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Abstract 

Rasmussen encephalitis (RE) is a rare childhood neurological disease characterized by progressive unilateral loss of 
function, hemispheric atrophy and drug-resistant epilepsy. Affected brain tissue shows signs of infiltrating cytotoxic 
T-cells, microglial activation, and neuronal death, implicating an inflammatory disease process. Recent studies have 
identified molecular correlates of inflammation in RE, but cell-type-specific mechanisms remain unclear. We used sin-
gle-nucleus RNA-sequencing (snRNA-seq) to assess gene expression across multiple cell types in brain tissue resected 
from two children with RE. We found transcriptionally distinct microglial populations enriched in RE compared to two 
age-matched individuals with unaffected brain tissue and two individuals with Type I focal cortical dysplasia (FCD). 
Specifically, microglia in RE tissues demonstrated increased expression of genes associated with cytokine signaling, 
interferon-mediated pathways, and T-cell activation. We extended these findings using spatial proteomic analysis 
of tissue from four surgical resections to examine expression profiles of microglia within their pathological context. 
Microglia that were spatially aggregated into nodules had increased expression of dynamic immune regulatory mark-
ers (PD-L1, CD14, CD11c), T-cell activation markers (CD40, CD80) and were physically located near distinct CD4+ and 
CD8+ lymphocyte populations. These findings help elucidate the complex immune microenvironment of RE.
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Introduction
Rasmussen encephalitis (RE) is a rare, progressive neuro-
logical disease characterized by intractable seizures and 
unilateral neurological deficits with atrophy of the con-
tralateral cerebral hemisphere [62]. The disorder mainly 
affects children, with a median onset around 6  years of 
age, and an estimated incidence of 1.7 to 2.4 cases per 
10 million children [10]. The etiology of RE is unknown, 

but the evidence points to an immunopathological 
mechanism, particularly involving T-cell cytotoxicity and 
microglial activation. On histopathologic examination, 
brain tissue from RE patients typically shows signs of cor-
tical inflammation, infiltrating cytotoxic T-cells, micro-
glial nodules, neuronal loss, and gliosis in the affected 
hemisphere [48]. As the disease progresses, cortical cavi-
tation and profound degeneration are observed [44].

RE remains a disease with poorly understood etiology 
[17, 58]. For a decade, studies have implicated micro-
glia and their interaction with infiltrating T-cells in RE 
disease progression and neurodegeneration [42, 43, 62]. 
The quantification of these intercellular mechanisms, and 
their contributions to RE pathogenesis, has remained elu-
sive. Omics analysis at tissue resolution and traditional 
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low-plex immunohistochemistry have made incremental 
advances to elucidate the complex network of cytokine-
mediated signaling driving the inflammatory immune 
response, but much remains to be determined. Diagnos-
tic challenges further obscure the origin of RE patho-
genicity, particularly in early-stage RE. Lacking distinct 
disease biomarkers, diagnosis relies on clinical, morpho-
logical and electrophysiological criteria [41]. Atypical 
presentation can elude clinical diagnosis and there are 
no specific EEG abnormalities that can distinguish RE 
from other focal epilepsy [41, 58]. Neuroimaging is used 
to identify the unilateral inflammation and atrophy that 
characterizes RE but is often negative in early stages [62]. 
These shortcomings highlight the need for high-resolu-
tion, multiomic analyses.

Several studies have characterized aspects of innate and 
adaptive immune activity in RE. At early disease stages, 
there is an upregulation of innate immune response 
including MHC-class-1 antigen presentation and inter-
feron signaling [60]. The formation of small microglial 
nodules expressing Toll-like receptor 7 precedes infil-
tration of lymphocytes to the brain. As the disease pro-
gresses, gene expression of chemokines responsible for 
T-cell attraction, such as CCL5, CXCL9, and CXCL20, 
are more abundantly expressed in RE patient brains, as 
well as inflammatory gene expression including IL-1β 
and IFNγ [43, 60]. Infiltration and clonal T-cell expan-
sion occurs in the brains of RE patients and CD8 + cyto-
toxic T-cells localize to the microglial nodules [1, 52, 53]. 
These T-cells can be observed closely apposed to neu-
rons, where it is believed they may recognize a specific 
epitope that is yet to be identified [53].

These findings suggest that the microglial response is 
a key component of RE pathogenesis, but studies so far 
have relied on bulk tissue gene expression assays that do 
not allow for cell-type resolution. Here we applied sin-
gle-nucleus RNA-sequencing (snRNA-seq) to identify 
cell-type-specific gene expression changes in RE, with a 
particular focus on microglia. We extended these find-
ings by applying spatial proteomic assays to study expres-
sion of microglia within their pathological context. Our 
results help elucidate the complex immune microenvi-
ronment of RE.

Materials and methods
Patient cohort
Samples RE1, RE2, RE3, FCD1 and FCD2 were collected 
from patients diagnosed with either Rasmussen enceph-
alitis (RE) or Type I focal cortical dysplasia (FCD) and 
enrolled in an IRB-approved research study at Nation-
wide Children’s Hospital. Samples RE2 and RE3 origi-
nated from the same patient, but from different surgeries 
three years apart over the course of disease progression. 
Formalin-fixed, paraffin embedded (FFPE) tissue samples 
for RE4 were obtained from the Cooperative Human Tis-
sue Network, a resource supported by the National Can-
cer Institute. Samples CTRL1 and CTRL2 were collected 
from unaffected donors at autopsy courtesy of the NIH 
Neurobiobank. See Table 1 for details.

