in which MSCs 
exert healing effects not through their differentiation 
abilities but rather through their immune modulation 
functions, has been observed in many therapeutic con-
texts [117–120].

Recent findings suggest that pMSC and PC may have 
a unique ability to monitor the microenvironment of 
injured tissues. Indeed, it has been demonstrated that 
they secrete a large number of chemokines, cytokines, 
and other soluble factors [120–123]. Their role in 
immune regulation has initially been highlighted by the 
observations of prolonged skin graft survival, improve-
ment in severe graft-versus-host disease, and therapeutic 
effects in an experimental autoimmune encephalomy-
elitis mouse model [124–126]. Indeed, MSC can modu-
late effector T-cell activation and proliferation, directly 
through soluble factors or indirectly by controlling the 
activity of regulatory T-cells (Treg). MSC are also able 
to control the proliferation and the activation of mono-
cytes/macrophages, natural killer T-cells, dendritic cells, 
B-cells, and neutrophils, by the secretion of soluble fac-
tors such as IFN gamma, nitric oxide (NO), indoleamine 
2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), TGFβ, 
and IL10 [127, 128]. Consequently, MSC have a major 
role in the coordination of healing responses and the pre-
vention of autoimmunity [119, 127–129].

Scar formation is a ubiquitous healing mecha-
nism that is preserved throughout the CNS. Initially, 
the CNS scar has been referred to as the glial scar as a 
whole. The glial scar predominantly consists of reac-
tive astrocytes and proteoglycans (heparan sulphate 
proteoglycan, dermatan sulphate proteoglycan, keratan 
sulphate proteoglycan and chondroitin sulphate proteo-
glycan) that stabilize injured CNS tissue by modulating 
the inflammatory response, yet prevent tissue regenera-
tion [130–132]. The glial scar circumscribes the lesion 
core where the inflammatory response leads to a fibrotic 
scar, composed of immune cells, fibroblasts, fibronec-
tin, collagen and laminin [133]. It is commonly accepted 
that fibroblasts are absent in the CNS parenchyma and 
it has been suggested that they are restricted to the vas-
cular and meningeal niches [134]. Several studies have 
underscored the role of pMSC and PC in generating the 
fibrotic scar in the CNS [100, 135–137]. In response to 
spinal cord injury, PC proliferate locally and give rise to 
myofibroblasts, generating the fibrotic scar [100]. A rapid 
pMSC/PC loss after cerebral ischemia in human stroke 
has been observed, with subsequent proliferation of resi-
dent PDGFRβ + CD13 + stromal cells that transform to 
αSMA + CD105 + myofibroblasts [135]. These findings 
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suggest the critical role of the endothelial cell-pMSC/
PC interaction to maintain pMSC and PC in a quiescent 
state to prevent fibrosis.

pMSC in GB
In GB, pMSC can be recruited either from local brain 
sources, in the perivascular niches, or from the BM by 
MSC homing to the GB TME [138, 139]. pMSC may 
also result from GSC differentiation. As discussed above, 
GSC predominantly reside in perivascular niches and 
interact with endothelial cells in a bidirectional manner 
[40]. First reports have suggested that GSC may trans-
differentiate into endothelial cells but it has been shown 
that endothelial cells do not harbor molecular altera-
tions of GB [44, 140–142]. In addition, the ability of GSC 
to undergo mesenchymal differentiation has raised the 
hypothesis of GSC transdifferentiating into pMSC rather 
than endothelial cells [143, 144]. Furthermore, it has been 

demonstrated that GSC generate PC, which may carry 
the same genetic alterations of GB, such as EGFR amplifi-
cation, chr 10 loss and PTEN loss [145].

As discussed above, the origin of mesenchymal GB 
remains elusive and until recently, an alternative non-
neural progenitor cell has not been explored. Indeed, 
deep scRNAseq of GB progenitor cells uncovered two 
principal cell-lineage profiles, NC perivascular and 
radial glia (and its progenies) [13]. Consistently, intro-
ducing driver mutations in perivascular cells was suffi-
cient to initiate brain tumors in vivo. In addition, it has 
been shown that GB of a perivascular lineage represent 
44% of the mesenchymal GB subtype and showed sig-
nificant poorer survival than those of radial glia-line-
age [13]. These results suggest that the mesenchymal 
signature results, at least partially, from pMSC trans-
formation. Indeed, the mesenchymal subtype can be 
induced by other factors such as the influence TME, the 

