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Abstract 

Pediatric high‑grade gliomas (pHGG) are brain tumors occurring in children and adolescents associated with a 
dismal prognosis despite existing treatments. Therapeutic failure in both adult and pHGG has been partially imputed 
to glioma stem cells (GSC), a subset of cancer cells endowed with stem‑like cell potential and malignant, invasive, 
adaptative, and treatment‑resistant capabilities. Whereas GSC have largely been portrayed in adult tumors, less 
information has been provided in pHGG. The aim of our study was to comprehensively document the stem‑like 
capacities of seven in‑use pediatric glioma cell cultures (Res259, UW479, SF188, KNS42, SF8628, HJSD‑DIPG‑007 and 
HJSD‑DIPG‑012) using parallel in vitro assays assessing stem cell‑related protein expression, multipotency, self‑renewal 
and proliferation/quiescence, and in vivo investigation of their tumorigenicity and invasiveness. Data obtained from 
in vitro experiments revealed glioma subtype‑dependent expression of stem cell‑related markers and varying abilities 
for differentiation, self‑renewal, and proliferation/quiescence. Among tested cultures, DMG H3-K27 altered cultures 
displayed a particular pattern of stem‑like markers expression and a higher fraction of cells with self‑renewal potential. 
Four cultures displaying distinctive stem‑like profiles were further tested for their ability to initiate tumors and invade 
the brain tissue in mouse orthotopic xenografts. The selected cell cultures all showed a great tumor formation capac‑
ity, but only DMG H3-K27 altered cells demonstrated a highly infiltrative phenotype. Interestingly, we detected DMG 
H3-K27 altered cells relocated in the subventricular zone (SVZ), which has been previously described as a neurogenic 
area, but also a potential niche for brain tumor cells. Finally, we observed an SVZ‑induced phenotypic modulation of 
the glioma cells, as evidenced by their increased proliferation rate. In conclusion, this study recapitulated a systematic 
stem‑like profiling of various pediatric glioma cell cultures and call to a deeper characterization of DMG H3-K27 altered 
cells nested in the SVZ.
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Introduction
Pediatric high-grade gliomas (pHGG) account for 
approximately 15% of central nervous system (CNS) 
tumors occurring in children and adolescents [39] and 
are associated with dramatic clinical outcome for the 
young patient despite existing therapies [11]. pHGG 
represent a heterogeneous group of malignancies, with 
distinct molecular features and spatiotemporal patterns 
[32]. In the fifth edition of the WHO classification of 
CNS tumors, pHGG have been subdivided into different 
entities, designated as 1) Diffuse midline glioma (DMG), 
H3-K27 altered, 2) Diffuse hemispheric glioma, H3 G34-
mutant, 3) Diffuse pHGG, H3-wildtype and IDH-wildtype 
and 4) Infantile-type hemispheric gliomas [31].

In pHGG as well as in adult glioblastoma (GBM), ther-
apeutic failure has been attributed to tumor heterogene-
ity, cell infiltration through the brain, and resistance to 
treatment [40]. In the early 2000’s has been introduced 
the concept of glioma stem cells (GSC), a cancer cell sub-
population with stem cell potential that was assessed 
based on cell self-renewal, balance in quiescence to high 
proliferation, multipotency and tumor initiation. These 
properties confer tumorigenic, invasive, adaptative, and 
treatment-resistant capabilities to GSC [14, 43].

The subventricular zone (SVZ), edging the walls of 
the lateral ventricles, is the major persistent neurogenic 
niche in the adult human and mouse brain [46]. In both 
adult GBM and pHGG, tumors that are in direct contact 
with the SVZ have been associated with a poor prog-
nosis [27, 29, 35, 36], suggesting there could be impor-
tant implications of the SVZ environment on glioma cell 
maintenance. Preclinical data from our lab provided evi-
dence that SVZ-nested adult GBM cells show improved 
tumor-initiating capacities [28] and become resistant to 
ionizing radiation [19], features that were associated to 
a more pronounced “stem-like” phenotype, i.e. GSC. In 
pHGG, especially DMG H3-K27 altered, a similar inva-
sion of the SVZ has been proposed [44]. However, the 
presence of GSC in the pediatric SVZ remains unknown.

In this work, we aimed to shed light on the “stem-like” 
properties of pHGG cultures that have been used in the 
neuro-oncology research field for their genetics, molecu-
lar subtypes, and drug resistance mechanisms. We exam-
ined the stem-like features of these cell cultures, using 
in  vitro functional tests assessing stem cell-related pro-
tein expression, multipotency, self-renewal and prolif-
eration/quiescence. Based on the results, cultures with 
distinct “stem-like” profiles were further selected for 
mouse orthotopic xenografts, in which we investigated 
the relative infiltration of the SVZ and subsequent phe-
notypic modulation. Altogether, our study adds to the 
growing body of literature by providing a systematic 
stem-like profiling of various pHGG cell cultures, to 

help shed light on novel treatment approaches for these 
dreadful tumors.

