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Abstract 

Peroxisomes are eukaryotic organelles that rapidly change in number depending on the metabolic requirement 
of distinct cell types and tissues. In the brain, these organelles are essential for neuronal migration and myelina‑
tion during development and their dysfunction is associated with age‑related neurodegenerative diseases. Except 
for one study analysing ABCD3‑positive peroxisomes in neurons of the frontal neocortex of Alzheimer disease (AD) 
patients, no data on other brain regions or peroxisomal proteins are available. In the present morphometric study, 
we quantified peroxisomes labelled with PEX14, a metabolism‑independent peroxisome marker, in 13 different brain 
areas of 8 patients each either with low, intermediate or high AD neuropathological changes compared to 10 con‑
trol patients. Classification of patient samples was based on the official ABC score. During AD‑stage progression, the 
peroxisome density decreased in the area entorhinalis, parietal/occipital neocortex and cerebellum, it increased and 
in later AD‑stage patients decreased in the subiculum and hippocampal CA3 region, frontal neocortex and pontine 
gray and it remained unchanged in the gyrus dentatus, temporal neocortex, striatum and inferior olive. Moreover, 
we investigated the density of catalase‑positive peroxisomes in a subset of patients (> 80 years), focussing on regions 
with significant alterations of PEX14‑positive peroxisomes. In hippocampal neurons, only one third of all peroxi‑
somes contained detectable levels of catalase exhibiting constant density at all AD stages. Whereas the density of all 
peroxisomes in neocortical neurons was only half of the one of the hippocampus, two thirds of them were catalase‑
positive exhibiting increased levels at higher ABC scores. In conclusion, we observed spatiotemporal differences in the 
response of peroxisomes to different stages of AD‑associated pathologies.

Keywords Catalase, Hippocampus, Neocortex, Neurodegenerative disorder, Peroxisome, PEX14, Pyramidal neurons

†Eugen Semikasev and Barbara Ahlemeyer authors contributed equally to 
this work

*Correspondence:
Barbara Ahlemeyer
Barbara.Ahlemeyer@anatomie.med.uni‑giessen.de
Eveline Baumgart‑Vogt
Eveline.Baumgart‑Vogt@anatomie.med.uni‑giessen.de
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-023-01567-0&domain=pdf
http://orcid.org/0000-0002-8265-3763


Page 2 of 22Semikasev et al. Acta Neuropathologica Communications           (2023) 11:80 

Graphical Abstract

Introduction
AD is one of the most common neurodegenerative dis-
eases, the rates of which is increasing with age with 5% at 
75–79 years, 10% at 80–84 years and 25% at 90–94 years 
of age [63]. The disease AD subdivides according to the 
cause into the rare familial forms (5% of all cases with 
mutations in several genes, e.g. the amyloid precursor 
protein and secretase genes) and the more frequent spo-
radic idiopathic form (95% of all cases). Multiple factors 
such as the presence of the APOE4 allele, hypertension, 
diabetes type 2 and hypercholesterolemia increase the 
risk to develop AD [21]. Postmortem diagnosis and clas-
sification of human brain autopsy material [56] are based 
on the level of extracellular amyloid-β (Aβ; A score, Thal 
phases) [85], intracellular neurofibrillary tangles (NFTs, 
B score, Braak stages) [11] and neuritic plaques (C score, 
CERAD) [55]. Aβ plaques appear first in the frontal, 
occipital, and temporal neocortex (phase 1), thereafter in 
the area entorhinalis and hippocampus (phase 2), thala-
mus, striatum, inferior olive (phase 3), substantia nigra, 
medulla oblongata (phase 4) and finally in the pontine 
gray and cerebellum (phase 5) as shown by [85]. NFTs 
are present already decades before clinical symptoms 

are observed, starting in subcortical areas such as the 
amygdala, thalamus and hypothalamus (stages 0-I) 
[81], followed by the transentorhinal area (stage I), area 
entorhinalis and hippocampus (stage II), frontal, tem-
poral (stages III-IV) and parietal and occipital neocor-
tex (stage V) and striatum (stage VI) as analysed by [11]. 
According to the histopathologic assessment, the disease 
is classified into the ABC score indicating no, low, inter-
mediate (mid) and high AD neuropathological changes 
(ADNC) [56]. The roles of Aβ and NFTs for AD eti-
opathogenesis are still under debate. It is assumed that an 
increase of the Aβ level over a certain threshold induces a 
profound deposition of NFTs in association with an acti-
vation of microglia cells and release of pro-inflammatory 
cytokines [28, 62, 86]. Vice-versa, PHF tau is supposed 
to mediate dendritic toxicity of Aβ oligomers [42] and to 
induce Aβ secretion in a kind of a vicious cycle [87]. The 
clinical status, however, correlates better with the distri-
bution of NFT lesions than with Aβ deposits [19].

Peroxisomes are highly dynamic and ubiquitous orga-
nelles. Their number and size are tightly controlled by 
peroxisomal biogenesis proteins, named peroxins (or 
PEX proteins), regulating the de novo biogenesis and 
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proliferation of pre-existing organelles, their functional 
maturation as well as degradation. These organelles 
play an important role in lipid homeostasis and are thus 
essential for a proper function of the lipid-rich brain 
[93]. For example, very-long chain fatty acids (VLCFAs), 
bioactive and pro-inflammatory lipid derivatives are 
transported into the peroxisomal matrix by ABC lipid 
transporters (subfamily D, e.g. ABCD3, formely called 
PMP70) and are there degraded by oxidation. Moreover, 
peroxisomes are involved in the synthesis of docosahexa-
noic acid (DHA) and precursors of cholesterol and ether 
lipids (e.g. plasmalogens) which regulate cell membrane 
fluidity, membrane protein signaling, myelination and 
formation of transmitter vesicles [44]. The peroxisomal 
matrix enzyme catalase together with reactive oxygen 
species (ROS)-trapping plasmalogens are strong defenses 
against oxidative stress [12]. Accordingly, the most severe 
form of hereditary peroxisome biogenesis disorders is 
the cerebro-hepato-renal (Zellweger) syndrome [92]. 
Patients with this devastating disease exhibit an impaired 
neuronal development such as migration defects, they 
suffer from epileptic seizures, general hypotonia and they 
die within the first year of life [18]. During aging and in 
neurodegenerative diseases, the function of peroxisomes 
has been suggested to be dysregulated as evidenced 
by changes in their abundance, defects of the import 
machinery or reduced levels of peroxisomal membrane 
proteins (PMPs) [44, 88]. In vitro experiments showed an 
early upregulation followed by a dramatic decrease of the 
lipid transporter ABCD3 and a continuous decrease of 
catalase during chronic exposure of primary rat cortical 
neurons to Aβ [16]. In a transgenic AD mouse model, the 
peroxisome density (as measured by the level of PEX14) 
decreased, whereas the levels of ABCD3, catalase and 
acyl-CoA oxidase 1 increased during the first 3  months 
with a return to control level at 6 to 18  months of age 
[24]. In postmortem human brains, namely in the fron-
tal cortex of stage V-VI patients, Kou and colleagues [48] 
measured an increase in the density of ABCD3-positive 
peroxisomes in the soma of neurons, however a reduced 
number in the processes suggesting an impaired orga-
nelle transport. Biochemical analyses of the brain of AD 
in comparison to control patients further points to a dis-
turbed peroxisomal lipid metabolism with increased lev-
els of VLCFAs (> C22:0) [48] and reduced levels of DHA 
[4, 30, 53, 79] and plasmalogens [31].