Single‑nucleus RNA‑sequencing
Nuclei isolation
Nuclei were isolated from frozen brain tissue as pre-
viously described [29]. Briefly, ~ 20  mg of tissue was 

Table 1  Sample information

Sample ID Patient Age 
at Surgery

Sex Diagnosis Sample origin Brain region studied Frozen tissue 
for snRNA-seq

FFPE slides 
for spatial 
proteomics

RE1 0–5 F RE Left-sided functional 
hemispherectomy

Anterior temporal lobe X X

RE2 6–10 F RE Left anterior temporal 
lobectomy

Anterior temporal lobe X

RE3 6–10 F RE Left peri-insular functional 
hemispherectomy

Posterior temporal lobe X X

RE4 6–10 F RE Right anatomic hemi-
spherectomy

Temporal lobe X

FCD1 11–15 F FCD Type I Excision of left superior 
parietal and occipital lobe

Superior parietal and 
occipital lobe

X

FCD2 11–15 F FCD Type I Resection of right inferior 
parietal epileptic zone

Middle frontal gyrus X

CTRL1 0–5 F Deceased (Lymphocytic 
Myocarditis)

Autopsy – temporal cor-
tex (Brodmann area 22)

Temporal cortex X

CTRL2 0–5 F Deceased (Respiratory 
Failure)

Autopsy – temporal cor-
tex (Brodmann area 22)

Temporal cortex X
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mechanically homogenized using a glass Dounce homog-
enizer. Nuclei were washed and stained with Hoechst 
33,342 dye (Thermo Fisher Scientific #62,249), filtered 
through a 30  µm mesh filter, and resuspended in PBS. 
FACS analysis was performed using an Influx Cell Sorter 
(BD Biosciences). Cellular debris were excluded using 
forward and side scatter area parameters, nuclei were 
gated on Hoechst-positive signal, and then aggregates 
were excluded using trigger pulse width. Purified Hoe-
chst-positive nuclei were sorted directly into 10x Genom-
ics reaction buffer and processed according to the 
manufacturer protocol for Chromium Next GEM Single-
Cell 3’-Reagent Kit v.3.1. Final libraries were sequenced 
either on an Illumina NovaSeq 6000 or HiSeq 4000 
instrument to generate paired-end sequencing data.

Data pre‑processing
Generation of FASTQ files, read alignment to the 
GRCh38 transcriptome and quantification of cell feature 
counts was performed using 10x Genomics Cell Ranger 
v.6.0 following default parameters, except for inclu-
sion of intronic transcripts, which are present in nucleic 
pre-mRNAs.

Quality filtering, normalization, and integration
Downstream analysis was performed using Seurat v4.0 
for R [23]. Briefly, cell-barcode gene expression matrices 
were filtered to contain genes that were expressed in at 
least three nuclei and to contain nuclei that express at 
least 1000 transcripts of 500 unique genes. Nuclei with 
greater than 5% mitochondrial transcripts were filtered 
out. Normalization and variance-stabilization of feature-
barcode matrices were performed using the sctransform 
package for R [22]. Nuclear doublets were detected and 
eliminated from the data via DoubletFinder v2.0 [36]. 
Feature-barcode matrices were integrated using the Inte-
grateData function in Seurat.

Dimensionality reduction, clustering and visualization
Principal component analysis (PCA) was performed 
using Seurat v.4.0. The first 30 PCs were used to generate 
a shared nearest neighbor (SSN) graph by calculating the 
Jaccard Index between every nucleus and its 20 nearest 
neighbors. The resulting SSN graph was used to perform 

Louvain clustering [59]. Gene expression profiles were 
visualized in two-dimensional space using t-distributed 
stochastic neighbor embedding (tSNE) [61].

Cell type annotation
Cell types were annotated using the reference-query label 
transfer method in Seurat v.4.0 using human cortical sin-
gle-nuclei gene expression data from the Allen Brain Map 
M1 10x dataset [7]. Briefly, a set of transfer anchors is cal-
culated from the PCA reduction of each dataset. Then, 
each nucleus in the query dataset is scored on a reference 
vector of cell type labels, generating a matrix of predic-
tion scores and predicted IDs to be added to the query’s 
metadata. To confirm predicted cell types and find nuclei 
from non-resident nuclei, canonical cell type markers 
were visualized with the Nebulosa v3.14 R package [2].

Normalized cell type quantification
To correct for sample size when reporting cell type pro-
portions, the number of nuclei in each cell type cluster 
was normalized to total nuclei in each sample using the 
following formulas, as previously published [51].

Subclustering and differential gene expression
Microglia were subset from the integrated Seurat 
object and reprocessed using normalization, integra-
tion, dimensional reduction, and clustering steps as 
described above. To discover differentially expressed 
genes (DEGs) between disease conditions, we used 
the pseudobulk method of aggregating gene expres-
sion across cells of biological replicates, then employed 
DESeq2 to test for differential expression [33]. Dimen-
sionality reduction, Louvain clustering and visualiza-
tion were performed using Seurat v.4.0 as described 
above. Highly expressed genes were discovered on a 
per-cluster basis using the FindAllMarkers function in 
Seurat v.4.0 with test.use set to Model-based Analysis 
of Single-cell Transcriptomics (MAST) [18].