Material and methods
Cell culture
The human pediatric cell lines Res259, UW479, SF188, 
KNS42, HSJD-DIPG-007 and HSJD-DIPG-012 were 
kindly provided by Dr. Samuel Meignan (from Oscart 
Lambret Center, Lille, France). SF8628 were purchased 
from Sigma-Aldrich (SCC127). All cell lines were cul-
tured according to the provider’s instructions. Res259, 
UW479, SF188, KNS42 and SF8628 cells were cultivated 
as adherent monolayers in Dulbecco’s modified Eagle’s 
medium and Nutrient Mixture F-12 (DMEM/F12) con-
taining 10% fetal bovine serum (FBS, Invitrogen) and 
1% penicillin/streptomycin (ThermoFisher Scientific). 
HSJD-DIPG-007 and HSJD-DIPG-012 were cultured as 
neurospheres in neural precursor cell (NPC) medium 
consisting in DMEM/F12 serum-free medium contain-
ing 2% of B27 without vitamin A (Life Technologies) and 
supplemented with recombinant epidermal growth fac-
tor (EGF, 20  ng/mL, Peprotech), fibroblast growth fac-
tor 2 (FGF-2, 10  ng/mL, Peprotech), and 1% penicillin/
streptomycin (ThermoFisher Scientific). Prior to intrac-
erebral implantation, Res259, KNS42, HSJD-DIPG-007 
and HSJD-DIPG-012 cells were transduced with Lenti6-
CMV-RFP-Luc (MOI 100) for stable expression of lucif-
erase and red fluorescent protein (RFP), with the help of 
the GIGA Viral Vectors platform from Liège University. 
All cultures were maintained at 37  °C under humidified 
atmosphere containing 5% carbon dioxide.

Next‑generation DNA sequencing
Cell cultures were profiled using a custom SeqCap EZ 
HyperCap hybridization-based capture panel protocol 
(Roche Sequencing and Life Science Kapa Biosystems) 
targeting protein-coding exons as well as specific targets 
areas (promotor or intronic regions) of 95 cancer-associ-
ated genes, as previously described [6]. Briefly, genomic 
DNA was enzymatically fragmented, libraries were pre-
pared using the KAPA HyperPlus Library Preparation 
Kit (Roche Sequencing) and captured using biotinylated 
XGen lockdown probes (Integrated DNA Technologies). 
Pooled libraries containing captured DNA fragments 
were subsequently sequenced on an Illumina NovaSeq 
instrument as 2 × 150  bp paired-end reads with a mini-
mum read depth of at least × 350 coverage. The paired-
end reads were mapped against the reference genome 
build 19 (GRCh37). Variant calling was performed using 
an in-house developed bio-informatics pipeline incorpo-
rating BWA for alignment, GATK for variant calling (× 2 
Unified Genotyper), and Annovar for variant annotation. 
A third caller, Mutect 2 (GATK4) was added to increase 
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accuracy for detecting large indels (version 11_19). It 
ends with a newly developed variant filtration and prior-
itization step that merges the annotated variant sets. The 
complete list of 95 genes that were sequenced is found in 
Additional file 2: Table S1.

Flow cytometry
For this experiment, single-cell suspensions of 1 ×  106 
cells cultivated in adherence (Res259, UW479, SF188, 
KNS42 and SF8628) or in neurospheres (HSJD-DIPG-007 
and HSJD-DIPG-012) were used. For membrane stain-
ing, cells were incubated at 4 °C for 1 h in the dark with 
anti-human CD15-FITC, CD44-BUV737, CD49f-BV421, 
and CD133-PE. For intracellular staining, cells were first 
fixed and permeabilized (Transcription Factor Buffer 
Set, BD biosciences, 562,574) then cells were incubated 
at 4  °C for 1 h in the dark with anti-human Bmi1-Alexa 
Fluor647, Nestin-V450 and Sox2-PE. Similar staining 
was performed with isotype-matched control antibodies 
(BD biosciences). Antibodies are listed in the Additional 
file 3: Table S2. After incubation, cells were washed three 
times in wash buffer and stained with 7-AAD (for mem-
brane staining) or Fixable Viability Stain 780 (FVS780) 
(for intracellular staining) and incubated 10 min at room 
temperature in the dark. After three washes with FACS 
buffer, samples were immediately recorded on a flow 
cytometer (BD Fortessa). Analysis was performed using 
the FlowJo software (TreeStar, Inc.). Dot plots for pro-
tein expression were generated after excluding debris 
and doublets by forward- and side-scatter gating and 
7-AAD+ or  FVS780+ cells for leaving out dead cells.

Differentiation assay
Differentiation of cancer cells was performed by using a 
neural stem cell differentiation protocol. Briefly, 2 ×  104 
cells from neurospheres (HSJD-DIPG-007 and HSJD-
DIPG-012) or 2,000 adherent cells (Res259, UW479, 
SF188, KNS42 and SF8628) were plated in 24 wells plate 
on 1 × poly-L-ornithine-coated coverslips. Cells were cul-
tured in a medium composed of 1 × Neurobasal medium 
(ThermoFisher Scientific), 2% B-27 Serum-Free Supple-
ment (containing Vitamin A; ThermoFisher Scientific), 
1% of Pen/Strep, 1% FBS and 2 mM GlutaMAX-I Supple-
ment (ThermoFisher Scientific). Cells were also cultured 
in adherence in DMEM/F12 with 1% FBS, for spontane-
ous differentiation assay. Cells were incubated for 12 days 
at 37  °C in a humidified atmosphere of 5%  CO2. After 
12 days in culture, cells were formalin-fixed and stained 
for βIII-tubulin.

Limiting dilution assay
All cell cultures were transferred into 3D neuro-
spheres culture conditions prior to this assay. Single-cell 

suspensions from 3D neurospheres of each cell culture 
were plated into 96-well plates in NPC medium, with 
various seeding densities (0, 1, 2, 4, 8, 16, 32, 64, 128 and 
256 cells per well). After cell seeding, the plates were 
incubated at 37  °C for 7  days. On day 7, each well was 
observed under a 10 × magnification for the determina-
tion of individual tumor cell spheres formation (> 40 µm). 
“Positive” wells (containing spheres) were counted, log 
fraction (vs wells w/o spheres) was plotted, and data were 
analyzed using the extreme Limiting Dilution Analysis 
(http:// bioinf. wehi. edu. au/ softw are/ elda/ index. html).