In our broad morphometric study, we analyzed the 
numerical abundance of peroxisomes in brain autopsy 
samples of patients with no, low, mid and high ADNC. 
We quantified peroxisomal density in 13 different brain 
regions known also for their high peroxisome metabolic 
protein content [3, 34, 57, 58, 61, 73, 101] by immuno-
fluorescence staining of the peroxisomal biogenesis 

protein PEX14, an optimal marker of this organelle for 
morphometric studies [34]. In addition, we compara-
tively analysed the density of catalase-positive peroxi-
somes in a subset of patients, mainly focussing on the 4 
brain regions with most significant alterations of PEX14-
labelled peroxisomes.

Material and methods
Postmortem human brain material
Tissue blocks of 8 human brains each either with low, 
mid or high ADNCs, 6 brains with tauopathy and 10 
aged- and gender-matched controls were taken from 
the donation bank of the department of neuropathology. 
We used formalin-fixed brain samples with a postmor-
tem interval of 1 to 5  days. The following regions were 
cut out of the brains and were later embedded in paraf-
fin in a defined stereological pattern: the hippocampus, 
frontal, temporal, parietal and occipital neocortices, 
striatum, midbrain including the substantia nigra, pons, 
medulla oblongata including the inferior olive, and cer-
ebellum (for details see Additional file 1: Fig. S1). Data of 
each patient including age, gender, ABC score (evaluated 
by two investigators) as well as clinical data are shown in 
the Additional files 6, 7: Tables S1 and S2, respectively. 
All patients signed a written informed consent and agree-
ment that their brains—after death—will enter the brain 
donation bank of the Institute of Neuropathology to be 
used for diagnosis, research and teaching. All experi-
ments have been approved by the ethic committee of the 
Justus Liebig University (AZ 07/09).

Histopathological evaluation of formalin‑fixed 
paraffin‑embedded (FFPE) human brain tissue for the AD 
classification
Sections of 3–4  µm thickness from FFPE material of 
the frontal neocortex and hippocampus were taken to 
perform routine hematoxylin–eosin stain and detec-
tion of Aβ plaques using 0.1% thioflavin S (only in AD 
cases). In addition, immunohistochemistry was done in 
the fully automated BenchMark Ultra IHC slide staining 
system (Roche Diagnostics) using primary mouse anti-
bodies against Aβ (1:10.000, 4G8, Covance, SIG-39220) 
or hyperphosphorylated tau (1:2000, AT8, Invitrogen, 
MN1026) [6] combined with ultraView Universal DAB 
detection kit (Roche Diagnostics, 760–500) and bluing 
reagent (Roche Diagnostics, 760–2037). Neuropathol-
ogy of each patient was diagnosed in the years between 
2009 and 2016 by the abundance of Aβ plaques and 
NFTs detected under a light microscope and thus before 
we started our study by 2 neuropathologists (not aware 
of the recent study design) and additionally controlled 
for correctness of the documented ABC score by the 
authors. The samples were classified as follows: patients 
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Fig. 1 Immunohistochemical detection of Aβ including neuritic plaques and NFTs to classify the human brain samples to patients with no, low, 
mid and high ADNC. Light microscopy images of Aβ deposits (4G8, a‑f), NFTs (AT8, g‑l) and neuritic plaques (4G8‑positive plaques with a dense 
core accompanied by AT8‑positive abnormal neurites) in the frontal neocortex (CF), and hippocampal CA3 region (CA3). Whereas high amounts 
of Aβ (m) and NFTs (not shown) were found in the subiculum of patients with high ADNC, a high density of NTFs (n), in the absence of Aβ (o) was 
found in the subiculum (Sub) of the patient with tauopathy
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with no (A0/B0-1; Fig.  1a, d, g, j), low (A1/B0-1 A2/
B1; not shown), mid (A1-3/B2; Fig. 1b, e, h, k) and high 
(A2-3/B3; Fig.  1c, f, i, l, m) ADNC as well as patients 
with primary tauopathy (A0/B2; Fig. 1n, o). Details about 
each patient, e.g. sex, age, ABC score and abundances of 
Aβ plaques and NFTs in the frontal neocortex and hip-
pocampus are given in Additional file 6: Table S1.