GO Enrichment and KEGG Pathway analysis
Gene Ontology enRIchment anaLysis and visuaLizA-
tion tool (GOrilla) was used to analyze DEGs in micro-
glia across disease conditions and across microglia 

Normalization Factor(NF) =
(nuclei in sample)

(

nuclei in sample with largest number of nuclei
)

normalized cell number =

(

number of nuclei in cell type clusterina sample
)

NF
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clusters [15]. All genes with transcripts sequenced 
across the RE, FCD1 and CTRL samples were used as a 
background list. DEGs were queried for enriched Gene 
Ontology (GO) biological process annotations (FDR 
adjusted p-value < 0.05). Additionally, microglial DEGs 
across disease conditions were input into the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) Pathway 
Database Mapper Search Tool [25] for pathway analysis 
and visualization.

Cell typing statistics
To test significance of microglial cluster association to 
disease condition, an entropy based metric, the cell type 
diversity statistic (CTDS) was employed [26]. CTDSs 
were normally distributed and maintained homogeneity 
of variance, confirmed by Shapiro–Wilk test and Bart-
lett’s test respectively, and tested via one-way ANOVA.

Trajectory analysis
Trajectory analysis was performed via Monocle3 [46]. 
Microglia were dimensionally reduced via Uniform 
Manifold Approximation and Projection (UMAP) with 
Seurat v.4.0. Using UMAP loading scores and Louvain 
clusters, cells were ordered along computationally gen-
erated pseudotime trajectories using the ‘learn_graph’ 
and ‘order_cells’ functions. Differentially expressed genes 
across pseudotime were found by spatial autocorrelation 
(Moran’s I test) using the ‘graph_test’ function.

Digital spatial proteomics
Slide preparation
FFPE tissue sections (5 µm thick) were processed accord-
ing to the GeoMx® Digital Spatial Profiler (DSP) proto-
col (NanoString Technologies, Inc.). Briefly, tissue was 
deparaffinized and rehydrated with CitriSolv (Decon 
Labs), ethanol and ddH2O washes at room temperature. 
Antigen retrieval was performed in citrate buffer pH 6.0 

(Millipore) at ~ 115  °C under high pressure and washed 
in tris-buffered saline with Tween 20 (TBS-T) (Cell 
signaling Technology). Tissue was blocked with Buffer 
W (Nanostring) for 1  h at room temperature. Slides 
were incubated at 4  °C overnight with antibody mix-
ture including fluorescently tagged antibodies for IBA1-
AF532 (Nanostring Technologies, Inc. #121,300,306) 

and CD45-AF594 (NanoString Technologies, Inc. 
#121,300,301) and the following oligo-tagged NanoString 
GeoMx human detection antibody mixtures: Immune 
Core Profiling, Immune Cell Typing, Immune Activa-
tion, and Cell Death (see Supplemental Material for list 
of detection targets). Slides were washed with TBS-T, 
fixed with 4% formaldehyde (Invitrogen) for 1 h at room 
temperature, then re-washed with TBS-T. Nuclei were 
stained with SYTO 13 (NanoString).

GeoMx instrument use and analysis
Slides were scanned in a GeoMx DSP instrument. 
Geometric regions of interest (ROIs) were selected 
and segmented for each tissue section, focusing on 
areas containing microglial nodules and aggregated 
immune cells. For each ROI, CD45+ segment borders 
were generated by manually selecting a CD45 fluo-
rescence threshold that visually maximized, based on 
intensity and cell morphology, inclusion of invading 
immune cells while excluding microglia. Subsequently, 
IBA1+ segment borders were generated by manually 
selecting an IBA1 fluorescence threshold that visually 
maximized inclusion of microglia while excluding non-
cellular area. Oligos from selected ROI segments were 
cleaved, collected and dried in a 96-well plate. Oligos 
were hybridized to unique reporter tags and counted 
with the Nanostring nCounter platform following the 
manufacturer protocol. The number of selected ROI 
segments per sample is detailed in Table 2.

Data quality control, normalization and differential 
expression analysis were performed on NanoString 
GeoMx Software v2.4 following manufacturer recom-
mendations. Differentially expressed proteins were 
determined by Mann Whitney U Test with p-values 
corrected by Benjamini–Hochberg procedure (p < 0.05). 
Relative expression of cell type markers and cell activa-
tion markers was calculated as follows:

Immunohistochemistry
Formalin-fixed paraffin-embedded tissue sec-
tions  (5  µm thick) were processed according to 
the GeoMx Digital Spatial Proteomics protocol 
(NanoString Technologies, Inc.), as above, with the 
addition of CD8-AF647 (Novus #NBP2-54595AF647) 

Cell marker % Counts =
# of oligos from specific cell type marker

total #of oligos from all cell type markers
× 100

Cell activation % Counts =
# of oligos from specific cell activation marker

total #of oligos from all cell activation markers
× 100
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and the exclusion of GeoMx human detection anti-
bodies. High-resolution full-slide images at 20 × were 
obtained via the GeoMx DSP.

