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Abstract 

Diffuse intrinsic pontine glioma (DIPG) is an aggressive incurable brainstem tumor that targets young children. Com-
plete resection is not possible, and chemotherapy and radiotherapy are currently only palliative. This study aimed to 
identify potential therapeutic agents using a computational pipeline to perform an in silico screen for novel drugs. We 
then tested the identified drugs against a panel of patient-derived DIPG cell lines. Using a systematic computational 
approach with publicly available databases of gene signature in DIPG patients and cancer cell lines treated with a 
library of clinically available drugs, we identified drug hits with the ability to reverse a DIPG gene signature to one 
that matches normal tissue background. The biological and molecular effects of drug treatment was analyzed by cell 
viability assay and RNA sequence. In vivo DIPG mouse model survival studies were also conducted. As a result, two 
of three identified drugs showed potency against the DIPG cell lines Triptolide and mycophenolate mofetil (MMF) 
demonstrated significant inhibition of cell viability in DIPG cell lines. Guanosine rescued reduced cell viability induced 
by MMF. In vivo, MMF treatment significantly inhibited tumor growth in subcutaneous xenograft mice models. In con-
clusion, we identified clinically available drugs with the ability to reverse DIPG gene signatures and anti-DIPG activity 
in vitro and in vivo. This novel approach can repurpose drugs and significantly decrease the cost and time normally 
required in drug discovery.
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Introduction
Diffuse intrinsic pontine glioma (DIPG) is one of the 
highly aggressive pediatric gliomas that grows diffusely 
in the pons of the brainstem. It mostly affects children 
between 5 and 10 years of age, with a median survival of 
less than one year and a 99% 5-year mortality [27, 34]. 
Because of its unresectable tumor location and diffusive 
nature, and its resistance to conventional chemotherapy 
agents such as temozolomide, radiotherapy remains the 
standard treatment currently that has demonstrated clin-
ical efficacy [17]. Yet DIPG still remains a fatal disease.
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Molecularly, 80% of DIPG tumors harbor a lysine-to-
methionine substitutions (K27M) in genes encoding his-
tone H3 [30, 50, 60], which marked the first disease with 
known associations between histone mutations and can-
cer. These findings were made possible by the expanded 
studies of increased tumor biopsy and autopsy samples in 
the past decade, which also resulted in a growing DIPG 
gene expression dataset. Grasso et al. has used a chemi-
cal screen of patient-derived DIPG cultures along with 
RNA sequence (RNAseq) analysis to identify histone 
deacetylase (HDAC) inhibitor panobinostat, a Food and 
Drug Administration (FDA)-approved drug for the adult 
hematological malignancy multiple myeloma, as a poten-
tial therapeutics for the treatment of DIPG, as it restores 
H3-K27 methylation and subsequent normalization of 
gene expression [25].

Taking advantage of the increasing availability of large 
public dataset on disease-specific and drug-induced 
transcriptomic signatures, a computational approach to 
identify repurposed drugs for cancer treatment has been 
developed. This approach starts with computing a dis-
ease gene expression signature by comparing tumor sam-
ples with control samples, followed by identifying drugs 
that have a reversal relationship with the disease signa-
ture [12]. Using this method, we have identified repur-
posed drugs for the treatment of various cancers such as 
Ewing’s sarcoma and hepatocellular carcinoma, and suc-
cessfully validated the drugs both in vitro and in vivo [12, 
13, 39]. We further observed that the reversal of disease 
gene expression correlates with drug efficacy [12].

Unlike previous studies, in which counterpart nor-
mal control tissue samples were easily obtained and 
accessible, normal brain tissue samples were rarely 
obtained from the same patient. In this study, we applied 
a machine-learning-based drug-repurposing pipeline 
to identify drug candidates that can reverse the DIPG 
gene signature derived from an integrative analysis of 
bulk RNAseq and single-cell RNAseq (scRNAseq) data-
sets and therefore have the potential to treat the disease. 
Three drugs/compounds, which have not been studied 
in DIPG previously, were predicted, with mycopheno-
late mofetil (MMF), an immunosuppressive drug as a top 
hit. We evaluated the anti-tumor activities of the drugs 
in DIPG cell lines, and further validated MMF effects in 
DIPG mouse models.