Immunofluorescence staining to characterize the density 
and anti‑oxidative function of peroxisomes in human brain 
tissue
Two-µm sections of FFPE brain samples containing the 
hippocampus, 4 different neocortical areas, striatum, 
substantia nigra, pons, inferior olive and cerebellum were 
cut and only every third section was taken for the dou-
ble immunofluorescence stainings for the 4 combinations 
of PEX14 and catalase each either with Aβ or PHF tau. 
Prior to the staining, paraffin was removed by incubat-
ing the slides in xylene followed by rehydration through 
a descending graded alcohol series. Antigen retrieval was 
performed by microwave irradiation (3 × 5  min) at 900 
Watt in 10  mM citrate buffer (pH 6.0) and subsequent 
cooling to room temperature for 30  min. Non-specific 
binding sites were blocked with 4% bovine serum albu-
min (BSA) in phosphate-buffered saline (PBS) with 0.05% 
Tween 20 for 2 h. Thereafter, the sections were incubated 
with the primary antibodies diluted in 1% BSA in PBS 
with 0.05% Tween 20 overnight at room temperature. The 
following primary antibodies were used: 1:5000 PEX14 
(gift from Denis Crane, Griffith University, made in rab-
bit), 1:300 catalase (Proteintech, 21,260–1-AP, made in 
rabbit), 1:10,000 Aβ, (4G8, Covance, SIG-39220, made 
in mouse) and 1:2000 PHF (AT8, Invitrogen, MN1026, 
made in mouse). The next day, sections were washed with 
PBS and donkey anti-rabbit IgGs coupled with Alexa488 
(1:300, Invitrogen, A1055) or anti-mouse IgGs coupled 
with TexasRed (1:300, Vector Laboratories, TI-2000) 
were added for 2  h. Thereafter, sections were again 
washed and nuclei were counterstained with DAPI or 
TOPRO-3 iodide in a 1:750 dilution in PBS from a stock 
of 1 mg/ml. Slides were mounted with a mixture (3:1) of 
Mowiol® 4–88 mounting medium and n-propylgallate as 
fading agent.

Analysis of the intraneuronal density of peroxisomes
Laser scanning microscopy was performed using the 
Leica Confocal Laser Scanning Microscope TCS SP2 
(Leica, Bensheim, Germany) equipped with a 63 × oil-
immersion objective and Leica Confocal Software for 
image acquisition. Images were taken at the same acqui-
sition settings for the detection of either PEX14 or cat-
alase to ensure comparability of the data between the 
different patient samples. Fluorescence images stored in 

the TIF format were imported into Photoshop CS5 for 
the preparation of representative micrographs (Figs.  2, 
4, 6, 8 and 9). In addition, TIF data was imported as an 
unedited green format into the open-source Java-based 
image processing program ImageJ for the analysis of the 
peroxisome density (Figs. 3, 5, and 7). Peroxisome density 
represents the number of counted particles within the 
cytosolic area of neurons. Discrimination of peroxisomes 
from neighboring lipofuscine granules, which all exhibit 
a strong auto-fluorescence, was achieved using several 
intermediate steps to isolate peroxisome-sized particles 
and by setting of the correct particle size (peroxisomes 
are smaller with 4–50 pixel diameter). Background fluo-
rescence was subtracted by using the automatic “Yen 
dark” threshold macro function (Additional file  2: Fig. 
S2). For an automatic analysis of a series of images, an 
ImageJ macro tool including these pre-processing steps 
was established (Additional file  2: Fig. S2). Results are 
presented as box blots overlaid with dot blots, mean val-
ues are shown as a black square in the center of the box, 
median values as a crossbar.

Statistics
Significant differences between mean values were evalu-
ated either by Wilcoxon test in case of a comparison of 
two patient groups (e.g. controls vs. tauopathy, Table  2, 
patients with and without hypercholesterolemia, Addi-
tional file  5: Fig. S5) or by one-way analysis of variance 
(ANOVA-1) and post-hoc Kruskal-Wallis-test in case 
of a comparison of multiple patient groups (e.g. patient 
groups with no vs. low vs. mid vs. high ADNC, Table 1; 
Figs.  3, 5, and 7; Additional file  3: Fig. S3); p-values are 
given in numbers. For the correlation of the peroxisome 
density with age or cell size, the correlation coefficient 
(r) and statistical significance (p) is given in numbers in 
Additional file 4: Fig. S4. For statistical analysis together 
with the graphics, we used an R-based self-written 
program.

Results
Classification of AD pathology according to ABC score
Patients with no positive staining for NFTs (Fig.  1g) 
and Aβ including neuritic plaques (Fig.  1a) in the fron-
tal neocortex and small amounts of NFTs (Fig.  1f ) in 
the absence of Aβ/neuritic plaques (Fig.  1d) in the hip-
pocampus were considered to have no ADNC (A0/B0-1/
C0). In case of medium to high amounts of Aβ/neuritic 
plaques in the frontal neocortex and hippocampus and 
missing of NFTs in the frontal neocortex, patients were 
classified to have low ADNC (A1-2/B1/C1-2). Those with 
high amounts of Aβ/neuritic plaques (Fig. 1b) combined 
with low amounts of NFTs (A1-3/B0/C1-3, Fig.  1h) or 
high amounts of NFTs combined with low amounts of 
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Aβ/neuritic plaques (A1-3/B3/C0-1) in the frontal neo-
cortex (Fig.  1e) as well as medium amounts of Aβ/neu-
ritic plaques and  NFTs (Fig.  1K) in the hippocampus 
were grouped as patients with mid ADNC. When we 
detected of high amounts of Aβ/neuritic plaques and 
moderate levels of NFTs in the frontal neocortex (Fig. 1c, 
l) as well as in the hippocampus (Fig.  1f, l), we classi-
fied patients as those with high ADNC (A3/B3/C2-3). In 
patients with tauopathy, high amounts of NFTs (Fig. 1o), 
but no Aβ/neuritic plaques (Fig. 1n) can be found in the 
neocortex and hippocampus (A0/B2/C0) in comparison 

to high amounts of both Aβ/neuritic plaques (Fig. 1f, m) 
and NFTs (Fig. 1l) in patients with high ADNC. Details 
about the abundances of Aβ/neuritic plaques and NFTs 
in the neocortex and hippocampus for each patient are 
given in Additional file 6: Table S1.

Peroxisome density differentially changed in distinct areas 
of the hippocampus during AD‑stage progression
The medial temporal lobe and its sub-region, the 
transentorhinal cortex, is associated with memory and 
cognitive function and is one of the early and most 

Fig. 2 Peroxisome density of pyramidal neurons in the subiculum and CA3 region was higher in patients with mid in comparison to those with no 
and high ADNC. Representative photomicrographs of immunostainings for the peroxisomal marker PEX14 (green), hyperphosporylated tau (AT8, 
red) together with autofluorescent lipofuscine granules (turquoise) in neurons of the area entorhinalis (AE), subiculum (Sub) and hippocampal CA3 
region (CA3)
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severely affected brain areas in AD. Formation of NFTs 
was initiated in subcortical areas [81] and then spread 
to the area entorhinalis (pre-clinical stages 1 and 2), 
subiculum, hippocampus (stages II-IV with mild cog-
nitive impairment) and lastly to neocortical regions 
(clinical apparent of dementia at stages V-VI) [11]. The 

opposite is true for the spatiotemporal distribution of 
Aβ.

