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The enhanced association between mutant 
CHMP2B and spastin is a novel pathological 
link between frontotemporal dementia 
and hereditary spastic paraplegias
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Abstract 

Chromosome 3-linked frontotemporal dementia (FTD3) is caused by a gain-of-function mutation in CHMP2B, resulting 
in the production of a truncated toxic protein, CHMP2BIntron5. Loss-of-function mutations in spastin are the most com‑
mon genetic cause of hereditary spastic paraplegias (HSP). How these proteins might interact with each other to drive 
pathology remains to be explored. Here we found that spastin binds with greater affinity to CHMP2BIntron5 than to 
CHMP2BWT and colocalizes with CHMP2BIntron5 in p62-positive aggregates. In cultured cells expressing CHMP2BIntron5, 
spastin level in the cytoplasmic soluble fraction is decreased while insoluble spastin level is increased. These patho‑
logical features of spastin are validated in brain neurons of a mouse model of FTD3. Moreover, genetic knockdown of 
spastin enhances CHMP2BIntron5 toxicity in a Drosophila model of FTD3, indicating the functional significance of their 
association. Thus, our study reveals that the enhanced association between mutant CHMP2B and spastin represents a 
novel potential pathological link between FTD3 and HSP.
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Introduction
Frontotemporal dementia (FTD), associated with pro-
gressive atrophy of the frontal and/or temporal lobes of 
the brain, is the second most common form of dementia 
before 65 years of age [17]. FTD is characterized by pro-
gressive deterioration in social behavior, personality and 
language, and regarded as part of the spectrum disorder 
with the motor neuron disease amyotrophic lateral scle-
rosis (ALS). In particular, genetic mutations in a number 
of genes can cause both FTD and ALS, suggesting com-
mon pathogenic molecular mechanisms [6, 8]. Among 

them, mutations in charged multivesicular body pro-
tein 2B (CHMP2B) are especially interesting, as they are 
highly pathogenic in FTD linked to chromosome 3 (FTD-
3) [19] and also found in some ALS cases [4, 18] and 
patients with early-onset Alzheimer’s disease (AD) [9].

CHMP2B encodes a subunit of the endosomal sorting 
complex required for transport III (ESCRT-III) complex 
whose molecular function was first shown to be essential 
during the formation of multivesicular bodies (MVBs) 
[2]. ESCRTs also play key roles in other cellular processes 
such as cytokinesis, virus budding, nuclear membrane 
repair, and autophagy [16]. In FTD3, a splicing site muta-
tion in CHMP2B results in a C-terminal truncation of 
the protein missing the Microtubule Interaction Motif 
(MIM), named CHMP2BIntron5 [19]. A series of cell biol-
ogy studies indicate that this mutant CHMP2B protein 

Open Access

*Correspondence:  fen-biao.gao@umassmed.edu

1 Department of Neurology, University of Massachusetts Chan Medical 
School, Worcester, MA 01605, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-8873-5404
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40478-022-01476-8&domain=pdf


Page 2 of 8Chen et al. Acta Neuropathologica Communications          (2022) 10:169 

exhibits enhanced association to its binding partner 
CHMP4B and blockage in ESCRT-III disassembly [10, 
11], leading to compromised endosomal functions [13, 
22, 23, 25] and autophagy defects [10, 11, 14]. It remains 
to be identified what other cellular and molecular path-
ways are affected by CHMP2BIntron5.

Spastic paraplegia 4 (SPG4), the most common auto-
somal dominant form of hereditary spastic paraplegias 
(HSP), is caused by loss of function mutations in the 
SPAST gene that encodes spastin, a member of micro-
tubule severing protein [5, 20, 21]. SPG4 patients show 
symptoms of clinical dementia but the underlying mech-
anisms remain unclear [26]. In this study, we find that 
spastin associates with greater affinity to CHMP2BIntron5 
than to wildtype CHMP2B, revealing a novel potential 
pathological link between FTD and HSP.