Materials and methods
Data sets
We searched European Genome-phenome Archive 
(EGA) and Sequence Read Archive (SRA) using the key 
word “diffuse intrinsic pontine glioma” and identified one 
DIPG dataset (EGAS0000100192) provided by St. Jude 
Children’s Research Hospital in 2018 [61]. It included 

22 DIPG (15 samples with H3K27M mutation) and 44 
non-brainstem high-grade glioma raw RNAseq samples. 
Additionally, we acquired 28 raw DIPG RNAseq samples 
from Children’s Brain Tumor Tissue Network (CBTN). 
These samples were integrated into the Open Cancer 
TherApeutic Discovery (OCTAD) database that included 
RNAseq data from 7412 specimens obtained from non-
cancer donors. Neither of the DIPG datasets included 
matched healthy tissue. The RNAseq by Expectation 
Maximization (RSEM) data of the scRNAseq of 2259 
malignant cells and 232 non-malignant oligodendrocyte 
cells were downloaded from the Broad Institute Single 
Cell Portal [20]. Drug sensitivity data in four DIPG cell 
lines (SU-DIPG-IV, JHH-DIPG-1, SU-DIPG-XIII, SU-
DIPG-VI) were downloaded from NCATS Matrix [33]. 
Only the half maximal activity concentrations (AC50s) 
with CCLASS2 < 4 and CCLASS < 4 (strong signal) were 
kept, leaving 1326 compounds for the following com-
parison. Raw RNAseq data were processed using the 
pipeline adopted in OCTAD [63]. In addition, RUVg [49] 
(with 5000 empirically differentially expressed genes) 
was applied to remove unwanted variation, and weakly 
expressed genes were removed while computing differen-
tially expressed genes. Normalized raw counts were used 
for differential expression (DE) analysis, and Transcripts 
Per Million (TPM) was used for other analyses. The clus-
tering of these samples with DIPG samples compared to 
brain samples and other tissues demonstrates the fea-
sibility of performing differential expression analysis 
between tissue samples.

RNAseq processing
To minimize the batch effect from multiple studies, 
we used the same pipeline TOIL developed by Univer-
sity of California, Santa Cruz (UCSC) to process all raw 
RNAseq profiles [58]. STAR [20] was used for alignment 
and read coverage. RSEM [32] was employed to estimate 
transcript abundance. Because the UCSC Treehouse ini-
tiative has already used this pipeline to process samples 
publicly available (https://​treeh​ouseg​enomi​cs.​soe.​ucsc.​
edu/​public-​data/), we decided to use their processed 
samples and extend this pipeline to process new samples 
(https://​github.​com/​Bin-​Chen-​Lab/​chenl​ab_​toil). New 
samples from the major RNAseq repositories including 
GEO, dbGAP, and EBI EGA are routinely processed using 
this pipeline. Moreover, we further normalized the raw 
counts using RUVg (with 5000 empirically differentially 
expressed genes) [44] prior to differential gene expression 
analysis.

Deep‑learning based tissue selection
In many cancers including DIPG, adjacent normal tis-
sues are not readily accessible. The Genotype-Tissue 