Analysis of the peroxisome density of pyramidal neu-
rons (= number of peroxisomes/100 µm2 of the cytosolic 
area) in the area entorhinalis revealed a decrease from 
patients with no, low, mid and high ADNC (Figs. 2a-c, j 

Fig. 3 Initial rise and fall of peroxisome density in the subiculum and CA3 region of the hippocampus at ongoing stages of AD. Data were obtained 
using PEX14 immunofluorescence images running through a self‑written ImageJ macro‑tool for counting particles and measuring the cytosolic 
area. Ten individual neurons were analysed from each patient and plotted as a point on the graph. Crossbar = median value, black diamond in the 
box center = mean value, vertical lines above and below each box = SD values
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and 3a). In the subiculum and CA3 region, we observed 
an initial increase in patients with low and mid ADNC, 
but a return to control levels in those with high ADNC 
(Figs.  2d-i, k-l and 3b, c). Interestingly, the peroxisome 
density of granule neurons in the dentate gyrus, a region 
which develop less NFTs in high stages [10], remained 
nearly constant (Figs.  2m and 3d). Our data suggest an 
adaptive increase of the peroxisomal compartment failing 
at later stages of the disease.

In addition, we correlated the peroxisome density 
with the amount of Aβ plaques or NFTs independent of 
the ABC score (Additional file  3: Fig. S3). We found a 

decrease in peroxisome density with increasing levels of 
Aβ. However, one should bear in mind, that—in the hip-
pocampus—high levels of Aβ are coexisting inevitably 
with high levels of NFTs. Interestingly, control patients 
have increasing levels of NFTs with age. As shown in 
Additional files 4, 6: Fig. S4 and Table  S1, the younger 
patients (number 3, 4 and 6) versus the older patients 
(number 1 and 8) did not differ with regard to their per-
oxisome densities. Thus, NFTs seem to be correlated with 
peroxisome density only in the presence of Aβ plaques. 
Neuritic plaques were not analysed separately due to 
their high variability.

Fig. 4 Minor decrease in the peroxisome density of pyramidal neurons in the neocortex of patients with high ADNC. Representative 
photomicrographs of immunostainings for the peroxisomal marker PEX14 (green), Aβ plaques (4G8, red) together with autofluorescent lipofuscine 
granules (turquoise) in neurons of the frontal (CF), temporal (CT) and parietal (CP) cortices
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Mild changes in the neocortical peroxisome density 
during AD‑stage progression
Neocortical AD pathology is hallmarked by the forma-
tion of extracellular Aβ deposits. They first appeared 
in one region of the neocortex (most frequently in the 
frontal and occipital cortices in 83% of all cases fol-
lowed by the temporal cortex in 66% of all cases and 

parietal cortex in 33% of all cases; pre-clinical phase), 
thereafter in all cortices and in the hippocampus, which 
is only mildly affected (phase 1–2), later in the stria-
tum and diencephalic nuclei (phase 3), brainstem and 
medulla oblongata (stage 4), and finally in the pontine 
gray and the molecular layer of the cerebellum (stage 5) 
[69, 85]). Overall, we measured a small decrease in the 

Fig. 5 The peroxisome density decreased in pyramidal neurons of the frontal, temporal, parietal and occipital lobe. Data were obtained using 
PEX14 immunofluorescence images running through a self‑written ImageJ macro‑tool for counting particles and measuring the cytosolic area. 
Ten individual neurons were analysed from each patient and plotted as a point on the graph. Crossbar = median value, black diamond in the box 
center = mean value, vertical lines above and below each box = SD values
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peroxisome density of pyramidal neurons in layer III of 
all cortices (Figs.  4 and 5) in patients with increasing 
ADNC. Interestingly, neocortical pyramidal neurons 
have a small size (190 µm2) with only half of the per-
oxisome density (17.3/100 µm2) compared those of the 
hippocampus (ranging from 30–36/100 µm2). The size 
of hippocampal pyramidal neurons varied starting with 
the smallest ones in the transentorhinal region (170 
µm2 with a peroxisome density of 31/100 µm2) to the 
ones in the subiculum (242 µm2 with a peroxisome den-
sity of 30/100 µm2) and biggest one in the CA3 region 
(304 µm2 with a peroxisome density of 34/100 µm2). 
Granule neurons in the dentate gyrus have a size of 
124 µm2 which is even smaller compared to neocortical 
neurons, but a high peroxisome density of 36/100 µm2. 
The peroxisome density of neocortical pyramidal neu-
rons increased at medium and decreased at high levels 
of Aβ, but did not change at different levels of NFTs 
(Additional file 3: Fig. S3). In addition, we analysed, in 
controls, whether the peroxisome density changes with 
the cell size (no change, Additional file 4: Fig. S4) or the 
gender (peroxisome density was 10% and 7% higher in 
hippocampal and neocortical regions in females com-
pared to males, respectively, Additional file 4: Fig. S4).

Increased peroxisome density accompanies an increase 
in catalase only in the frontal neocortex, but not in 
the hippocampus
Since an increase in peroxisome density does not neces-
sarily mean an increase in its (anti-oxidative) function, 
we analysed the density of peroxisomes with detectable 
levels of catalase in a subset of patients (> 80  years of 
age). In patients with no ADNC, about 25% and 50% of 
all (PEX14-positive) peroxisomes were catalase-positive 
in the hippocampus and frontal neocortex, respectively 
which interestingly also coincides with the hippocam-
pus as starting point in AD. In the hippocampus, either 
no change (area entorhinalis, Figs.  6a, d, g and 7) or a 
decrease (subiculum, Fig. 7; CA3 region; Figs. 6b, e, f and 
7) in the densities of catalase-positive peroxisomes were 
found in patients with increasing ADNC. In the frontal 
neocortex, the density of peroxisomes and of those with 
high catalase levels increased in parallel during AD-stage 
progression (Figs. 6c, h, i and 7). Interestingly, in patients 
above 80 years of age peroxisome density was increased 
to a higher extent even in the area entorhinalis and fron-
tal neocortex during AD-stage progression (Fig. 7). This 
suggests an importance of the AD stage for the peroxi-
somal compartment: old, but not young patients seem 
to adapt to the disease by increases in the peroxisome 