Microglial expansion and infiltrating lymphocytes in RE
To determine the cell type composition of RE-affected 
cortical tissue, we performed snRNA-sequencing of fro-
zen brain tissue from RE patients (N = 2) compared 
to Type I FCD patients (N = 2) and unaffected donors 
(N = 2). FCD samples were used as an epilepsy control 
without any known immunological pathology, and unaf-
fected donors had neither history of epilepsy nor immune 
disease. We performed unbiased nuclei isolation using 
mechanical dissociation and fluorescence-activated sort-
ing for Hoechst-positive nuclei. Individual nuclei were 
barcoded (10x Genomics, Inc.) and cDNA libraries 
were sequenced (Fig.  1a). After quality control, snRNA-
seq yielded 20,182 single-nuclei profiles (nuclei counts: 
RE = 8,779; FCD = 5,353; CTRL = 6,050) (Additional file 1: 
Fig.  1a–e). An average of 2,526 genes and 6,127 tran-
scripts per nucleus were detected. We normalized the data, 
applied dimensional reduction analysis and performed 
unbiased clustering to identify cell types (Fig.  1b–c; Adi-
tional file 1: Fig. 1f). Nine major cell types were identified 
and confirmed by expression of canonical cell-type mark-
ers (Fig. 1d). Expected brain resident cell types were iden-
tified, including neurons, oligodendrocytes, astrocytes, 
and microglia. Microglia were highly represented in the 
RE patient samples, with more than twice as many identi-
fied after normalizing for sample size compared to FCD or 
CTRL samples. A population of non-resident, infiltrating 
immune cells identified with the markers CD3, SKAP1 and 

CD94 originated mainly from the RE patient samples and 
was absent from unaffected tissue. (Fig.  1e–f; Additional 
file 1: Fig. 1 g-h).

Microglial gene expression in RE
We next investigated disease-specific changes in microglial 
gene expression using a pseudobulk comparison of RE ver-
sus both CTRL and FCD tissues in DESeq2. Pseudobulk 
analysis has been recently identified as a robust approach 
to avoid pseudo-replication bias inherent in single-cell 
gene expression studies [55]. Compared to CTRL tissue, 
our analysis revealed a total of 288 DEGs (237 with higher 
expression in RE samples, 51 with lower expression in RE, 
with at least a ± 1.5-fold change and an FDR-adjusted p 
value ≤ 0.05) (Fig. 2a, Additional file 2: Table 1). Compared 
to FCD tissue, our analysis revealed a total of 174 DEGs 
(134 with higher expression in RE samples, 40 with lower 
expression in RE, with at least a ± 1.5-fold change and an 
FDR-adjusted p value ≤ 0.05) (Fig.  2b, Additional file  13: 
Table 2). There was an overlap of 52 DEGs (39 with higher 
expression in RE samples, 13 with lower expression in RE) 
(Additional file 2: Fig. 2a-b) between the two disease-spe-
cific comparisons. Genes more abundantly expressed in RE 
were queried for biological process Gene Ontology (GO) 
annotation enrichment. Both sets of DEGs showed enrich-
ment for immune mediation, including pathways for T-cell 
activation and cytokine signaling. In particular, DEGs 
highly expressed in RE vs. FCD were enriched for multiple 
interferon-mediated pathways, MHCI/II antigen presenta-
tion, CD8 + /CD4 + T-cell activation and Toll-like receptor 
pathways (Fig. 2c, d).

Next, we investigated the role of DEGs in well-studied 
biological pathways. Using the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) Database Mapper Search 
Tool [25], we showed that many RE-abundant DEGs, 
compared to both CTRL and FCD, are in canonical 
immune pathways. These pathways include the TNFα 
pathway, known to promote inflammatory cytokine pro-
duction [66] (Fig.  2e), both MHCI and MHCII compo-
nents of the antigen presentation pathway (Fig.  2f ) and 
the immune cell component of the cell adhesion pathway 
(Fig. 2g).

Results
Microglial heterogeneity in RE
To identify subpopulations of microglia that may be 
relevant to disease, we performed unbiased Louvain 

Table 2  GeoMx sample ROI information

Sample Name Slide # # IBA1+ ROI 
segments

# CD45+ ROI 
segments

RE1 1 13 10

RE1 2 21 15

RE2 1 14 10

RE2 2 11 7

RE3 1 15 9

RE3 2 11 7

RE4 1 14 10

RE4 2 13 9

Fig. 1  Microglial and lymphocytic cell populations are expanded in Rasmussen encephalitis. a Processing of cortical tissue from RE (N = 2), FCD 
(N = 2), and unaffected (N = 2) individuals for snRNA-seq was performed using 10x Genomics 3’gene expression kit. b tSNE plot highlighting patient 
contribution to each cluster. c tSNE plots overlaid with feature density for canonical cell type markers (endothelial and VLMC not shown) d tSNE 
plot colored by cell type, determined using Seurat v.4.0 reference and query workflow (see methods). e tSNE showing contribution of diagnosis by 
cluster. f Normalized counts of nuclei per cluster by diagnosis