https://treehousegenomics.soe.ucsc.edu/public-data/
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Expression (GTEx) project provides a rich RNA-seq 
repository for samples of healthy individuals; however, 
because their profiles were generated from different 
studies and processed under different computational 
approaches, the direct use of these profiles as a surro-
gate for adjacent normal tissues was largely unknown. 
Our previous study performed a systematic comparison 
of commonly used approaches for selecting normal tis-
sue RNAseq from GTEx and proposed a deep learning 
autoencoder method to assist the selection of normal 
samples [64]. An autoencoder is an unsupervised deep 
learning method that learns the representation of input 
data with the goal of finding an optimal embedding. 
Compared with other dimensional deduction methods 
such as principal component analysis, an autoencoder 
can capture non-linear relationships between input fea-
tures, thus presenting an unique advantage to embed 
gene expression features. Briefly, an autoencoder was 
trained using the entire OCTAD TPM matrix (includ-
ing DIPG samples) with the following parameters: 64 
encoded features, 128 batch size, 100 epochs, 0.0002 
learning rate. Rectifying activation function, dropout and 
normalization were applied between layers. Afterwards, 
the embedded profiles of DIPG samples were compared 
to those from all GTEx normal samples. The top 100 
highly correlated ones were selected as normal controls, 
as previously described [63, 64].

Disease signature creation
To obtain corresponding tissues, we computed pair-
wise correlation between 22 DIPG samples and all 7412 
healthy samples using the encoded gene expression fea-
tures computed from a deep learning autoencoder [64]. 
Compared to conventional feature selection methods 
such as top varying genes and principal component 
analysis, deep learning autoencoder could capture non-
linear correlations of the gene features, making it more 
appropriate to select precise reference tissues. Group-
ing by tissue of origin allowed to find the closest healthy 
tissues later to be used to compute disease signatures. 
The edgeR method wrapped in the OCTAD R package 
was employed to perform differential DE analysis (log2 
fold change > 1, adjusted p-value < 0.05) [45, 63]. Enri-
chR wrapper was used for pathway enrichment analysis 
[14]. The R package ClusterProfiler was used for pathway 
enrichment analysis and visualization. The detailed data 
processing and parameter selection were detailed else-
where [63]. The GSEA enrichment tool [54] was adapted 
for visualization. For scRNAseq analysis, the fast stu-
dent’s t test implemented in the R package matrixTests 
was applied to log (RSEM + 0.1) to compute DE genes 
(log2 fold change > 1 and adjusted p vale < 0.05). Genes 
with variation across cells < 0.1 were removed in the 

following analysis. In addition, through literature cura-
tion, we compiled six published DIPG signatures from 
four studies: 1) Paugh_2011 (DIPG vs. high-grade gli-
oma) [38], 2) Saratsis_2014 [DIPG vs. other brain tumors, 
DIPG vs. normal brains (Brainstem or Frontal Lobe)] 
[47], 3) Pathania_2017 (pediatric high-grade gliomas vs. 
normal brains) [37], 4) Anastas_2019 (KDM1A high vs. 
low, increased vs. decreased survival) [5].

Drug prediction
The Library of Integrated Cellular Signatures (LINCS) 
database, including gene expression profiles for com-
pound-treated cells, has been extensively used for drug 
prediction in a wide range of diseases including Alzhei-
mer’s [56] and melanoma [35], in which the relevant cell 
lines are not even included in LINCS [35]. The library 
comprises 476,251 signatures and 22,268 genes includ-
ing 978 landmark genes. The 1974 mapped drugs listed 
in the Repurposing Hub were considered here [18]. To 
compute reversal gene expression scores (RGES), which 
are a quantitative measurement of how well a compound 
reverses a gene signature, we first ranked genes based on 
their expression values in each drug profile and estimated 
the enrichment of up/down regulated disease genes in 
the ranked drug profile using the Kolmogorov–Smirnov-
test. We chose the top 100 up or down landmark disease 
genes when the gene size exceeded 100. One compound 
might have multiple available expression profiles because 
they were tested in various cell lines, drug concentra-
tions, treatment durations, or even different replicates, 
resulting in multiple RGES for one drug-disease predic-
tion. We summarized multiple RGES as sRGES based on 
a simple statistics proposed before [12]. The computation 
of RGES and the summarization RGES were detailed and 
implemented as a standalone R package in our recent 
study [63]. A sRGES threshold of -0.1 was the cutoff 
for compounds which effectively reversed the disease 
signature.