Table 1 Peroxisome densities of neurons in different brain regions of patients with different ADNC

Region ADNC Peroxisome density (number/100 µm2)

Mean value Median value P‑value vs no ADNC P‑value vs low ADNC P‑value vs 
mid ADNC

Striatum No 14.4 14.3

Low 15.6 15.4 n.s

Mid 15.7 16.3 n.s n.s

High 13.4 13.6 n.s 0.005 0.004

SN No 25.9 25.3

Low 32.1 33.0 7.6 × 10–6

Mid 29.24 31.6 0.024 n.s

High 30.1 32.1 0.003 n.s n.s

Pons No 20.9 20.6

Low 25.3 27.0 2.3 × 10–6

Mid 21.0 21.2 n.s 1.7 × 10–4

High 21.7 22.0 n.s 4.2 × 10–5 n.s

Inf. Olive No 13.3 10.6

Low 11.7 10.7 n.s

Mid 11.8 10.1 n.s n.s

High 12.3 11.4 n.s n.s n.s

Cb No 29.2 29.2

Low 28.0 28.0 n.s

Mid 26.8 27.0 n.s n.s

High 24.8 24.4 2.4 × 10–4 n.s 0.041
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density. Indeed, we found a positive correlation of the 
peroxisome density with age in case of patients with 
mid and high, but not with no or low ADNC (Additional 
file 4: Fig. S4).

During AD‑stage progression the peroxisome density 
increased in pontine gray and the substantia nigra, 
decreased in the striatum and the cerebellum, 
and remained unchanged in the inferior olive
Next, we analysed the peroxisome density in brain 
regions with known high quantities of this organelle 

[3, 34, 57, 58, 61, 73, 101] which were affected at later 
stages of AD. Increasing levels of NFTs together with Aβ 
aggregates have been found at ongoing stages of AD in 
the striatum, substantia nigra and pontine gray [69]. We 
observed (i) an initial increase in peroxisome density fol-
lowed by a return to control levels at later stages in the 
pontine gray; (ii) an initial increase in peroxisome den-
sity which remained constant over time in the substantia 
nigra; (iii) a decrease in peroxisome density at late stages 
in the striatum and cerebellum, and (iv) no change in per-
oxisome density in the inferior olive (Fig. 8; Table 1).

Fig. 6 A concomitant increase in PEX14‑ and catalase‑positive peroxisome densities during AD‑stage progression occurred only in the frontal 
neocortex, but not in the hippocampus. Representative photomicrographs of immunostainings for the peroxisomal marker PEX14 (PEX14, green) or 
catalase (Cat, green), Aβ plaques (4G8, red) and hyperphosphorylated tau (AT8, red) together with autofluorescent lipofuscine granules (turquoise) 
in neurons of area entorhinalis (AE), hippocampal CA3 region (CA3) and the frontal neocortex (CF)
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Peroxisome densities differently changed in different 
brain areas of patients with tauopathy and decreased 
in the hippocampus and neocortical regions of patients 
with hypercholesterolemia
Patients diagnosed for tauopathy contain high amounts 
of NFTs especially in the entire CA region with first 
deposits in the parietal-temporal-occipital association 
cortex in comparison to control patients; all brain regions 
were free of Aβ (Table 2; Fig. 1n, o). The peroxisome den-
sity was higher in tauopathy compared to control patients 
in the frontal and parietal neocortex; it was lower in the 
CA3 region, substantia nigra, inferior olive and pontine 

gray and no differences were found in the striatum, tem-
poral and occipital neocortex, area entorhinalis and the 
cerebellum (Fig. 9a-d; Table 2).

AD is often associated and probably accelerated with 
co-morbidities such as hypertension, diabetes mel-
litus  type II, hypercholesterolemia, and cerebral angi-
opathy. To exclude that co-morbidities and not the 
presence of Aβ plaques and NFTs or the combination 
of both caused changes in peroxisome density during 
AD-stage progression, we analysed peroxisome density 
in relation to these diseases independent of the ABC 
score. As nearly all patients (except of two patients) are 

Fig. 7 In a subset of patients (> 80 years of age), the peroxisome density increased during AD‑stage progression in all 4 regions analyzed, a 
concomitant increase in the density of catalase‑positive peroxisomes was detected only in the frontal neocortex, but not in the hippocampus. 
Data were obtained using PEX14 or catalase immunofluorescence images running through a self‑written ImageJ macro‑tool for counting particles 
and measuring the cytosolic area. Ten individual neurons were analysed from each patient and plotted as a point on the graph. Crossbar = median 
value, black diamond in the box center = mean value, vertical lines above and below each box = SD values
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hypertensive (Additional file  7: Table  S2), no evaluation 
of the influence of a high blood pressure on peroxisome 
density was possible. With regard to diabetes mellitus 
type II which is frequently accompanied by angiopathy 
and thus, a reduced blood (nutrient) supply and damage 
of neurons, we observed an increase in the peroxisome 
density in the hippocampus and neocortical regions (data 
not shown)—probably an adaptive response. Instead, in 
patients with hypercholesterolemia, the peroxisome den-
sity—similar to patients with high ADNC—was lower 
when compared to control patients (Additional file  5: 
Fig. S5). Interestingly, patients with cerebral angiopathy 

(diagnosed for micro- and macroangiopathy) and those 
with amyloid angiopathy show almost identical peroxi-
some densities in the frontal neocortex (data not shown). 
Interestingly, amyloid angiopathy is frequently linked to 
AD [38].