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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clustering on all microglia (Additional file 3: Fig. 3a) and 
determined the top differentially expressed genes for each 
subcluster (Additional file  3: Fig.  3b; Additional file  14: 
Table 3). Eleven subpopulations, or clusters, were identi-
fied. Note that each cluster, excluding cluster 7, contained 
cell populations from each disease condition (Additional 
file 4: Fig. 4a-c), though we determined that there was no 
statistically significant association between disease con-
dition and microglial subpopulation (Additional file  4: 
Fig.  4d). Each cluster had expression of microglia-spe-
cific and homeostatic markers (Additional file 3: Fig. 3c). 
However, clusters 0 and 4 returned no significant DEGs 
and cluster 5 DEGs were nearly all ribosomal or mito-
chondrial genes. The remaining eight subpopulations had 
highly expressed gene markers involved in immune or 
inflammatory processes (Fig. 3ab) and were the focus of 
further analysis. Most of these eight clusters were defined 
by well-known pro-inflammatory markers. However, one 
population (Fig. 3b, cluster 6) was characterized by anti-
inflammatory gene markers CD163 and MRC1. Many of 
these markers, particularly in clusters 6,7,8 and 9, were 
more highly expressed in the RE microglia than the 
CTRL and FCD microglia (Additional file 5: Fig. 5).

DEGs in each cluster were queried for enriched bio-
logical process GO annotations. Six of the clusters were 
enriched for at least one GO term (Fig. 3c). Cluster 1 was 
enriched for apoptotic and cell death markers. Clusters 
3 and 6 were enriched for regulation of immune pro-
cesses including activation of immune cells (CD4 + /
CD8 + T-cells, neutrophils) and inflammatory cytokine 
(IL-12, Type I interferon) production. Cluster 2 was 
enriched for regulation of macrophage derived foam cell 
differentiation, cells which have been implicated as pro-
inflammatory in multiple neuroinflammatory disorders 
[68]. Clusters 7 and 10 were enriched for regulation of 
neuronal organization and signaling, including glutamate 
signaling pathways and glutamatergic synaptic transmis-
sion. Disruptions in homeostatic glutamate levels and 
signaling have been linked to excitotoxic damage from 
chronic seizures across a range of pathologies [8].

To examine the relationship between homeostatic 
microglia and immune-regulatory subclusters, we per-
formed trajectory analysis. Clustered microglia were 
dimensionally reduced using Uniform Manifold Approx-
imation and Projection (UMAP) (Additional file  6: 

Fig. 6a). A small group of cells in cluster 4, where homeo-
static marker TMEM119 expression was highest, was 
chosen as the root node, representing pseudotime = 0 
(Additional file 6: Fig. 6b). Gene expression pseudotime 
trajectories were calculated, and microglia were com-
putationally ordered along the trajectories (Additional 
file 6: Fig. 6c). Nearly all trajectories went from cluster 4 
through cluster 0 to a terminal cluster, excluding one tra-
jectory leading directly to cluster 10. There is also a mid-
to-late pseudotime trajectory leading through clusters as 
follows: 0,3,2,1, with cells in cluster 1 having some of the 
latest pseudotime scores, along with cluster 6 (Additional 
file  6: Fig.  6d). Spatial autocorrelation analysis revealed 
4853 pseudotime differentially expressed genes (PDEGs) 
over the trajectories (Additional file  15: Table  4; Top 
100). Visualization of the top 20 PDEGs (Moran’s I score) 
reveals that the PDEGs are most highly expressed in clus-
ters 2,8,6 and 10 with many having high co-expression in 
clusters 8 and 10 (Additional file 7: Fig. 7). Furthermore, 
five of the top 20 PDEG’s were also regulators of immune 
response or inflammation highlighted in Fig. 3b.

Spatial proteomic analysis of microglial nodules
To further profile RE microglia within their pathological 
context, we performed digital spatial protein profiling of 
brain tissue from patients using the Nanostring GeoMx 
platform (Additional file  8: Fig.  8a). The formation of 
microglial nodules in patient tissue has been reported as 
a key precedent to cytotoxic T-cell infiltration in RE [60]. 
We fluorescently labeled slides with IBA1 and CD45 to 
identify microglia and infiltrating lymphocytes, respec-
tively, and compared ROIs containing microglial nodules 
versus unaggregated microglia within the same tissue 
section (Fig. 4a, Additional file 8: Fig. 8b). We quantified 
expression of 42 protein targets from the IBA1-positive 
fraction of each ROI (Additional file  9: Fig.  9) and per-
formed differential expression analysis, which identi-
fied 14 highly differentially expressed proteins (DEPs) 
in microglia located in the nodules. Many of these pro-
teins are known to be implicated in microglial activation 
(e.g., HLA-DR, CD80, CD40) or T-cell activity (e.g., CD8, 
GZMA; Fig. 4b). Indeed, immunofluorescent co-labeling 
of IBA1, CD45, and CD8 showed colocalization of CD8 
on CD45 + lymphocytes in close proximity to microglial 