Materials and methods
Mice and genotyping
The tTA:CHMP2BIntron5 and tTA:CHMP2BWT mice used 
in this study have been described [7]; both males and 
females were used. All procedures involving mice were 
approved by the Institutional Animal Care and Use Com-
mittee at the University of Massachusetts Chan Medical 
School.

Drosophila genetics
Flies were maintained on a 12-h light/12-h dark cycle 
on standard cornmeal-yeast agar medium at 25  °C. 
UAS-CHMP2BIntron5 flies used were described previ-
ously [1]. GMR-Gal4, UAS-RNAi SPAST (#27,570), and 
UAS-RNAi_SPAST (#53,331) fly lines were from the 
Bloomington Drosophila Stock Center. For genetic inter-
action studies, the recombined fly line (GMR-Gal4:UAS-
CHMP2BIntron5) was crossed with UAS-RNAi_SPAST 
flies. To quantify the retinal degeneration phenotype, 
we classified the eye phenotype, with or without SPAST 
downregulation, into three groups: severe (+ + +), 
medium (+ +), and weak ( +). This classification was 
based on the relative abundance of black spots on the 
eye, ranging from a dozen or so scattered spots ( +) to 
spots covering approximately 50–70% or more of the eye 
surface (+ + +).

Mammalian cell culture, siRNAs, constructs, transfection 
and immunoprecipitation
HEK293 and HeLa cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM, Sigma) supplemented 
with 10% fetal calf serum (Life Technologies) and main-
tained in a humidified incubator at 37  °C with 5% CO2. 
All siRNAs for gene silencing were from Qiagen (Addi-
tional File 4: Table  S1). pCMV-3/FLAG-CHMP2BIntron5 

and pCMV-3/FLAG-CHMP2BWT plasmids were gener-
ated as described [10]. Full-length human spastin M87 
plasmids were generated by cutting the pCMV-Tag 3A/
WT myc-M1 (Addgene, Cat. no. 87719) and pCMV-Tag 
3B/WT myc-M87 (Addgene, Cat. no. 87722) and then 
subcloned into the pEGFP-C1 vector (Addgene). Full 
length spastin M87 is used throughout this study. siRNAs 
or constructs were transiently transfected into cells with 
RNAiMAXor  Lipofactmine3000 (Invitrogen), as recom-
mended by the manufacturer, for 48 h.

Three 100-mm tissue culture dishes of HEK293 cells 
at 70% confluency were transfected with pCMV-3/
FLAG-CHMP2BIntron5, pCMV-3/FLAG-CHMP2BWT, or 
pCMV-3/FLAG empty vector with Lipofectamine 3000. 
After 48  h, transfected cells were collected and homog-
enized in immunoprecipitation (IP) lysis buffer (Thermo 
Fisher, Cat. no. 87787) with protease and phosphatase 
inhibitors (CST, catalog no. 5872). Homogenates were 
centrifuged at 4 °C for 10 min at 13,000g, to obtain super-
natants. Protein concentrations of supernatants were 
determined with the Bradford assay (Bio-Rad). For co-IP 
experiments, supernatants of CMV-3/FLAG-CHMP2BIn-

tron5, pCMV-3/FLAG-CHMP2BWT, or pCMV-3/FLAG 
with the same amount of total proteins were preab-
sorbed with anti-FLAG M2 affinity gel (Sigma, catalog 
no. A2220), incubated overnight at 4 °C, centrifuged and 
washed three times for 5  min each with washing buffer 
(50 mM Tris–HCl, pH 7.4, and 150 mM NaCl), and sus-
pended in FLAG elution solution (Sigma catalog no. 
F4799) for 30 min at 4 °C. The supernatants were used for 
western blot.