Discussion
Postmortem analysis of human brain samples revealed 
a differential temporal as well as spatial response of the 
peroxisomal compartment during AD-stage progression 
as defined by neuropathological changes. The charac-
teristic differences were (i) a continuous decrease in the 

Fig. 8 The peroxisome density of neurons varies between different brain areas and during AD‑stage progression. Representative 
photomicrographs of immunostainings for the peroxisomal marker PEX14 (PEX14, green) and autofluorescent lipofuscine granules (turquoise) in 
neurons of the striatum, pontine gray, inferior olive, substantia nigra (SN) and cerebellum (Cb) of patients with no, mid and high ADNC
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peroxisome density in the area entorhinalis, (ii) an initial 
increase and a decrease at late stages of the disease in the 
hippocampus and (iii) an increase at early stages of AD in 
the frontal neocortex and exclusively in this area it was 
accompanied by an increase in catalase. We assume that 
the observed changes in peroxisome density could repre-
sent an adaptive neuroprotective or pathogenic response 
induced by the differential appearance of Aβ plaques 
and NFTs. In the following, we would like to discuss 
changes in organelle abundances during aging (i) and in 
neurodegenerative diseases (ii), the relationship between 
peroxisomal density, oxidative stress and inflammation 
(iii), region-specific differences in the response of per-
oxisomes (iv), and the relationship between peroxisome 
density and other co-morbidity factors (v) during AD-
stage progression.

Possible mechanisms for changes in the peroxisomal 
density during aging
The homeostasis of the number of organelles in different 
cell types is regulated by their biogenesis, proliferation 

and degradation (e.g. autophagocytosis). Alterations in 
numerical abundance are induced by diverse stresses 
which is well-known for mitochondria that either pro-
liferated due to nutritional adaptation [20] or are frag-
mented and eliminated by mitophagy after toxic damage 
[99]. Similar to mitochondria, the peroxisomal com-
partment can rapidly adapt to changing cellular condi-
tions such as increased levels of endogenous [65] and 
nutritional lipids, growth factors, cytokines [37, 91] or 
when treated with hypolipidemic drugs [39]. In this case 
altering of the number of organelles and their metabolic 
function is mediated through activation of the nuclear 
receptor peroxisome proliferator-activated recep-
tor α (PPARα) and PEX11α gene expression [7, 23, 75], 
whereas the basal number of peroxisomes is regulated by 
the PEX11β gene [2, 50].

Alterations in peroxisome density are supposed to 
occur during aging. Previous studies showed a lower-
ing of catalase and of the β-oxidation enzyme acyl-CoA 
oxidase 1 together with an increase in thiolase A and 
urate oxidase protein levels in 39-months compared to 
2-months old rats [7, 64, 100]. In humans, lipid profile 
analysis revealed a stable lipidome during normal brain 
ageing with a minor decrease in level of polyunsaturated 
fatty acids (PUFAs) solely in the entorhinal cortex indi-
cating a region-specific reduction of the peroxisomal 
β-oxidation [60]. A decrease in catalase was found in 
senescent versus young fibroblasts [43] which may lead 
to oxidative stress accompanied by peroxisome prolifera-
tion as shown by an increased number of PEX14-positive 
peroxisomes [49, 83]. Consistently, exogenous addition of 
hydrogen peroxide to HepG2 cells induced tubulation of 
peroxisomes which is suggested as a pre-form for peroxi-
some proliferation via PEX11β [76]. Moreover, with age, 
PTS1-mediated import efficiency is impaired via oxida-
tive damage which leads to lower levels of catalase in 
comparison to less affected peroxisomal lipid metabolism 
enzymes resulting in an imbalance towards pro-oxidant 
reactions [83]. In fact, in hypocatalasemic human fibro-
blasts with approximately 25% residual peroxisomal cata-
lase content, long-term hydrogen peroxide production 
accelerated the development of age-related diseases [97].

Possible mechanisms for changes in the peroxisomal 
density in neurodegenerative diseases
The peroxisomal numerical abundance and metabolic 
function was also supposed to play an important role 
in neurodegenerative diseases [17]. Considering the 
regional spread of AD pathologies, we observed a con-
stant decrease in peroxisome density during AD in the 
early affected area entorhinalis and an initial increase 
returning to control levels in the later affected subicu-
lum, CA3 region and frontal neocortex. The gradual 

Table 2 Peroxisome densities of neurons in different brain 
region in patients with tauopathy and controls. Significant 
differences between the groups were evaluated by Wilcoxon test

Region Tauopathy Peroxisome density

Mean value Median value p‑value

AE No 33.2 31.7 n.s

Yes 31.9 31.0

Sub No 27.6 27.2 n.s

Yes 29.5 27.8

CA3 No 35.8 35.3 0.045

Yes 31.6 32.2

CF No 13.0 11.9

Yes 17.2 17.6 1.1 × 10–8

CT No 18.6 18.5

Yes 17.0 16.4 n.s

CP No 17.1 17.0

Yes 19.8 20.4 0.003

CO No 21.9 22.0

Yes 22.0 23.8 n.s

Striatum No 14.0 13.3

Yes 15.2 15.0 n.s

SN No 28.7 29.6

Yes 21.3 26.7 4.9 × 10–6

Pons No 23.2 24.3

Yes 16.9 16.0 5.6 × 10–7

Inf. Olive No 15.3 12.1

Yes 9.9 9.4 2.8 × 10–5

Cb No 29.1 29.1

Yes 29.3 29.2 n.s
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decrease in peroxisome density during AD-stage pro-
gression in the area entorhinalis might be the conse-
quence of a reduced peroxisomal lipid metabolism 
and long-term oxidative stress. This idea is supported 
by data of Kou et  al. [48] showing elevated levels of 
VLCFAS in the transentorhinal cortex and decreased 
levels of plasmalogens in areas with high amounts of 
NFTs. Similarly, brain DHA levels were most promi-
nently reduced in the hippocampus of AD patients [45]. 
Interestingly, inhibition of peroxisomal β-oxidation of 
VLCFAs increased the synthesis of Aβ in the rat brain 
[78]. Aβ and NFTs inhibited ER-associated degradation 
of misfolded proteins [13] thereby activating peroxi-
somal Lon protease LonP2 and pexophagy [66]. Long-
term oxidative stress together with a reduced nutrient 
supply due to extracellular Aβ deposits [51] induced 
autolysis as well as NBR1-dependent pexophagy [27]. 
Moreover, NFTs and Aβ aggregates inhibit PINK1 
and Parkin, both positive regulators of mitophagy 
[26] which coincided with a loss of peroxisomes [82]. 
Thus, the combination of high levels of VLCFAs, oxi-
dative stress and Aβ and NFTs at late stages of AD 

might induce the degradation and thus lower density of 
peroxisomes.