(See figure on next page.)
Fig. 2  Gene expression signatures of microglia in Rasmussen encephalitis. a Volcano plot showing differentially expressed genes in RE vs CTRL 
(DESeq2 adjusted p-value < 0.05, FC > 1.5). Labeled genes are shown on heatmap in Fig. 2c. b Volcano plot showing differentially expressed 
genes in RE vs FCD (DESeq2 adjusted p-value < 0.05, FC > 1.5). Labeled genes are shown on heatmap in Fig. 2d. c Heatmap showing individual 
gene contribution (via positive fold-change) to GO biological process annotation enrichment in RE vs CTRL. d Heatmap showing individual gene 
contribution (via positive fold-change) to GO biological process annotation enrichment in RE vs FCD. e–g Selections from KEGG Pathways: TNF 
signaling pathway e, Antigen processing and presentation f and Cell adhesion molecules g highlighting differentially high expression of genes in 
RE vs both CTRL and FCD controls
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Fig. 2  (See legend on previous page.)
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Fig. 3  Microglial heterogeneity visualized via Louvain clustering. a tSNE plot showing eight clusters containing differentially high expression of 
genes with immune or inflammatory regulatory function. b Dot plot showing percent and average expression of a selection of differentially highly 
expressed genes in clusters from Fig. 3a with immune or inflammatory regulatory function c Heatmap showing enrichment of GO biological 
process annotations in clusters with enriched GO terms from Fig. 3a
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nodules (Fig.  4c). To further characterize invading 
immune cells localized within microglial nodules, we 
quantified the proportion of cell-type and cell-activation 
markers expressed within the CD45 + segment of the 
ROIs (Fig. 4d-g; Additional file 10: Fig. 10). T-cell mark-
ers dominated this signature in RE, with all four samples 
having evidence of CD3, CD8, CD4 expression (Fig. 4d–
e). Concordantly, prominent T-cell activation markers, 
CD44 and HLA-DR, were highly represented in all four 
patients as well (Fig. 4g).

To connect spatial protein profiling to the single cell 
transcriptome, we analyzed a selection of six genes that 
encode for DEPs abundantly expressed in microglial nod-
ules (Additional file  11: Fig.  11a). In an effort to locate 
microglia from a nodule in the snRNA-Seq microglia 
subset, the expression density of each DEP gene was plot-
ted in the TSNE projection of the microglia (Additional 
file 11: Fig. 11b). A combined joint density plot revealed 
that some microglia in cluster 3 express all six genes that 
encode the microglial nodule DEPs (Additional file  11: 
Fig. 11c).

Discussion
In this study we applied single-nucleus transcriptomic 
and spatial proteomic approaches to the study of Ras-
mussen encephalitis resected brain tissue. Our results 
confirm and extend prior observations of immune-medi-
ated pathogenesis in RE. First, we showed an expanded 
population of microglia and infiltrating lymphocytes in 
RE patients compared to brain tissue from both epilepsy-
only controls and unaffected individuals. By examining 
the transcriptomes of microglial subclusters, we were 
able to identify extensive heterogeneity representing 
microglia in various states of activation. Finally, we were 
able to place that observation in pathological context by 
comparing expression profiles of microglia physically 
located within microglial nodules versus unaggregated. 
Microglia located in nodules expressed classic activation 
markers and were closely located to CD8+ T-cells.

Efforts to understand the immune-mediated patho-
genicity of RE have largely focused on the study of 
infiltrating T-cell populations [1, 42, 52]. While micro-
glia-associated inflammation has been studied across 
several different pathologies [19, 37, 54], few studies have 
analyzed microglial mechanisms in RE [11, 60]. Troscher 

et  al. were the first to analyze microglial nodules in the 
context of RE. Our snRNA-seq differential expression 
analysis of RE microglia aligns with and expands on the 
bulk microarray gene set enrichment analysis (GSEA) of 
stage I and II nodules [60]. The RE microglia overexpress 
genes involved in MHC-I and MHC-II antigen presenta-
tion, and cytokine signaling, particularly of the interferon 
family. Furthermore, our data show that RE microglia 
have significantly higher expression of genes involved in 
positive regulation of specific T-cell activation, differ-
entiation and cytotoxicity. Also, our data show support 
for the hypothesis that Toll-like receptors are activated 
upstream of immune pathways. The TLR1:TLR2 signal-
ing pathway GO annotation is enriched in RE microglia, 
known to have downstream activating effects on the 
TNFα pathway [40]. Interestingly, in microglia, TNFα has 
been shown to be a potent stimulus of TLR2 expression 
[57], potentially creating a feedback loop for immune 
activation.

Performing differential expression analysis on micro-
glial subclusters allowed us to identify and quantify the 
heterogeneity of microglial function in the context of 
RE. Looking at the most differentially expressed immune 
markers in each cluster revealed populations of micro-
glia with varied inflammation profiles. Not surprisingly, 
there is a subset of microglia (cluster 3) with differentially 
high gene expression representing a pro-inflammatory 
Th1 immune response (NF-κB, CXCL10) [43, 67] and 
innate inflammatory responses through TLR2/4 produc-
tion (WARS1) [38]. These cells also had high co-expres-
sion of LIMK2, a known biomarker for necrotic neuronal 
death during epileptic seizure [28]. Interestingly, a dif-
ferent microglial population (cluster 6) has a more 
ambiguous role in inflammation. Having high expres-
sion of anti-inflammatory markers CD163 and CD206 
(MRC1)) [30, 50], these microglia also co-express pro-
inflammatory NAMPT and IQGAP2, a ligand for, and 
promotor of TLR4, respectively [6, 20]. The dichotomy 
of these populations suggests a more spatially nuanced, 
dynamic inflammasome and implicates variation in Toll-
like receptor signaling as potential mediator, reinforc-
ing previous observations made by Luan et al. [34]. It is 
important to note that while microglia from all microglial 
subclusters were represented in each disease condition, 
there was an overall increased proportion of microglia in 
RE compared to the other conditions (Additional file  4: 