Cell sources and propagation
The primary human DIPG cell line SF8628 (H3.3K27M) 
and human glioblastoma (GBM) cell lines, SF9402 (H3 
wild type), SF9427 (H3 wild type), and U-87 MG were 
obtained from the University of California, San Fran-
cisco (UCSF) medical center in accord with an institu-
tionally approved protocol. Establishment of SF8628 
from a surgical specimen and tumor cell modification 
for expression of firefly luciferase for in  vivo biolumi-
nescence imaging (BLI) has been described [6, 28, 29, 
40, 43]. SU-DIPG-IV cell lines was kindly provided by 
Dr. Michelle Monje (Stanford University, Stanford, CA) 
CNMC-D-1428 suspension cell line was kindly provided 
by Dr. Javad Nazarian (Children’s National Hospital, 
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Washington DC). Cell lie KNS-42, with H3.3G34V 
mutation (substitution of glycine 34 with valine), was 
obtained from Japanese Collection of Bioresources. Cells 
were maintained in a humidified incubator at 37℃ and 
5% CO2. SF8628, KNS-42, and U-87 MG cells and nor-
mal human astrocytes (NHA) were grown in DMEM 
supplemented with 10% FBS and 1 × antibiotic-antimy-
cotic. SU-DIPG-IV cells were maintained in tumor stem 
medium (TSM) which consisted of 50% of neurobasal-A 
medium, 50% of DMEM/F12 medium, 10 mM of HEPES 
buffer, 1 mM of MEM sodium pyruvate, 100 µM of MEM 
non-essential amino acids, 1 × GlutaMAX-I and 1 × anti-
biotic-antimycotics, supplemented with B27 minus 
vitamin A supplement, 20 ng/ml of hEGF and 20 ng/ml 
of hFGF. CNMC-D-1428 suspension cells were main-
tained in TSM medium plus hPDGF-AA and hPDGF-BB 
(10  µg/ml each). Cell lines were authenticated by short 
tandem repeat (STR) profiling, and routinely verified free 
of mycoplasma infection by the Venor GeM Mycoplasma 
Detection kit (Millipore-Sigma, St. Louis, MO, USA).

Cell viability assay
Cells were seeded in a 96-well plate at a density of 1000–
2000 cells per well and treated with various concentra-
tions of triptolide (Sigma-Aldrich, St. Louis, MO, USA), 
triamterene (Sigma-Aldrich, St. Louis, MO, USA), MMF 
(Selleck Chemicals, Houston, USA), and mycophenolic 
acid (MPA, Sigma-Aldrich, St. Louis, MO, USA) for 3 or 
6 days. Cell viability was measured using WST1 reagents 
(Takara, Kusatsu, Japan) at the end of the treatment. 
IC50s were determined by non-linear regression using 
GraphPad Prism 8.

RNA extraction and RNA seq for treatment samples
SU-DIPG-IV and SF8628 cells were treated with appro-
priate drugs at their IC50 concentration for 24  h and 
RNA was extracted using the RNeasy plus mini kit (Qia-
gen, Hilden, Germany). RNA was then sent for sequenc-
ing by Novogene. The raw sequences were processed by 
the OCTAD pipeline. Differential gene expression was 
calculated using edgeR.

Xenograft studies
Six-week-old female athymic mice (nu/nu genotype, 
BALB/c background) were purchased from Envigo (Indi-
anapolis, IN, USA) and housed under aseptic conditions. 
For intracranial xenograft models, pontine injection of 
tumor cells was performed as previously described [8, 
25, 28, 29, 45]. Each mouse was injected with 1 µL cell 
suspension (100,000 cells/µL) into the pontine tegmen-
tum 4.5 mm deep from the inner base of the skull. Ani-
mals were randomly assigned to control vehicle [dimethyl 
sulfoxide (DMSO), n = 7] and MMF treatment groups 