Proteomic analysis of CHMP2BIntron5 interacting proteins
To identify proteins that interact with CHMP2BIntron5, 
proteins in experimental and control IP samples were 
electrophoresed a short distance into a polyacrylamide–
sodium dodecyl sulfate gel and stained with the Coomas-
sie Brilliant Blue (Bio-Rad). In-gel digestion and liquid 
chromatography–tandem mass spectrometry analysis 
were done by the Mass Spectrometry Facility at the Uni-
versity of Massachusetts Chan Medical School. Protein 
abundance was estimated with IBAQ quantification, in 
which summed peptide intensities are normalized to the 
number of theoretically observable peptides of the pro-
tein. pCMV-3/FLAG served as a control to exclude non-
specific interacting proteins. Interacting proteins that 
were not associated with FLAG proteins but bound more 
to  FLAG-CHMP2BIntron5 than FLAG-CHMP2BWT were 
selected for further analyses. Total proteins were further 
ranked by iBAA value from most to least abundant. Mass 
spectrometry (MS) analysis was done by the UMass Chan 
Medical School Mass Spec Core with a standard protocol 
as published before [12].
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Western blots
The mouse cortex was dissected, quickly frozen 
at  − 80 °C, homogenized, and sonicated in RIPA buffer 
with proteinase and phosphatase inhibitors (CST, cata-
log no. 5872). The cultured cells were lysed in RIPA 
buffer (Thermo Scientific). The protein extract was 
centrifuged to remove tissue debris, and boiled for 
5 min. Protein (20 μg) from each sample was subjected 
to SDS-PAGE using 4–20% precast gels (Bio-Rad) and 
immunobloted with the following primary antibodies: 
rabbit anti-spastin (Proteintech, catalog no. 22792–1-
AP; 1:1000) and mouse anti-β-actin (Sigma-Aldrich, 
catalog no. A2228; 1:3000), overnight at 4  °C. After 
incubation, immunoblots were washed and incubated 
with IRDye fluorescent anti-rabbit and anti-mouse sec-
ondary antibodies (LI-COR Biosciences). Images were 
acquired with a LI-COR CLx Odyssey System.

Subcellular fractionation and solubility analysis
HEK293 cells were collected 48 h after transfection and 
subjected to subcellular fractionation with a ProteoEx-
tract Subcellular Proteome Extraction Kit (Millipore, 
catalog no. 539790), according to the manufacturer’s 
protocol for adherent cells. If some cells became non-
adherent during the protocol, the cytosolic, membrane, 
and nuclear fractions were spun at 750  g, 5500  g, and 
6800  g, respectively, for 10  min at 4  °C, to remove 
any contamination from later fractions. Proteins were 
resolved by SDS–PAGE and immunoblotted with spas-
tin antibody (Proteintech, catalog no. 22792–1-AP; 
1:1000).

For SPAST solubility analysis, cells were seeded into 
six-well dishes at 250,000 cells/well; 48  h after trans-
fections, cells were washed with PBS, released with 
0.25% trypsin, and resuspended in DMEM pre-warmed 
to 37  °C. The cells were then spun down, washed with 
PBS, and resuspended in 20  μl of PBS. The cells were 
lysed by two cycles of flash freezing on dry ice and rap-
idly thawing at 42  °C. The lysate was spun at 1000  g, 
and the resulting supernatant was transferred to a new 
tube and re-spun to remove any insoluble material. The 
pellet was rinsed 3 times with PBS and resuspended in 
the corresponding volume of supernatant and briefly 
sonicated with a tip sonicator (Sonopuls, catalog no. 
2070). Equivalent fractions of total volume for 100  ng 
of supernatant and resuspended pellet were boiled with 
SDS loading buffer (50 mm Tris–Cl, pH 6.8, 2% (2 w/v) 
SDS, 0.1% (w/v) bromophenol blue) and 10  mm dithi-
othreitol, separated by SDS-PAGE on 10% polyacryla-
mide–sodium dodecyl sulfate gels and immunoblotted 
with spastin antibody (Proteintech, catalog no. 22792-
1-AP; 1:1000).