(See figure on next page.)
Fig. 4  Microglia have distinct expression signatures based on spatial context in Rasmussen encephalitis. a Example ROIs representing a microglial 
nodule (left, yellow) versus unaggregated microglia (right, light blue) with immunofluorescent staining of microglia (IBA1, green), lymphocytes 
(CD45, red), and nuclei (SYTO13, blue). b Volcano plot of significant abundantly expressed proteins detected in microglial nodules versus 
unaggregated microglia. c 20 × micropictograph confirming high expression of CD8 in CD45+ cells near microglial nodules. d-g Relative cell type 
marker expression d T-cell subtype marker expression e macrophage subtype marker expression f cell activation markers g in CD45+ ROIs for each 
patient
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Fig. 4  (See legend on previous page.)



Page 12 of 16Westfall et al. Acta Neuropathologica Communications          (2022) 10:168 

Fig. 4b-c). However, when analyzing expression of genes 
that regulate immune function or inflammation, particu-
larly those highlighted in Fig.  3b, many are more abun-
dantly expressed in RE microglia than in FCD or CTRL 
populations. Furthermore, our proteomic data demon-
strate that the spatial organization of these microglial 
subpopulations is altered in the context of RE.

GO annotation enrichment analysis of microglia clus-
ter DE genes revealed additional regulated biological 
processes beyond inflammation. Microglia in cluster 2 
overexpress genes that regulate macrophage-derived 
foam cell differentiation, indicating that the microglia 
contain cellular debris, presumably from neurodegen-
eration. Although foamy microglia are common in mul-
tiple sclerosis (MS), another neurological disease due to 
immune-mediated pathogenesis [21, 68], these cells have 
not been analyzed in the context of RE. These cells could 
provide crucial spatiotemporal information about the 
neurodegenerative microenvironment of RE.

Other microglial subpopulations have similarities to 
microglial phenotypes studied in Alzheimer Disease 
(AD). Cluster 5 has abundantly high expression of FTL 
and FTH1, genes that encode for ferritin subunits. A 
similar iron-loading microglial phenotype, described 
by Kenkhuis et  al., has been found in AD patients with 
high β-amyloid, high tau pathologies [27]. Two differ-
ent clusters, 7 and 10, abundantly expressed genes such 
as GRID2, related to microglia-neuron crosstalk and 
the organization of synapse and postsynaptic organiza-
tion. It is well documented that a major role of micro-
glia is to regulate synaptic development and pruning, 
and dysregulation of these processes leads to inflam-
matory and epileptogenic disorders [4, 5]. Gerrits et  al. 
described a similar microglial phenotype in the context 
of AD, particularly in tissue with tau pathology. These 
GRID2 + microglia were also enriched for gene ontology 
annotations related to neurotrophic functions like syn-
apse organization and axonogenesis [19]. Understanding 
the role of these phenotypically related microglia across 
neurodegenerative diseases could offer insight into how 
microglia respond to neuroinflammatory pathologies. 
Microglia from cluster 7 and 10 also express genes that 
regulate NMDA receptor activity and are responsible for 
microglial process extension toward neurons during sei-
zure, induced by increased global glutamate levels [16]. 
Additionally, these microglia abundantly express genes 
that regulate glutamate receptor signaling pathways and 
glutamatergic synaptic transmission. Several studies have 
shown that irregular glutamate levels and aberrant gluta-
matergic signaling lead to inflammation and epilepsy [8, 
14]. Analysis of these microglia could offer insight into 
the transcriptomic landscape of epileptogenic microglia 
not just for RE, but for other disorders.

Pseudotime trajectory analysis of snRNA-Seq data sug-
gests that while some microglial subpopulations have 
unique paths of differentiation from a homeostatic state, 
others may be temporally related along one or more dif-
ferentiation trajectories. All trajectories from homeosta-
sis to activated microglia, except one, travel through a 
common microglial population, cluster 0. All the micro-
glia in cluster 0 have early to mid pseudotime scores and 
cluster 0 has no differentially high expression of genes. 
This suggests that the microglia in this cluster repre-
sent an initial differentiation state in which expression 
of homeostatic markers drops but inflammatory mark-
ers are not yet defined. In contrast, there are trajectories 
through multiple populations of inflammatory microglia, 
suggesting a temporal relationship mediated by cell sign-
aling. A trajectory through clusters 3,2,1 emphasizes the 
role of both NFKB1, CXCL10 and WARS as initiators of 
proinflammatory signaling, and their potential to affect 
function of nearby microglia [13, 32, 38]. Spatial autocor-
relation in Monocle3 revealed PDEGs that had apprecia-
ble overlap with DEGs generated in Seurat. Interestingly, 
of the PDEGs with a top 20 Moran’s I scores (Additional 
file  7: Fig.  7), five were DEGs highlighted in Fig.  3b as 
markers of immune regulation and inflammation. This 
correlation reinforces that in RE-affected microglia, the 
dominant drivers of microglial activation and deviation 
from homeostasis are modulators of immune response 
and inflammation. The top five PDEGs have differen-
tially high expression in both clusters 8 and 10, however 
the expression occurs at different pseudotimes and the 
clusters are along different trajectories, indicating that 
functionally similar populations of microglia may have 
different activating drivers. Understanding the mecha-
nisms of activation for disease-specific microglia across 
pseudotime trajectories can lead to novel targets for 
immune checkpoint therapeutics for neuroinflammatory 
disease.