[intraperitoneal (IP) injection of 50  mg/kg MMF for 
15 days for 3 weeks, n = 9]. Mice with intracranial tumor 
began receiving the treatment on day 16 when consecu-
tive BLI indicates a logarithmic tumor growth in all mice. 
Mice were monitored daily and euthanized at the end-
point, which included irreversible neurological deficit 
or a body condition score less than 2. For convection-
enhanced delivery (CED), 1% of DMSO (n = 7) or 1 mM 
of MMF (n = 7) in 5% sucrose with a volume of 10uL was 
directly infused to the intracranial tumor at a rate of 1 
uL/min for 10  min using micro-infusion pump as pre-
viously described [48, 51]. For subcutaneous xenograft 
models, SF8628 cells were implanted into the flank of 
athymic mice as previously described [26]. Briefly, 4 × 106 
cells, in 0.4  ml of cell culture media with matrigel (BD 
Bioscience) at 1:1 ratio, were injected in the right flank 
of mice under anesthetization by isoflurane. Mice were 
randomly assigned to vehicle (DMSO, n = 7) and MMF 
treatment (IP of 100 mg/kg for 15 days for 3 weeks, n = 7) 
groups when the size of tumor reached at 100 mm3. The 
tumor sizes were measured twice a week and the mice 
were euthanized when the tumor size reached 1000 mm3. 
All protocols, described below, were approved by the 
Northwestern University Institutional Animal Care and 
Use Committee.

Analysis of drug concentration in the brain
Athymic mice were administered 50 mg/kg of MMF for 
5 days, with brains resected and serum collected follow-
ing mouse euthanasia at one hour after the fifth admin-
istration (n = 2). The brainstem was dissected from the 
surrounding brain, the serum was collected by cardiac 
puncture, and the samples were snap frozen and stored 
at − 80  °C. MMF was extracted from homogenized tis-
sues using a Bullet Blender (Next Advance, Troy, NY, 
USA). Homogenates were extracted with organic solvent 
and were transferred to an autosampler for liquid chro-
matography–mass spectrometry (LC/MS) analysis (VP 
Series 10 System; Shimadzu, Kyoto, Japan) for determi-
nation of MMF content (Integrated Analytical Solutions, 
Inc, Berkeley, CA, USA).  Brain penetration ratio was 
calculated as MMF brainstem concentration divided by 
serum concentration (Table 1).

Immunohistochemistry (IHC)
Brains were collected from the mice 3  h after comple-
tion of the last treatment (n = 2 for each treatment). 
Paraformaldehyde-fixed brains were paraffin-embedded 
and sectioned (10  µm) for hematoxylin and eosin (HE) 
and anti-Ki67 antibody (2 µg/mL) (Ventana, Tucson, AZ, 
USA) staining. To assay the apoptotic response to treat-
ment, TUNEL staining was performed using the Dead-
End Colorimetric TUNEL system (Promega, Madison, 
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WI, USA) according to the manufacturer’s protocol for 
paraffin-embedded tissues.

Statistical analysis
For in vivo study, the Kaplan–Meier estimator and Prism 
software were used to generate and analyze survival 
plots. Differences between survival plots were calculated 
using a log-rank test. A 2-tailed unpaired t-test was used 
(GraphPad Software, San Diego, CA, USA) for compari-
son the tumor size between each treatment group.

Results
DIPG disease gene signature and drug hit predictions
Like many brain cancers, the matched biopsies are diffi-
cult to acquire in DIPG. Neither DIPG cohorts provided 
RNAseq of matched tissues, thus creating a disease sig-
nature is not possible using the existing pipeline. GTEx 
built up a large RNAseq repository for healthy individu-
als, providing an opportunity to use GTEx as a surrogate 
(Fig. 1A). Using the same RNAseq processing pipeline to 
harmonize the publicly available tumor samples and nor-
mal tissue samples resulted in a tumor map consisting of 
19,127 samples, in which DIPG samples cluster together 
beside non-brainstem glioma samples (Fig. 1B). We fur-
ther observed that DIPG samples with H3K27M muta-
tion do not separate from the rest, suggesting the shared 
transcriptomic features among DIPG samples. Even 
though all the raw sequences were processed under the 
same pipeline, the batch effect may remain. This emerged 
problem motivated us to develop a deep learning autoen-
coder that normalizes and compresses gene expres-
sion profiles into a smaller feature space that allows the 
selection of appropriate reference control samples from 
GTEx. Using this approach, we selected 100 healthy 
RNAseq tissues mostly correlated to DIPG samples from 
the St Jude Children’s Research Hospital, the dataset we 
first acquired, normalized with DIPG samples, and then 
created a disease signature comprising 1859 up and 2990 
down regulated genes.