Proliferation/quiescence assays
Cell cycling rate was assessed using CellTrace Violet cell 
proliferation kit (Invitrogen). Briefly, single-cell suspen-
sions from adherent (Res259, UW479, SF188, KNS42 and 
SF8628) or neurospheres (HSJD-DIPG-007 and HSJD-
DIPG-012) cultures were incubated with 5 μM CellTrace 
for 20 min at 37 °C, washed, and grown for 1–5 days. Flu-
orescence intensity was measured at the indicated time 
points by flow cytometry (FACSCanto, Becton Dickin-
son) and analyzed using FlowJo software (TreeStar, Inc.). 
Label Retaining Cell (LRC) population was defined as the 
cell population remaining above the threshold of fluores-
cence determined at day 0.

Cell proliferation was evaluated using a 5-ethynyl-2ʹ-
deoxyuridine (EdU) incorporation assay (Click-iT EdU 
Assays) (Roche Applied Science, Indianapolis, IN, USA). 
5 ×  103 cells of each cell line were seeded in 96-well plates 
and cultured overnight in serum-free medium. After 
incubation, medium was replaced by media with 10% 
FBS. Then, EdU was added to culture medium at a final 
concentration of 10  µM and incubated for 3  h (a “No 
EdU” negative control was done at this step). After incu-
bation, 50 µL/well of staining solution was added and 
cells were incubated for 20  min at room temperature, 
protected from light. After staining, cells were washed 
with phosphate buffered saline (PBS) with triton 0.1% 
(3 × 5  min) and counterstained with DAPI for 5  min at 
room temperature. Cells were imaged and cell prolif-
eration rate was analyzed and expressed as EdU positive 
cells relative to the total cell number. All experiments 
were performed in three independent sessions.

Intracranial glioma cell transplantation
Female  nu/nu immunodeficient mice (Crl:NU-Foxn1nu) 
(P40) were obtained from Charles River Laboratories 
(Wilmington, UK). Mice were anesthetized with an 
intraperitoneal injection of a Rompun (Sedativum 2%, 
Bayer, Bruxelles, Belgium) and Ketalar (Ketamin 50 mg/
mL, Pfizer, Bruxelles, Belgium) solution (V/V) freshly 
prepared. The mouse head was restrained within a ste-
reotactic frame, allowing a precise and reproducible 

http://bioinf.wehi.edu.au/software/elda/index.html
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injection site. Using the bregma as a landmark for the 
coordinates, Res259 and KNS42 cells (cultivated in 
adherence) were injected in the right striatum (− 0.5 mm 
AP, + 2.5 mm VL, + 2 mm DV) and HSJD-DIPG-007 and 
HSJD-DIPG-012 cells (cultivated in neurospheres) were 
injected in the pons (+ 5 mm AP, + 0.5 mm VL, + 5 mm 
DV), as a suspension of 50,000 (Res259 and KNS42) or 
100,000 (HSJD-DIPG-007 and HSJD-DIPG-012) cells 
in 2 μL of sterile PBS. Monitoring of tumor growth was 
performed with in  vivo bioluminescence imaging. Mice 
were sacrificed from the first signs of apparent discom-
fort (e.g. immobility, significant weight loss, absence of 
reaction) arising at 6 weeks after injection for KNS42 and 
Res259 cells, and around 8 weeks for HSJD-DIPG-007 or 
HSJD-DIPG-012.

Brain tissue processing
Mice were euthanized with a Euthasol vet. injection 
(Sodium pentobarbital 400  mg/mL, Produlab Pharma 
B.V, Forellenweg, Netherlands) before intracardiac per-
fusion with ice-cold NaCl 0.9% solution (VWR Interna-
tional, Prolabo, USA) containing heparin (5000 i.u./ml, 
Leo Pharma) followed by paraformaldehyde (PFA) 4% in 
PBS. Brains were removed and postfixed in PFA 4% for 
24  h. Prior to tissue cryosectioning, brains were cryo-
protected for 24 h in PBS containing 30% sucrose before 
being flash frozen at − 80 °C. Fourteen micrometers thick 
coronal (Res259 and KNS42) or sagittal (HSJD-DIPG-007 
and HSJD-DIPG-012) sections were cut on a cryostat and 
stored at − 20 °C.

Prior to light-sheet microscopy, PFA-fixed brains were 
clarified as previously described [47]. Briefly, half-brains 
were first infused for 24 h with a 4  °C hydrogel cocktail 
of acrylamide, bisacrylamide monomers, formaldehyde 
and thermally triggered initiators. Hydrogel polymeri-
zation was induced at 37  °C during 3 h, followed by the 
extraction and wash of the brain tissue in borate-buffered 
4% sodium-dodecyl-sulfate (SDS) for 24 h at 37 °C. Half-
brains were then clarified using X-Clarity Tissue Clearing 
System II in an Electrophoretic Tissue Clearing Solution 
during 24  h at room temperature. The resulting lipid-
extracted and structurally stable tissue–hydrogel hybrids 
were washed in PBS with 0.1% of Triton X-100, for 2 days 
at room temperature, and finally stored in PBS-azide at 
4  °C. Finally, half-brains were immersed in a refractive 
index (RI) homogenization solution (RIMS or Refractive 
Index Matching Solution; RI ~ 1.460) to render it trans-
parent to light.