Our findings in the hippocampus and frontal cortex, 
where we detected an initial increase in the peroxi-
some density and a return to control levels at late AD 
stages confirmed two animal studies. In the hippocam-
pus of transgenic AD mice, peroxisome abundance 
(by measuring the PEX14 protein level) increased in 
the first 3  months and returned to control levels at 
6  months of age. The levels of ABCD3/PMP70, cata-
lase and SOD2 proteins changed in parallel to PEX14, 
and those of SOD1 and GPX decreased with time [24]. 
Similarly, when cortical neurons were treated with Aβ 
the number of peroxisomes (by measuring the ABCD3/
PMP70 protein level) increased after 6  days followed 
by a decrease at 14 days in vitro. Acyl-CoA oxidase 1, 
superoxide dismutase (SOD)1 and PPARα changed 
accordingly, but those of catalase, SOD2 and thiolase 
A  constantly decreased together with increased ROS 
production [16]. These additional data again suggests 
mild oxidative stress and a reduced peroxisomal metab-
olism in the beginning of AD leading to high levels of 
VLCFAs and low levels of DHA and hydroxy-DHA 

Fig. 9 In patients with tauopathy, peroxisome density of pyramidal neurons was higher in the frontal neocortex, but remained unchanged in the 
hippocampus compared to control patients. Representative photomicrographs of immunostainings for the peroxisomal marker PEX14 (PEX14, 
green) and hyperphosphorylated tau (AT8, red) together with autofluorescent lipofuscine granules (turquoise) in neurons of area entorhinalis (AE), 
hippocampal CA3 region (CA3) and the frontal neocortex (CF)
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and all these factors are known to stimulate peroxi-
some proliferation [52]. In the human brain, only Kou 
et al. [48] analysed changes in peroxisome density dur-
ing AD-stage progression. They analysed the soma and 
processes of neurons in the frontal cortex and observed 
an increased peroxisome density in the soma, but only 
in areas with NFTs. In contrast, in our study, the per-
oxisome density in the frontal cortex was the same in 
control and AD patients. The use of different orga-
nelle markers—ABCD3/PMP70 by Kou et  al. [48] and 
PEX14 in our study—might be the reason for the dif-
ferent findings. Since PMP70 is involved in shuttling 
of lipids into the peroxisomal matrix for degradation, 
the increase in the density of ABCD3/PMP70-positive 
peroxisomes might be a compensatory mechanism to 
the increased level of VLCFAs found in the frontal cor-
tex of AD patients [48]. Thus, ABCD3/PMP70, in con-
trast to PEX14, does not label all peroxisomes due to 
metabolic and maturation heterogeneities of individual 
organelles and may increase although the overall per-
oxisome abundance remains unchanged. In addition, 
we evaluated the number and not the area of organelles 
per area—an increased amount of ABCD3/PMP70 of 
individual peroxisomes lead to stronger and broader 
fluorescence signal mimicking an increase of the area, 
while the number remains constant.

Furthermore, dysfunction of peroxisomes in glial cells 
may affect neuronal function and thus be involved in 
AD. A dysfunction of peroxisomal function in astrocytes 
increased the level of VLCFAs in myelin, but this does not 
affect neuronal function [9]. Since peroxisomes are rare 
in the neuronal axon [5], those of the oligodendrocytes, 
are thought to sustain axonal integrity and function [5, 
46], e.g. by providing plasmalogens and lipids for rapid 
impulse conduction [5]. Consistently, loss of peroxisomal 
function in oligodendrocytes leads to axon degeneration, 
demyelination and neuroinflammation [46]. In microglia 
cells, reversing the decrease of peroxisomal proteins such 
as PMP70, PEX11β, PEX5 and catalase during inflamma-
tory reactions, improved molecular, morphological and 
behavioral outcome in mice [68].

Interestingly, the peroxisome and its abundance has 
just started to be considered as a possible target for the 
therapy of neurodegenerative diseases including Parkin-
son disease, Alzheimer´s disease, Huntington disease, 
amyotrophic lateral sclerosis and multiple sclerosis [1]. 
The peroxisome proliferator phenylbutyrate reversed 
the inflammation-induced decrease in ABCD3/PMP70, 
PEX11β and catalase protein levels and is recommended 
as a possible drug for treatment of multiple sclerosis [68]. 
In addition, PPARα and PPARγ agonists showed anti-
inflammatory and energy balancing effects in AD patients 
[1] and thus may slow down AD-stage progression [71, 

89, 96]. Indeed, especially high levels of PPARγ reduced 
Aβ deposition and the production of pro-inflammatory 
cytokines [94].

Possible relationship between peroxisomal metabolism, 
oxidative stress, and inflammation in AD‑stage progression
Oxidative stress has been suggested to be one of the main 
causes of AD pathology [13]. For example, Aβ oligomers 
contain entrapped metal ions and thus produce ROS [14] 
and the induction of ROS-sensitive pathways promote 
formation of NFTs. Aβ and tau promote the aggregation 
of each other which causes inhibition of macroautophagy 
ending up in a vicious cycle accelerating the progression 
of the disease. A dysfunction of peroxisomes is possibly 
the source of oxidative stress in the beginning of AD, 
for example, a reduced synthesis of plasmalogens and 
PUFAs—both necessary for trapping ROS-increase the 
levels of oxidized lipids in cellular membranes. Moreo-
ver, the downregulation of ABCD3/PMP70 [48] could 
interfere with the transport of oxidized lipid derivatives 
into peroxisomes, thus hindering their degradation via 
β-oxidation.

In addition, glial and microglial cells release pro-
inflammatory cytokines (e.g. IL-1, IL-6, TNFα) [98] and 
these factors upregulate Aβ production and hyperphos-
phorylation of tau thereby amplifying AD-stage progres-
sion [22]. Disturbances in the peroxisomal function could 
be again a causative factor as peroxisomes are responsi-
ble for the degradation of pro-inflammatory lipid deriva-
tives, e.g. prostaglandins [74] and leukotrienes [43, 54]. 
As a secondary vicious cycle, increased levels of TNFα 
decrease catalase protein level [68] which in turn lowers 
peroxisomal β-oxidation [36, 91] and thus increase the 
levels of oxidized lipids and pro-inflammatory factors.