We next applied the disease signature and com-
puted the reversal score of the drugs using the OCTAD 

pipeline. We chose the compounds with lower sRGES 
(sRGES < − 0.1, lower sRGES suggests higher reversal 
potency) and with high-quality experimental drug sen-
sitivity data (measured by AC50, a lower AC50 means 
higher efficacy). We observed a positive significant cor-
relation between reversal potency and drug sensitivity 
(Pearson R = 0.45, P < 0.01) (Fig.  1C, Additional file  1: 
Table S1), similar to what we observed in other cancers 
[12], implying that the drugs that present high rever-
sal potency, yet experimentally tested could be effective. 
Tuning the parameters to select reference controls indeed 
changed the correlation, but the variation was subtle. 
Later, we acquired another DIPG dataset from CBTN, 
and performed a similar analysis. Both disease signatures 
resulted in a significant correlation between predictive 
reversal potency and drug sensitivity (R = 0.52, P < 0.01) 
(Fig.  1C); however, combining both signatures led to a 
much high correlation (R = 0.62, P < 0.01) (Fig. 1C), sug-
gesting a robust signature after the combination. Gene 
Ontology (GO) enrichment analyses revealed mitotic 
cell cycle, chromosome segregation, and glycosamino-
glycan metabolic process were up-regulated, and oxida-
tive phosphorylation (OXPHOS), mitochondrial electron 
transport related pathways and cellular response to zinc 
ion were down-regulated (Fig. 1D, red squre).

In parallel to the bulk RNAseq, scRNAseq reached a 
momentum in the past few years. Filbin et al. released a 
SMART-Seq based scRNAseq of six DIPG patients [22]. 
The comparison of malignant cells and oligodendrocytes 
resulted in a signature of 3443 genes, but it did not lead 
to a significant correlation between predicted reversal 
potency and the experimental data. This is likely because 
of cell heterogeneity, thus we performed a similar analysis 
using the malignant cells from each of the four programs 
(Cell cycle, OPC like, AC like and OC like) with distinct 
transcriptomic features. Only the signature derived from 
the cell cycle program reached a very significant corre-
lation. However, combining the scRNAseq signature and 
bulk RNAseq signature did not improve the performance 
(R = 0.62, P < 0.01, Fig. 1C). We further assessed six pub-
lished DIPG gene signatures using the identical evalu-
ation matrix. None of them are superior, likely because 

Fig. 1  Prediction of DIPG drug hits. A Working model. In vitro/in vivo illustrations were taken from Biorender. B DIPG samples in a tumor map 
comprising > 17,000 samples. The tumor map is a t-distributed stochastic neighbor embedding (t-SNE) plot of sample TPM expressions. DIPG and 
brain cancer samples are highlighted. C Correlation between predicted reversal gene expression scores (sRGES) and experimental drug efficacy 
with a half maximal activity concentration (AC50) value. A lower sRGES means a higher potency to reverse the DIPG signature genes. The drug 
corresponding to the dot plot are described in Additional file 1: Table S1). D Meta-disease genes and their enriched pathways. The pathways 
commonly changed by the predicted drugs are highlighted. E Enriched target class of CDK in the predictions. The black line on the left suggests 
it is ranked on the top in the prediction list. An enriched target class means the ligands of the target tend to be highly ranked in the predictions. 
The enrichment of other two targets (TOP, HDAC) are illustrated in Additional file 4: Fig. S1(three eample drugs are labeled in each plot). F Top 
candidates selected for validation. The first row shows the meta disease signature. The signatures of four top candidates and three randomly 
selected control compounds are visualized. The altered genes are listed in Additional file 6: Table S5