Immunostaining and image acquisition
Cells or brain sections were permeabilized with respec-
tively 0.1% or 0.2% Triton X-100 PBS solution, and 
unspecific binding sites were blocked using PBS with 10% 

donkey serum. Brain sections or cells were incubated 
with primary antibodies (Additional file  4: Table  S3) 
diluted in PBS containing 0.1% donkey serum, followed 
by a second incubation with conjugated secondary anti-
bodies (1:500, Jackson ImmunoResearch Laboratories). 
Cells or brains image acquisition were performed respec-
tively with epifluorescence microscope Zeiss Apotome 
and Zeiss Axioscan 7.

2D and 3D images of clarified half-brains were taken 
with a dual illumination lightsheet Z1 (Zeiss) fluores-
cence microscope. Images were stitched and recon-
structed using Arivis Vision 4D software. For detection of 
the RFP signal, images were finally analyzed using Imaris 
(version 9.0) software and referenced using Allen Mouse 
Brain Atlas.

Statistical analysis
Data were processed and analyzed with the GraphPad 
Prism 8 software. Results are reported as median ± range 
(min/max) and analyzed using Kruskall-Wallis compara-
tive analyses, with the n described as the number of bio-
logical samples or independent experiments. Statistical 
significance was set at p < 0.05.

Results
Molecular characterization of seven cell cultures derived 
from low‑ to high‑grade pediatric gliomas
We started this study with seven cell cultures isolated 
from low-grade (Res259) to high-grade (UW479, SF188, 
KNS42, SF8628, HJSD-DIPG-007 and HJSD-DIPG-012) 
pediatric gliomas. Using next-generation DNA sequenc-
ing, we profiled 95 cancer-related genes in these cell cul-
tures (Fig.  1A). Based on these results, Res259, UW479 
and SF188 could not be associated to any pHGG entity. 
As expected from the parental tumor diagnosis, SF8628, 
HJSD-DIPG-007 and HJSD-DIPG-012 were character-
ized by a H3.3-K27 mutation (H3.3-K27M), confirmed 
by immunofluorescence (Fig.  1B) and corresponded to 
pontine DMG, H3-K27 altered, formerly called diffuse 
infiltrative pontine gliomas (DIPG). We confirmed the 
Diffuse hemispheric glioma, H3 G34-mutant subgroup 
for KNS42, as previously described [7].

From their initiation, all cultures were either grown as 
adherent monolayers or tridimensional tumor spheres 
depending on their initial culture setup, but all cell 
types could be cultured in both experimental conditions 
(Fig. 1B).

Expression of stem‑cell associated surface and intracellular 
markers distinguishes subgroups among pediatric glioma 
cell cultures
Many proteins have been suggested as playing an essen-
tial role in GSC behavior, especially in self-renewal, 
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proliferation, quiescence and tumorigenicity [14] and 
therefore have been proposed as putative GSC-spe-
cific identification markers. Based on the literature, we 
selected a panel of seven membrane (i.e. CD49f, CD44, 

CD15, CD133), cytoplasmic (i.e. Nestin) and nuclear (i.e. 
Bmi1, Sox2) proteins [1, 17]. We assessed the percent-
age of positive cells for each protein of the panel via flow 
cytometry. DMG H3 K27-altered derived cell cultures 

Fig. 1 Morphological and molecular characterization of seven pediatric‑type glioma cell cultures. A Targeted DNA sequencing of seven 
pediatric glioma cultures (Res259, UW479, SF188, KNS42, SF8628, HSJD‑DIPG‑007, HSJD‑DIPG‑012) was performed using SeqCap technology. 95 
cancer‑associated genes were studied. Detected mutations (and the resulting protein modification) are indicated according to their type and 
pathological impact. The allele frequency is indicated for each of the detected mutations. (*) presumed location based on DIPG diagnosis. B 
Phase‑contrast pictures of the seven pediatric glioma cultures in two‑dimensional (2D) and three‑dimensional (3D) culture conditions. Asterisks 
represent initial/recommended culture conditions of the respective cell cultures (Scale bars = 100 µm). Presence of the H3.3 K27M mutation was 
confirmed via immunocytofluorescence (Scale bar = 10 µm). Abbreviations: F female, GBM glioblastoma, DIPG diffuse intrinsic pontine glioma, M 
male, VUS variant of uncertain significance
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(i.e. SF8628, HSJD-DIPG-007 and HSJD-DIPG-012) pre-
sented a distinguishable protein expression profile, com-
pared to other pediatric glioma cultures (Fig. 2A–C). In 
this subtype, highly represented proteins included Bmi1 
(77.9 to 88.6% of positive cells), Nestin (48.6 to 97.8% 
of positive cells), CD15 (54.2 to 87.7% of positive cells) 
and Sox2 (67.0 to 90.5% of positive cells). Moreover, 
H3-K27M cells had the lowest CD49f positive cell pop-
ulation (from 14.1 to 83.1% of positive cells) compared 
to non H3K27M cells (98.0 to 100% of positive cells). In 
opposite, HSJD-DIPG-007 and HSJD-DIPG-012 did not 
show any expression of CD44, whereas Res259, UW479, 
KNS42, SF188 were highly positive for this marker (56.9 
to 99.8% of positive cells). CD44 expression in SF8628 
was high compared to the two other DMG H3K27-
altered cell cultures. Finally, KNS42 cells expressed all the 
seven proteins of the panel, and was the only culture that 
showed remarkable expression of CD133 (13.1% of posi-
tive cells) (Fig. 2A–C).