Immunofluorescence analysis of cultured cells
HeLa cells were fixed in 4% paraformaldehyde for 
15  min, permeabilized with 0.3% Triton X-100 for 
5  min, blocked with 5% bovine serum albumin for 
30 min, and incubated overnight with the following pri-
mary antibodies: rabbit anti-spastin (Proteintech, cata-
log no. 22792–1-AP; 1:200), mouse anti-FLAG (Sigma, 
catalog no. F1804; 1:1000), rabbit anti-p62 (Proteintech, 
catalog no. 18420–1-AP; 1:2000). After incubation, the 
cells were washed three times with PBS, incubated first 
with donkey anti-mouse Alexa Fluor 488 secondary 
antibody (Invitrogen, catalog no. A-21202; 1:500) and 
then with goat anti-rabbit Alexa Fluor 568 secondary 
antibody (Invitrogen, catalog no. A-11011; 1:500) for 
1  h at room temperature, and mounted with HardSet 
Mounting Medium with DAPI (Vectashield, catalog no. 
H-1500). Confocal images were acquired with a ZEISS 
LSM 800 laser-scanning confocal microscope and pro-
cessed with ZEISS ZEN microscope software. Fluo-
rescence images were acquired with a ZEISS inverted 
microscope (LSP T PMT).

Immunostaining of mouse brain sections
Paraffin-embedded tissue sections were deparaffinized 
and hydrated in a series of graded alcohols. After anti-
gen retrieval with citrate buffer (Sigma, C9999), the 
sections were washed once with water, treated with 
BLOXALL Endogenous Blocking Solution (Vector Lab, 
SP-6000–100) for 10 min washed with PBST for 10 min, 
blocked with Dako blocking reagent for 24 h, and incu-
bated overnight with guinea pig anti-p62 (Progen, cata-
log no. GP62-C) and polyclonal anti-SPAST (Proteintech, 
catalog no. 22792) and 0.1% Triton-X 100; the antibod-
ies were diluted 1:200 in DAKO antibody diluent (Agi-
lent, S302283-2) overnight. The sections were washed 
three times with PBST for 10  min each and incubated 
with Alexa-conjugated secondary antibodies (Invitro-
gen, catalog nos. A-11075 and A32790) in detergent-sup-
plemented DAKO antibody diluent buffer for 2 h in the 
dark. The sections were washed three times with PBST 
for 10 min each and mounted with DAPI Fluoromount-
G Mounting Medium (Invitrogen). The total surface 
of stained brain sections from three mice per genotype 
group was scanned (Sanderson Center for Optical Exper-
imentation) (SCOPE) (UMass Chan Medical School). 
Images from each channel were exported with Tissue-
FACSL viewer software and processed in ImageJ. JACop 
plugin in Image J was used to calculate Mander’s over-
lap coefficient [3, 15]. P62 was considered as an aggre-
gate marker to reveal the extent to which two signals 
occupy the same place. Manual thresholding was applied 
to exclude the background signals from all images. 
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Representative figures were obtained with a confocal 
microscope (Leica SP8).

Results and discussion
The splicing site mutation in CHMP2B results in the 
production of a truncated protein missing the MIM 
domain, CHMP2BIntron5 (Fig.  1a), that is highly toxic 
when expressed in cultured cells and primary neu-
rons [10, 22, 23]. To understand how mutant CHMP2B 
causes neurodegeneration through a gain-of-toxic func-
tion mechanism, we used immunoprecipitation (IP) and 
mass spectrometry to identify proteins that bind with 
greater affinity to CHMP2BIntron5 than to CHMP2BWT 
in HEK293 cells (Additional File 1: Table  S1). Among 
the top 12 interacting proteins were CHMP5, CHMP1B, 
and CHMP1A (Additional File 1: Fig. S1), other subunits 
of the ESCRT-III complex. We reported previously that 
CHMP2BIntron5 blocks dissociation of ESCRT-III [10, 11], 
thus, this result confirms the validity of this biochemical 
approach. Another protein that seems to associate with 
CHMP2BIntron5 stronger than to CHMP2BWT is spas-
tin (Additional File 1: Table S1), a microtubule-severing 