Region‑specific differences in the response of peroxisomes 
during AD‑stage progression
Interestingly, only the neocortex, but not the hip-
pocampus adapted to AD-induced oxidative stress by an 
increase in the density of catalase-positive peroxisomes. 
In addition to catalase, such brain region-specific dif-
ferences have been described also for the levels of other 
antioxidant enzymes in control and AD brains. Consist-
ent with our results, catalase [15], and PRDX5 [33] levels 
were high in the frontal neocortex, pons and cerebellum 
in comparison to low levels in the hippocampus and sub-
stantia nigra, whereas similar levels in all brain regions 
were measured for SOD1, SOD2, peroxiredoxin (PRDX)6 
and glutathione peroxidase [15, 67]. Consistent with 
our findings, the level of catalase increased during AD 
in the neocortex and only to a lesser extent in the hip-
pocampus [15]. The same was true for neuronal PRDX2 
[72]. No compensatory response to AD was found for the 
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antioxidant enzymes SOD1, SOD2, glutathione peroxi-
dase [15], PRDX1, PRDX3, PRDX4 and PRDX6 [47]. In 
addition, the lower antioxidant defense of the hippocam-
pus would fit to the early atrophy of this brain region in 
AD [77]. Region-specific differences in AD do not only 
exist for the antioxidant defense systems, but also for tau 
and Aβ, which are both transformed from monomeric 
forms into aggregates. Whereas aggregation of Aβ begins 
in the neocortex, hyperphosphorylation and aggregation 
of tau starts in the hippocampus and occurs later in the 
neocortex. Interestingly, tau stabilizes axonal transport of 
organelles and other cell components [41] which is inhib-
ited upon tau hyperphosphorylation occurring in AD 
[59]. As a consequence, organelles—including peroxi-
somes—accumulate in the soma and proximal dendrites 
[80] and they are less abundant in more distal neuronal 

processes for the detoxification of ROS and for providing 
precursors of cholesterol and membrane lipids, for mem-
brane formation of synpases and vesicles [12] leading to a 
decline in neuronal function [35].

Possible relationship between peroxisomal metabolism, 
AD‑stage progression and co‑morbidities
Next, we analysed whether co-morbidity factors, in addi-
tion to Aβ and NFTs, might affect peroxisome densi-
ties. Whereas diabetes mellitus  type II had no influence 
on AD-induced changes in peroxisome abundance, we 
found a decrease thereof in the hippocampus and fron-
tal neocortex in patients with hypercholesterolemia 
at mid and late stages of AD (Additional file 5: Fig. S5). 
Formerly, it was assumed that there is no link between 

Fig. 10 Vicious cycles in AD pathogenesis involving Aβ and NFT formation as well as disturbances in peroxisomal and mitochondrial metabolic 
pathways. In neurons (pink box), peroxisomal dysfunction includes reductions in catalase import, peroxisomal β‑oxidation, and DHA and 
plasmalogen synthesis. This caused oxidative stress, accumulation of LCFAs/VLCFAs (exerting lipotoxicity) and changes in plasma membrane 
fluidity (exerting reduced synaptic plasticity) accompanied by an initial increase and a later fall in peroxisome numerical abundance. The resulting 
oxidative stress in turn elevates Aβ production, its aggregation and the formation of NFTs promoting the further disturbance in peroxisomal and 
mitochondrial dysfunction. Microglial cells (yellow box) are activated by Aβ and release TNFα, which also impairs catalase import, β‑oxidation 
and DHA synthesis resulting in an imbalance of pro‑ and anti‑inflammatory molecules thereby maintaining brain inflammation. TNFα‑induced 
disturbance of peroxisomal function in oligodendrocytes (green box) affects myelin composition finally leading to demyelination, axon loss and a 
reduced synaptic transmission. The described vicious cycles are depicted in gray dotted lines with arrows indicating the rotation direction. Bold red 
arrows exemplify alterations (increases ↑ and decreases ↓); blue arrows represent the sequences of different processes with indications of reference 
numbers of corresponding publications in square brackets. Figure is created with BioRender.com
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AD and plasma cholesterol levels, since very different 
blood cholesterol levels were found in patients with AD 
and cholesterol metabolism in brain and in peripheral 
tissues is independent from each other [32]. However, 
a retrospective 3-year multicenter study revealed that 
higher levels of LDL cholesterol in the blood are certainly 
associated with a higher percentage of early onset AD 
pathology [95]. Interestingly, AD patients contain higher 
plasma levels of oxysterols (mainly due to auto-oxidation 
of cholesterol), e.g. 7β-hydroxycholesterol, 7-ketocho-
lesterol, 27S-hydroxycholesterol and 24S-hydroxycho-
lesterol [84], which all can pass the blood-brain barrier, 
enter the brain parenchyma and there may lead to oxida-
tive stress and especially 7β-hydroxycholesterol has been 
shown to reduce peroxisome number in murine C2C12 
myoblasts [29]. Vice-versa, AD can cause an increase in 
plasma cholesterol. In the brain of AD patients, the activ-
ity of cholesterol 24-hydroxylase (Cyp46A1) is increased 
[8] indicating excess amounts of cholesterol in neurons 
which is thought to aggravate AD pathology [25, 90]. 
24S-hydroxycholesterol can diffuse to glial cells, but 
mainly crosses the blood-brain barrier. In the brain as 
well as in the liver it is metabolized into bile acids to be 
secreted with feces [70]. However, 24S-hydroxycholes-
terol activates the nuclear receptor LXR, which upregu-
lates IDOL gene expression which leads to a degradation 
of the LDL receptor in the liver [102] and increases the 
plasma cholesterol level [40].

In conclusion, our data suggest that distinct factors 
such as oxidative stress and disturbances in lipid and cho-
lesterol metabolism account for the different changes in 
peroxisome density as well as its heterogeneity in differ-
ent areas of the brain, e.g. hippocampus versus neocor-
tex, during AD-stage progression (Fig.  10). We assume 
that the changes in peroxisome density reflect an initial 
stress response at early stages—it remains open and has 
to be clarified by future studies whether this is neuropro-
tective or pathogenic—and a decompensation thereof 
at later stages of AD. Further investigations on these 
aspects might help to develop new strategies to inhibit 
the decline of peroxisomes to slow down the progression 
of AD and other neurodegenerative diseases.
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