Neuronal‑like differentiation can be observed in most 
pediatric glioma cell cultures
During development but also in particular adult tissue 
niches, normal stem cells differentiate into functional 
cells from various lineages. In cancer tissues including 
glioma, cancer stem cells (CSC) also have been described 
as endowed with multipotency [48, 50]. To induce a neu-
ronal differentiation process in pediatric glioma cells, we 
cultivated them for 12 days in adherence on glass cover-
slips, either in 1% FBS medium, or in neuronal induction 
medium. Then, the cells were fixed and immunostained 
for βIII-tubulin. Res259, SF188 and KNS42 demonstrated 
a spontaneous βIII-tubulin expression after 12  days in 
adherent culture. Similar βIII-tubulin expression was 
observed in neuronal differentiation medium. This neu-
ronal differentiation medium specifically induced βIII-
tubulin expression in the DMG H3K27-altered derived 
cells SF8628, HSJD-DIPG-007 and HSJD-DIPG-012. In 
our hands, UW479 did not express βIII-tubulin in any of 
the tested culture conditions (Fig. 2D).
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Pediatric glioma cell cultures exhibit variable self‑renewal 
potential
In an attempt to evaluate the stem-like properties of each 
of these glioma cultures, we submitted them to vari-
ous functional assays. It is accepted that GSC grown as 
neurospheres exhibit similar characteristics to physi-
ological neural stem cells also grown as neurospheres, 
including the ability to self-renew [38]. To test whether 
the pediatric glioma cell cultures were self-renewable, we 
employed a limiting dilution assay (LDA) [23], in which 
we seeded cells from 256 to 1 cell per well, before cul-
turing them for 7 days. All the cell cultures were able to 

generate neurospheres from at least 64 cells with an aver-
age number of neurospheres of 9.5 (SD:2.6) for Res259, 
10.7 (SD: 1.3) for UW479, 3.4 (SD: 2.0) for SF188, 6.8 (SD: 
1.3) for KNS42, 0.2 (SD: 0.2) for SF8628, 14.9 (SD: 1.2) for 
HSJD-DIPG-007 and 16.9 (SD: 3.9) for HSJD-DIPG-012. 
Only HSJD-DIPG-007 and HSJD-DIPG-012 were able 
to form sphere starting from 1 cell per well (Fig. 3A and 
Additional file  1: Figure S1). The number of wells con-
taining spheres (across 5 independent experiments) was 
entered in the ELDA calculation tool [24] and the results 
showed the following proportion of cells with self-renew-
ing ability in each cell cultures: Res259 12% (1/8.3; CI: 
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1/4.9–1/14.6), UW479 25% (1/4.0; CI: 2.4–6.9), SF188 6% 
(1/17.2; CI: 9.9–30.2), KNS42 8% (1/12.5; CI: 7.2–21.9), 
SF8628 0.5% (1/199.5; CI: 84.4–472.4), HSJD-DIPG-007 
38% (1/2.6; CI: 1.7–4.4) and HSJD-DIPG-012 48% (1/2.1; 
CI: 1.4–3.5) (Fig.  3B, C). Overall test for differences in 
self-renewing cell frequencies between any of the groups 
was significant (Chisq: 184; p = 6.05.10–37). These results 
suggest that the DMG H3-K27-altered derived cultures 
HSJD-DIPG-007 and HSJD-DIPG-012 contain the high-
est number of auto-renewable, stem-like cells. In oppo-
sition, SF188, KNS42 and SF8628 supposedly contain a 
minority (< 10%) of these self-renewable cells.

Pediatric glioma cell cultures are differentially enriched 
in proliferative vs quiescent cells
Proliferation and quiescence represent two critical cel-
lular states in normal stem cells [2, 37] but also in CSC, 
in which quiescence has been long considered as a stem-
like phenotype involved in tumor propagation and resist-
ance to treatment [2, 3, 13, 25, 42, 49]. To observe and 
quantify the non-dividing, quiescent cells, we employed 
a CellTrace labelling assay. We labelled all cells at day 0 
and daily measured the percentage of LRC over 5  days 
[5]. The analysis of LRC on day 5 after cell trace labe-
ling revealed the following proportions of LRC in each 
culture: Res259 0.027% (SD: 0.015), UW479 0.013% 
(SD:0.014), SF188 0.039% (SD: 0.022), KNS42 2.57% (SD: 
0.759), SF8628 0.45% (SD: 0.267), HSJD-DIPG-007 0.97% 
(SD: 0.410), HSJD-DIPG-012 0.35% (SD: 0.184). KNS42 
had a significant higher LRC population on day 5 after 
labeling than UW479 (p = 0.0166) (Fig. 4A–C). For three 
selected cell cultures, we applied the CellTrace labelling 
assay in both 2D and 3D culture conditions, and showed 
that the proliferation rate did not seem to be influenced 
(Additional file  1: Figure S2, A-B). In parallel, we also 
used an EdU incorporation assay for tracking the repli-
cating cell population. Counting of EdU-positive cells 
in each pediatric glioma cell culture revealed various 
amounts of proliferative cells: Res259 31.72% (SD: 4.994), 
UW479 31.68% (SD: 1.524), SF188 16.24% (SD: 3.134), 
SF8628 26.77% (SD: 2.110), HSJD-DIPG-007 37.40% (SD: 
1.308), HSJD-DIPG-012 36.73% (SD: 5.036). KNS42 had 
a notably lower number of proliferating cells compared 
to others (KNS42 11.60% (SD: 0.352)) (Fig. 4D and Addi-
tional file 1: Figure S2, C-D).