While snRNA-seq provides transcriptome-wide data 
at single-cell resolution, it lacks spatial context and only 
infers in vivo protein abundance. Having high-plex, spa-
tially-resolved proteomic data allowed us to further elab-
orate on the immunohistological data of Troscher et al. in 
two ways. First, we analyzed the differentially expressed 
proteins (DEPs) in microglial nodules. Second, we quan-
tified the immune proteins of infiltrating CD45 + lym-
phocytes at microglial nodule locations. Microglial 
nodules consisted exclusively of IBA1 + cells with an 
activated, ameboid phenotype. Non-clustered micro-
glia regions were selected to maximize homeostatic, 
ramified phenotypes. Not surprisingly, differential pro-
tein expression analysis revealed that HLA-DR, a clas-
sic marker of immune activation [56, 64], was expressed 
nearly threefold higher in clustered microglia versus 
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non-clustered. Other proinflammatory markers were 
also highly expressed in the nodules. CD40 is a micro-
glial TNF receptor that is important in T-cell activation, 
stimulated by IFN-γ through the TNFα pathway, and 
has been implicated in other autoimmune disorders [12, 
39]. Furthermore, when CD40 is bound to T-cell ligand 
CD40L, it promotes an increase in expression of CD80, 
another proinflammatory costimulatory molecule [65]. 
Alternatively, we see high relative expression of CD163 
and MRC1, anti-inflammatory markers. Other DEPs have 
a more elusive role in the immune microenvironment of 
the nodules. PD-L1 + microglia have been shown to, in 
most cases, correlate with inhibition of CD8 + T-cells and 
reduce inflammation, although the mechanism of protec-
tion remains unclear [35]. Similarly, CD11c + microglia 
have protective and regenerative effects in neuroinflam-
matory conditions [9]. CD14 has been shown to be an 
essential regulator of TLR4-mediated damage and dis-
ease response of microglia [24]. Our proteomic analysis 
provides spatial context for the dynamic mix of inflam-
matory signaling introduced by our single-nucleus tran-
scriptomic analysis. Mapping the expression of genes 
that encode for nodule-enriched DEPs onto the microglia 
tSNE projection reveals that microglia in cluster 3 are 
most likely to be from a microglial nodule. This logically 
correlates with neuroinflammatory function of micro-
glial nodules. Not only does cluster 3 have differentially 
high expression of NFKB1, CXCL10, LIMK2 and WARS, 
all contributors to pro-inflammatory signaling [3, 13, 32, 
38], but also the highest enrichment of GO annotations 
for positive regulation of immune response and cytokine, 
including type I interferon, production.

Immune targets for proteomic analysis of invading 
CD45+ lymphocytes were split into two groups, those 
that traditionally designate immune cell types and sub-
types (Fig. 4d–f) and those that designate immune acti-
vation state (Fig. 4g). Although T-cell markers dominate 
the signal for CD45 + invading immune cells, there is 
evidence that invading monocyte-derived macrophages 
are present near the microglial nodules (Fig. 4d, f ). Using 
the relative abundances of T-cell subtype and activation 
markers allows us to determine shifts in T-cell popula-
tions across samples. In RE4, based on CD3-CD8-CD4-
CD11c expression, some of the lymphocytes are effector 
T-cells also known as cytotoxic T-cells (CTLs) [31] and 
others are likely a subset of regulatory T-cells (Tregs) 
shown to suppress CD4+ T-cells [49, 63]. RE2 and RE3 
have similar protein expression profiles to RE4, however 
the lower CD11c expression and higher CD44 and sug-
gest that the CTL:Treg ratio of present lymphocytes is 
higher [47]. In RE1 however, we observed much lower 
CD8 and CD44 expression, suggesting a lack of CTLs. 
Instead, we observed expanded expression of CD3, CD4 

and GZMB. CD4+ GZMB+ T-cells have been shown to 
be a hallmark of several systemic autoimmune diseases 
and are associated with inflammation and tissue dam-
age [45]. In addition to their helper and cytotoxic func-
tions, these CD4+ T-cells are hypothesized to promote 
CD8+ T-cell effector processes via secreted cytokines 
[1]. Our analysis highlights the heterogeneity of patient 
immune response to RE and could help explain why 
immunotherapy has been largely ineffective in control-
ling RE progression [58].

Conclusions
These findings highlight the important role of microglia 
in the pathogenesis of Rasmussen encephalitis and con-
firm the significance of microglial nodules in promoting 
cytotoxic T-cell activity. Our work further underscores 
the advantages of technology, leveraging single-cell and 
spatial resolution for cell-type and location specific con-
tributions to RE pathology. By performing multiomic 
analysis of disease affected microglia, we gain a deeper 
understanding of aberrant intra- and inter-cellular sign-
aling leading to the progression of inflammation and 
neurotoxicity of RE. Our work ultimately demonstrates 
new and powerful methodologies that may guide future 
research toward elucidating the origin of RE pathogen-
esis and effective therapeutic intervention.
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