Fig. 4 Perivascular mesenchymal stromal cells (pMSC) in normal brain and in glioblastoma. In normal brain, pMSC form the neurovascular unit, 
together with endothelial cells, astrocytes, and neurons. The neurovascular unit supplies nutrients and oxygen through the blood brain barrier. In 
glioblastoma (GB), resident pMSC and glioma stem cell‑differentiated pMSC participate in vascular proliferation. Leaving the vessel, pMSC may give 
rise to GB stem cells, GB cells, and cancer‑associated fibroblasts. (MPZ: Myelin P zero) (created with Biorender.com)



Page 10 of 15Ah‑Pine et al. Acta Neuropathologica Communications          (2023) 11:104 

accumulation of mutations in tumor cells (particularly 
NF1 mutation) and the therapy-induced mesenchymal 
transition (Fig. 5) [146].

Several studies have demonstrated the involvement 
of PC and pMSC in GB tumor vasculature development 
through a vascular mimicry mechanism [46, 47, 139, 147, 
148]. It has also been shown that pMSC overexpress sev-
eral proteins involved in the promotion of tumor angio-
genesis, including CSPG4/NG2, CRYAB, CNN1, CALD1, 
and VASP, and secrete high levels of angiogenic factors 
such as SDF-1/CXCL12 and HGF [149].

The role of pMSC in immune regulation during GB 
progression was demonstrated by the high levels of 
anti-inflammatory cytokines (IL-10 and TGFβ) detected 
in  vitro and in  vivo in pMSC (referred as to PC in this 
study) that interact with GB cells [150]. In contrast, after 
activation by GB cells, pMSC did not produce proin-
flammatory cytokines, such as IL-1, IL-23, and IL-12 
[150]. These observations suggest an immunosuppressive 
response of pMSC to interaction with GB cells.pMSC 
also have a tumor growth-enhancing and tumor invasive-
ness-increasing role [138, 151]. It has been demonstrated 
that pMSC secrete TGFβ1, stimulating GB cell prolifera-
tion and viability through paracrine effect [152]. pMSC 
are also capable of enhancing GB cell proliferation under 
direct cell–cell contact, independently of TGFβ1 levels, 
in  vitro and in  vivo [152]. Similarly, it has been shown 
that pMSC secrete IL-6, increasing proliferation and 
self-renewal of GSC in vitro and enhancing GSC tumori-
genicity in vivo (Fig. 3) [153].

Studies have isolated two subpopulations of pMSC 
 (CD90high pMSC and  CD90low pMSC) and have 
described specific roles in GB progression [154, 155]. It 

has been observed that  CD90low pMSC are more abun-
dant than  CD90high pMSC and that  CD90low pMSC con-
tribute to angiogenesis and  CD90high pMSC promote GB 
cell growth both in vivo and in vitro [155, 156]. Indeed, 
 CD90low pMSC were shown to produce higher levels of 
angiogenic factors, such as VEGF, bFGF and IL-6, and 
 CD90high pMSC to produce higher levels of growth fac-
tors, such as SDF-1α, CCL5 and MMP9 [155].

Perivascular and intratumoral cells that co-express 
PDGFRβ and fibroblast activation protein α (FAP), a 
common marker used to identify cancer-associated fibro-
blasts (CAF), were identified in GB [157]. Proteomic 
quantitative analysis has also demonstrated that pMSC 
expressed high levels of CAF markers, such as CD146, 
S100A4/FSP1, nestin, and NG2 [149]. These findings 
suggest that pMSC, mirroring their transition to myofi-
broblasts in the context of fibrotic scar, may give rise to 
CAF that support tumor progression with the GB TME, 
as described in other solid cancers [158, 159].

Concluding remarks
pMSC exert pro-tumoral effects, promoting angiogen-
esis, tumor proliferation and invasiveness, and immu-
nosuppression, in agreement with the observation that 
increased percentages of pMSC within high-grade glio-
mas are associated with worse clinical outcome [160]. 
Recent studies suggest that, in addition to their activities 
to support GB growth, pMSC may be the cell of origin 
of GB, particularly the mesenchymal GB subtype [13]. 
This alternative paradigm provides exciting new research 
avenues to characterize pMSC in the context of GB and 
understand better the gliomagenesis.

Fig. 5 Origin of mesenchymal glioblastoma subtype (created with Biorender.com)
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