Pediatric glioma cell cultures exhibit different growth 
patterns upon orthotopic implantation
The very initial definition of CSC has proposed these cells 
as critical drivers of tumor initiation and propagation [4]. 
In the present investigation of stem-like features of pedi-
atric glioma cells, we therefore aimed to interrogate their 
tumorigenic potential in  vivo. Based on the integration 
of the previous in vitro results (Fig. 5), we selected four 
pediatric cell cultures with different profiles, which we 
used in an orthotopic xenograft mouse model. Cells were 
transduced for stable expression of RFP and luciferase, 
then engrafted into athymic nude mice brains. Res259 
and KNS42 were implanted in the right striatum, whereas 
HSJD-DIPG-007 and HSJD-DIPG-012 were implanted 
in the pons. Tumor growth was monitored using in vivo 
bioluminescence imaging, and tumor phenotype was 
analyzed at endpoint based on brain sections or clari-
fied 3D brain hemispheres. The four pediatric glioma 
cell cultures were able to generate brain tumors in  vivo 
(Fig. 6A and Additional file 1: Figure S3, A). Res259 and 
KNS42 formed large, dense and angiogenic/necrotic-like 
tumors around their injection site, without evident signs 
of cell invasion away from the tumor core (Fig. 6B, C and 
Additional file  1: Figure S3, B). On the opposite, HSJD-
DIPG-007 and HSJD-DIPG-012 tumor cells scattered 
throughout the whole brain. Infiltrated single cells were 
hardly detected using lightsheet microscopy analysis of 
whole hemispheres, but histological analysis of the tissue 
revealed loads of cells in the pons, but also in the cerebel-
lum and the thalamus. Interestingly, cells also infiltrated 
the SVZ (Fig. 6D, E).

The SVZ influences pediatric glioma cell phenotype
We observed that pediatric glioma cells, especially DMG 
H3-K27-altered derived cells highly invade the brain tis-
sue and reach the SVZ. Interestingly, such SVZ-oriented 
invasion has recently been proposed for pontine DMG 
cells [44], and also for adult GBM cells, especially stem-
like cells [18]. Additionally, our team demonstrated that 
adult SVZ-nested GBM cells were resistant to ionizing 
radiation [19]. We were therefore interested in looking at 
the phenotype of HSJD-DIPG-007 and HSJD-DIPG-012 
that relocated to the SVZ. We observed that, in all pHGG 
models, tumor cells remained similarly Nestin-posi-
tive and SOX2-positive in all investigated brain areas, 

Fig. 4 Study of the quiescence/proliferation in pediatric‑type glioma cell cultures by Cell Trace and EdU incorporation assay. A Representative dot 
plots highlighting label‑retaining cells (LRC) (gate based on day 0) each day after Cell Trace labeling. B Mean fluorescent intensity of the CellTrace™ 
labelling decreases with time in all tested cultures. C Numbers indicate percentage of cells that are considered as quiescent, non‑dividing, detected 
on day 5 in culture. Summary histograms of the percentage of quiescent, non‑dividing cells detected on day 5 after CellTrace™ labeling. D Numbers 
indicate percentage of proliferating, EdU‑positive cells for each cell culture. Data are represented by median and range min/max, and were analyzed 
with Kruskall‑Wallis tests (N = 5 independent experiments). Cells were cultivated in adherence (Res259, UW479, SF188, KNS42 and SF8628) or in 
neurospheres (HSJD‑DIPG‑007 and HSJD‑DIPG‑012)

(See figure on next page.)
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including the pons, cerebellum and SVZ (Additional 
file 1: Figure S4). We then counted the number of Ki67-
positive tumor cells, which revealed a higher proportion 
of proliferating HSJD-DIPG-007 cells in the different 
parts of the SVZ compared to the pons or the cerebellum 
(Fig.  7A, B and Additional file  1: Figure S5, A). Similar 
results were obtained for HSJD-DIPG-012 (Fig.  7C and 
Additional file 1: Figure S5, A-B).

Discussion
In this work, we characterized cell cultures derived 
from different molecular subtypes of pediatric gliomas, 
i.e. Res259, UW479, SF188, KNS42, SF8628, HSJD-
DIPG-007 and HSJD-DIPG-012, which have been used 
for a number of neurooncology research studies but 
not always thoroughly described. We aimed at compre-
hensively documenting their stem-like properties and 
assess their tumor initiation and invasive abilities. We 
also investigated the impact of the SVZ on glioma cell 
phenotype.

The very low availability of pHGG tumor tissue derived 
from patients for research use worldwide has led to the 
preferential utilization of established pHGG cell lines, 
whose characteristics may obviously have deviated from 
those of the original tumor over time. We therefore first 
characterized the molecular profile of pediatric glioma 
cultures to observe clinically-relevant features. The lat-
est 2021 WHO classification of tumors of the CNS indi-
vidualized the HGG of pediatric type and subdivided 

them into four entities based on clinical, histological 
and molecular features [31]. Based on next-generation 
sequencing results, we confirmed the presence of a 
K27M mutation in histone H3 (H3.3-K27M) mutation in 
the SF8628, HJSD-DIPG-007 and HJSD-DIPG-012 cell 
lines, in line with the initial diagnosis of DMG, H3-K27 
altered tumors. We also detected a H3-G34V mutation 
in the KNS42 cell line, as described in the literature [7, 
26, 34]. However, we could not assess a tumor subgroup 
for the three other cell lines (Res259, UW479, SF188). It 
turned out that the Res259 cell culture showed pheno-
typic and molecular characteristics of a high-grade tumor 
(e.g. tumorigenicity in vivo, pathogenic mutation of TP53 
in 100% of the cells) while the initial histological diagno-
sis of grade 2 astrocytoma [8]. These results underlie the 
importance of accurate histomolecular characterization 
retrospectively and recommend cautious data interpreta-
tion with long-term cell cultures.