protein whose loss-of-function mutations are the most 
common genetic cause of hereditary spastic paraplegias 
(HSP) [20, 21]. We confirmed by IP and western blot 
analysis that spastin indeed binds with greater affinity to 
CHMP2BIntron5 than to CHMP2BWT (Fig. 1b), as 11 times 
more spastin was pulled down by CHMP2BIntron5 than 
by CHMP2BWT based on four independent experiments. 
This biochemical association was also confirmed by a 
reverse IP experiment in which spastin antibody pulled 
down 3.3 times more spastin-bound CHMP2BIntron5 than 
spastin-bound CHMP2BWT based on three independent 
experiments (Fig. 1c). The lack of MIM in CHMP2BIntron5 
indicates that its enhanced association with spastin may 
be mediated through other ESCRT-III components.

Expression of CHMP2BIntron5, but not CHMP2BWT, 
in HeLa cells resulted in the formation of p62-positive 
puncta (Fig.  1d), consistent with our previous observa-
tion that the p62 level in the insoluble fraction is greatly 
increased in neurons of CHMP2BIntron5 transgenic mice 
[7]. Interestingly, EGFP-tagged spastin was recruited to 
these cytoplasmic aggregates (Additional File 2: Fig. S2). 
More importantly, endogenous spastin also colocalized 

Fig. 1  Increased biochemical interaction between spastin and CHMP2BIntron5. a Diagram of CHMP2BWT and CHMP2BIntron5. CC: coiled coil. MIM: 
Microtubule Interaction Motif. b Proteins that coimmunoprecipitated with FLAG antibody were analyzed by western blots with spastin antibody. 
The experiment was repeated 4 times. After normalizing against the relative abundance of CHMP2BWT versus CHMP2BIntron5, 11 times more spastin 
was bound to CHMP2BIntron5 than CHMP2BWT. c Immunoprecipitation with spastin antibody followed by western blot analysis with FLAG antibody. 
d and e Co-immunostaining analysis shows colocalization of p62 d and endogenous spastin e with CHMP2BIntron5 aggregates
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with CHMP2BIntron5 in these aggregates (Fig.  1e), fur-
ther confirming the enhanced biochemical association 
between these two disease proteins. The C-terminal tail 
of CHMP1B, another ESCRT-III protein, directly inter-
acts with the microtubule interacting and trafficking 
(MIT) domain of spastin [24, 27]. CHMP2BIntron5 pre-
vents dissociation of ESCRT-III [10], thus, its enhanced 
associated with spastin may be mediated through other 
ESCRT-III components, such as CHMP1B. We speculate 
other ESCRT-III proteins that show an enhanced interac-
tion with CHMP2BIntron5 versus CHMP2BWT (Additional 
File 4: Table S1) may be also sequestered in p62/spastin-
positive aggregates.

Like the p62 level in CHMP2BIntron5 mice, the spas-
tin level in the insoluble fraction from cells expressing 
CHMP2BIntron5 was greatly increased than that in cells 
expressing CHMP2BWT (Fig.  2a, b). As a consequence, 
the spastin level in the soluble fraction was decreased 
(Fig. 2a, b). This decrease was not due to reduced expres-
sion of SPAST mRNA (Additional File 3: Fig. S3). In fact, 

SPAST mRNA is increased by about 45% (Additional File 
3: Fig. S3), which is probably a compensatory mechanism 
and further highlighting the decrease of spastin protein 
level in the soluble fraction is a direct consequence of 
CHMP2BIntron5 interaction. Spastin was localized in both 
the cytoplasm and the nucleus (Fig. 1e), but the level of 
soluble spastin was decreased only in the cytoplasm, as 
shown by fractionation and western blot analyses (Fig. 2c, 
d), consistent with the formation of cytoplasmic spastin 
aggregates (Fig.  1e). Thus, the increased aggregation of 
spastin and the decreased level of soluble spastin in the 
cytoplasm are novel pathological features of cellular tox-
icity induced by FTD3-associated mutant CHMP2B.