We also analyzed stem cell-related protein expression, 
which revealed different clusters among the seven cell 
cultures that were studied. In particular, DMG H3-K27 
altered derived cell lines revealed a distinct pattern, 
with higher expression of stem cell-related markers, e.g. 
Bmi1, Nestin, CD15 and Sox2, slightly lower expression 
of CD49f and no CD44 expression. Two of them (HSJD-
DIPG-007 and HSJD-DIPG-012), grown as neurospheres, 
also showed the highest self-renewal ability and were able 
to form neurospheres from a single cell. The slightly dif-
ferent expression panel of SF8628 compared to the two 
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Fig. 5 Stem‑like score of the pediatric‑type glioma cell cultures. Integration of the data provided using the four in vitro functional assays, and 
establishment of a “stem‑like” score for pediatric glioma cell cultures

Fig. 6 Study of Res259, KNS42, HSJD‑DIPG‑007 and HSJD‑DIPG‑012 tumor growth profiles upon orthotopic xenografts. A 3D representation of the 
RFP + (red) tumor cells in the brain right hemisphere after tissue clarification (with examples pictures of tumor bioluminescent signal at endpoint). 
B–E Sagittal or coronal mice brain sections were stained with hematoxylin & eosin staining and anti‑human vimentin. The whole right hemisphere 
or higher magnification pictures from the pons, the cerebellum and the subventricular zone (SVZ) (pointed by white arrow) are shown for B 
Res259, C KNS42, D HSJD‑DIPG‑007 and E HSJD‑DIPG‑012. Cells were cultivated in adherence (Res259, UW479, SF188, KNS42 and SF8628) or in 
neurospheres (HSJD‑DIPG‑007 and HSJD‑DIPG‑012)

(See figure on next page.)
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other H3-K27 altered DMG cell cultures, and the pres-
ence of a significant CD44 expression in particular, could 
be related to its two-dimensional culture conditions. H3-
K27 altered DMG cell cultures also displayed a particu-
lar ability to express the neuronal marker βIII-tubulin 

upon induction. Interestingly, Rakotomalala et  al. [45] 
recently showed that the introduction of a H3.3 K27M 
in the originally unmutated cell lines Res259, SF188, and 
KNS42 induced context-dependent effects in terms of 
clonogenicity, transcriptomic profile, and resistance to 
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Fig. 7 Study of HSJD‑DIPG‑007 and HSJD‑DIPG‑012 proliferation upon orthotopic xenograft. A Sagittal brain sections implanted with 
HSJD‑DIPG‑007 cells were immunostained for anti‑human nuclei (red), Ki67 (white) and DAPI (blue) counterstaining. Representative pictures into 
the rostral subventricular zone (SVZ), pons and cerebellum. White arrow indicates HuNu + /Ki67 + cells, yellow arrow indicates HuNu + /Ki67 − cells. 
B, C Histograms of the percentages of double‑positive human nuclei (HuNu +) and Ki67 (Ki67+) cells compared between the pons, cerebellum and 
SVZ for B HSJD‑DIPG‑007 and C HSJD‑DIPG‑012 tumors. Data are represented as median and range min/max, and were analyzed with Kruskall‑Wallis 
tests (N = 3 independent experiments)
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treatment. Such results strongly suggest that the H3.3 
K27M mutation governs many aspects of pHGG cell 
behaviors, including GSC characteristics. Altogether, 
these data suggest distinct stem-like features between 
the cells from different pHGG molecular subgroups, 
with H3-K27 altered DMG cell cultures showing a more 
pronounced stem-like profile. These observations are 
consistent with recent evidence suggesting distinct can-
cer stem cell models among the different HGG molecu-
lar subgroup, intermingled with putative distinct cells of 
origin.

In H3-K27 altered DMG, it is now recognized that the 
majority of the tumor cells are blocked in the state of oli-
godendrocyte precursor cells (OPC), which proliferate, 
self-renew and give rise to a minority of more differenti-
ated oligodendrocyte- and astrocyte-like cells [16]. This 
accumulation of OPC could be related to the repressive 
effect of H3-K27M on the Polycomb Repressive Com-
plex 2 (PRC2), which is required for the differentiation 
of OPC into oligodendrocytes. The overexpression of the 
PRC1 subunit Bmi1, observed in our protein expression 
profile and previously described [16], could represent 
a compensatory mechanism to the repression of PRC2 
induced by H3-K27M. Additionally, it has been shown 
that ectopic expression of H3-K27M in OPC induces 
the expression of the transcription factor Sox2 [41], a 
regulator of embryonic and induced pluripotent stem 
cells [33]. Overexpression of Sox2 in H3-K27M cells was 
also previously reported by comparing two epigenetic 
(H3K27-high and H3K27 low) subpopulations identified 
by single-cell epigenetic analysis [20]. In the same analy-
sis, H3-K27M expression was associated with a reduced 
expression of the mesenchymal-like cells marker CD44 
[20], in accordance with our own observations. In the lit-
erature, other pHGG subtypes have been understudied 
with respect to their stemness pattern and cell of origin, 
probably due to difficulties in compiling large cohorts of 
these sub-entities. Diffuse hemispheric glioma, H3 G34-
mutant were recently demonstrated as developing from 
GSX2-expressing interneuron progenitor-like cells from 
the SVZ [12] but, to our knowledge, data is lacking for 
other pHGG subtypes.

We then evaluated the propensity of four cell lines, 
with distinct in  vitro stem-like profiles, to form tumors 
upon implantation and to migrate to the SVZ, and we 
assessed whether the SVZ could influence their pheno-
type. Using two orthotopic (striatum or pons) xenograft 
mouse models, we demonstrated the ability of pontine 
DMG H3-K27 altered cells, with stemness features, to 
invade the brain tissue and reach the SVZ. Of note, the 
two other cell cultures (i.e. Res259 and KNS42) formed 
large tumors that did not display evident tissue infiltra-
tion. Although widely studied in adults (for a review, see 

Lombard et al. [30]), relatively few data exist on the exact 
involvement of the SVZ in pHGG. Based on a series of 
autopsies, Caretti et  al. observed a contact or invasion 
of the SVZ by pontine DMG cells in 62.5% (10/16) of the 
patients during the course of their disease [10]. An SVZ 
invasion was also radiologically identified at diagnosis in 
53% (34/63) and 40% (21/52) of children and adolescents 
with supratentorial pHGG in two different series [27, 36]. 
In both studies, SVZ invasion was associated with poorer 
overall survival in multivariate analyses. Unfortunately, 
the possible impact of the mutational status H3-K27M 
on this association could not be robustly evaluated [27, 
36]. Additionally, Qin et  al. showed that pontine DMG 
cells, collected in the SVZ of a patient during autopsy 
and injected into the pons of juvenile immunodeficient 
mice, consistently spread into the SVZ in response to 
chemoattractants secreted by SVZ-hosted NPC [44]. 
In-depth phenotypic analysis of pHGG cells involved 
in these invasion patterns revealed the presence, in the 
infiltrating edge, of slow-cycling/quiescent cells express-
ing the stemness marker CD133 and adopting a mes-
enchymal-like morphology with a strong accumulation 
of N-cadherin at the cell–cell contact [2]. Interestingly, 
slow-cycling cells (SCC) have been observed for decades 
in human tumors harboring an otherwise overall fast 
proliferation, including adult GBM [15], where they have 
been linked to tumor recurrence after chemotherapy [9, 
13] and invasion [21]. In pHGG, analysis of variant allele 
frequencies supported a model of tumor growth involv-
ing SCC that give rise to fast-proliferating progenitor-like 
cells and to non-dividing cells [22]. Our observations also 
support the existence of a SCC subpopulation coexisting 
with a proliferative subset in DMG, H3-K27 altered and 
Diffuse hemispheric glioma and H3 G34-mutant. They 
also suggest a SVZ-induced phenotypic modulation of 
the tumor cells, as evidenced by their increased prolifera-
tion rate in the SVZ. In different cancer types, SCC have 
been related to CSC and epithelial-to-mesenchymal tran-
sition-like cells. All three cancer cells harbor common 
traits and distinct features and could possibly describe 
the same population of cells in different cellular (epige-
netic) states [5].

In conclusion, we presented a systematic stem-like pro-
filing of various pediatric glioma cell cultures. We con-
firmed the ability of pHGG tumor cells with stem-like 
features to invade the SVZ and suggest the existence of 
phenotypic/epigenetic modulations of the tumor cells 
by the SVZ environment. Taken together, these observa-
tions call for a deeper understanding of the mechanisms 
underlying these modulations and their involvement 
in the whole process of tumor cell migration from the 
tumor mass up to the SVZ.
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Additional file 1: Fig. S1. Illustrative pictures of the limiting dilution assay. 
At day 7, starting with 256, 64, 16, 4 and 1 cell(s) per well. Fig. S2. Study 
of the quiescence/proliferation in pediatric‑type glioma cell cultures by 
Cell Trace and EdU assays. A Mean fluorescent intensity of the CellTrace 
labelling decreases with time in Res259, HSJD‑DIPG007, HSJD‑DIPG012, 
in DMEM + 10% FBS as well as in NPC medium, in a similar rate (N = 3 
independent experiments). B Representative phase‑contrast pictures 
show that all three cell types are adherent in DMEM + 10% FBS, and form 
spheres in NPC medium. C, D Representative pictures of EdU incorpo‑
ration analyzed by C epifluorescent microscopy (EdU‑positive cells in 
red) and D via flow cytometry. White arrow indicates EdU+ cells. Fig. 
S3. Tumorigenicity of four selected pediatric‑type glioma cell cultures 
upon orthotopic xenograft in mice. A Representative pictures of tumor‑
associated bioluminescence recorded at tumor endpoint. B Macroscopic 
view of Res259, KNS42, HSJD‑DIPG‑007 and HSJD‑DIPG‑012‑engrafted 
right brain hemispheres after tissue clarification. Fig. S4. Expression of 
Nestin and Sox2 in DMG K27‑altered cells after orthotopic xenografts. 
Sagittal brain sections of brains implanted with HSJD‑DIPG‑007 and HSJD‑
DIPG‑012 were immunostained for anti‑human nuclei (red), Nestin (green) 
or Sox2 (yellow) and DAPI (blue) counterstaining. Images are representa‑
tive pictures of the subventricular zone (SVZ), pons and cerebellum. White 
arrow indicates Nestin+ or Sox2+ cells. Fig. S5. Regions of interest (ROIs) 
in the subventricular zone. A The subventricular zone (SVZ) was defined as 
the layer with 200 µm depth from the inside border of the lateral ventricle 
towards the brain parenchyma. SVZ was divided in three distinguishable 
regions: the rostral SVZ (ROS), the caudal SVZ (CAU) and the dorsal SVZ, 
below of the corpus callosum (CC). ROIs were established based on these 
parameters. B Sagittal brain sections implanted with HSJD‑DIPG‑012 cells 
were immunostained for anti‑human nuclei (red), Ki67 (white) and DAPI 
(blue) counterstaining. Representative pictures into the rostral SVZ, pons 
and cerebellum. White arrow indicates HuNu+/Ki67+ cells, yellow arrow 
indicates HuNu+/Ki67‑ cells. C, D Histograms of the percentages of Ki67‑
positive cells in the pons, cerebellum and the different parts of the SVZ for 
C HSJD‑DIPG‑007 and D HSJD‑DIPG‑012 tumors. 
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generation DNA sequencing. 
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