To further assess the functional significance of the bio-
chemical interaction between CHMP2BIntron5 and spas-
tin in vivo, we took advantage of our mouse model that 
expresses CHMP2BIntron5 specifically in forebrain excita-
tory neurons by CAMKII promoter controlled expression 
of tTA [7]. These mice exhibit FTD-like social behavioral 
deficits at 4 months, but not 2 months, of age, as well as 

Fig. 2  The effects of CHMP2BIntron5 on the solubility and subcellular localization of spastin. a The effect of CHMP2BIntron5 on the solubility of spastin 
in HEK293 cells, as shown by western blot analysis. b Relative abundance of spastin in soluble and insoluble fractions in cells expressing CHMP2BWT 
or Flag-CHMP2BIntron5. Values are mean ± SEM, n = 4 independent experiments. n.s., not significant. *p < 0.05 by two-sided t test. c Western blot 
analysis of the subcellular localization of spastin in HEK293 cells expressing CHMP2BIntron5 or CHMP2BWT. d Quantification of the western blot in 
panel c. Values are mean ± SEM, n = 3. n.s., not significant. **p < 0.01, by two-sided t test
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cellular phenotypes such as ubiquitin-positive aggregates 
and astrogliosis [7]. We found that the level of soluble 
spastin was decreased in CHMP2BIntron5 mice as young as 
2 months of age (Fig. 3a, b), suggesting an early disease 
phenotype, and this deficit was even more pronounced in 
older mice (Fig.  3a, b). In 12-month-old CHMP2BIntron5 
mice, co-immunostaining analysis revealed the presence 
of spastin in p62-positive aggregates in mouse cortical 
neurons (Fig. 3c, d)—a novel pathological feature of FTD 
caused by CHMP2B mutations. Moreover, in a genetic 
interaction analysis in a Drosophila model of mutant 
CHMP2B toxicity [1], we found that RNAi knockdown 

of spastin with two different RNAi lines did not by itself 
cause retinal degeneration in the fly eye; however, it 
greatly increased CHMP2BIntron5 toxicity (Fig.  4), sug-
gesting that partial loss of spastin function contributes to 
the toxicity of CHMP2BIntron5 in vivo.

Loss-of-function mutations in SPAST cause spas-
tic paraplegia 4 (SPG4) [20, 21], the most common 
autosomal dominant form of HSP, which can be asso-
ciated with clinical dementia [25]. SPAST mutations 
have also been reported in ALS [8]. The presence of 
spastin aggregates and the loss of soluble cytoplasmic 
spastin in FTD3 we identified in this study suggest that 

Fig. 3  Functional significance of the interaction between spastin and CHMP2BIntron5 in a mouse model of FTD3. a Western blot analysis of the effect 
of CHMP2BIntron5 on spastin in a mouse model of FTD caused by mutant CHMP2B. The double bands are presumably two isoforms of spastin and 
the lower band corresponds to the M87 isoform that is used for transfection experiments throughout this study. b Level of total soluble spastin 
in the cortex of tTA:CHMP2BIntron5 mice. Values are mean ± SEM from three western blot experiments. *p < 0.05, **p < 0.01 by two-sided t test. c 
Representative images from identical areas of the cortex double-stained for p62 (red) and spastin (green). P62 is known to co-aggregate with 
CHMP2BIntron5 that is specifically expressed in excitatory neurons in this mouse model. The squares indicate areas shown at higher magnification 
in the adjacent panels. Scale bar: 20 µm. d Fraction of spastin signal overlapping with p62, calculated with Mander’s overlap coefficient. The 
analysis was done with the JACop plugin in Image J. *p < 0.05, **p < 0.01, ***p < 0.001 by one-way ANOVA and Bonferroni post hoc test for multiple 
comparisons
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dysregulated association between CHMP2B and spastin 
may be a common novel pathogenic mechanism in HSP, 
amyotrophic lateral sclerosis, and FTD.
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