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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they were not developed or optimized to support drug 
screening (Additional file 2:Table S2). Therefore, we used 
a meta-signature derived from the two bulk RNAseq 
datasets to run the drug prediction (Additional file  3: 
Table S3).

The drug-target analysis of drug hits suggested the 
enrichment of known drug classes including CDK 
inhibitors (Fig.  1E), Topoisomerase (TOP) inhibitors, 
and HDAC inhibitors (Additional file 4: Fig. S1), justify-
ing the prediction results. We then excluded known or 
non-specific chemotherapy drugs (TOP inhibitors, CDK 
inhibitors, HDAC inhibitors, DNA inhibitors) in order to 
identify new clases of drugs for DIPG therapy. We further 
filtered out the drugs with less than three profiles (lower 
confidence due to limited samples), and preclinical drugs, 
leaving triptolide as the top hit, followed by MPA and 
MMF (Top 20 hits available in Additional file 5: Table S4). 
The following seven hits include dabrafenib, clofarabine, 
methotrexate, loteprednol, actinomycin-d, idoxuridine, 
and triamterene. Some of them are known anti-cancer 
drugs such as dabrafenib, clofarabine, methotrexate, and 
actinomycin. Notably both MMF and MPA had > 10 drug 
profiles and coincidently were ranked among top three 
(Fig. 1F, Additional file 6: Table S5). We next chose trip-
tolide, MMF, and triamterene for the following experi-
mental validation.

Predicted drugs decreased cell viability in DIPG cell lines
We validated the efficacy of predicted drugs by measur-
ing cell viability in two DIPG cell lines SU-DIPG-IV and 
SF8628. Comparing to NHA cells, all 3 drugs decreased 
cell viability in DIPG cell lines (Fig. 2). Triptolide showed 
the highest efficacy with IC50s in 2–3 nM concentration 
(Fig. 2A). Triamterene showed efficacy in treating DIPG 
cells compared to NHA but required a large dose (more 
than 50 µM) to achieve the treatment effect (Fig.  2B). 
MMF, an FDA-approved immunosuppressive drug com-
monly used in organ transplant, showed high efficacy in 
decreasing cell viability in DIPG cells (Fig. 2C), with an 
IC50 value less than that of NHA cells (NHA: 4.94 µM, 
SU-DIPG-IV: 1.02 µM, SF8628: 1.06 µM). Comparing to 
non-H3K27M mutant glioma cells, MMF showed greater 
inhibition on cell growth of H3K27M mutant DIPG cells 
(SU-DIPG-IV, SF8628) than that observed in H3 wild 
type (SF9427, SF9402), H3G34V mutant (KNS-42), or 
IDH wild type (U-87 MG) GBM cell lines (Additional 
file 4: Fig. S2).

RNAseq data showed MMF can reverse gene signature 
in DIPG cell lines
H3K27M mutant DIPG cells (SF8628, SU-DIPG-IV) were 
treated with 1  µM of MMF, 30  µM of triamterene, and 

2 nM of triptolide for 24 h and RNA was extracted and 
subjected for RNAseq. MMF, triamterene, and triptolide 
showed drug perturbation of gene expression in SF8628 
cells (Fig. 3A, left). Triptolide, however, did not perturb 
SU-DIPG-IV cell gene expression as it clustered with 
vehicle-treated SU-DIPG-IV cells (Fig.  3B, left). MMF, 
triamterene, and/or triptolide treatment significantly 
reversed the gene signature in DIPG cell lines (Fig.  3A, 
right, Additional file 7: Table S6, Fig. 3B, right, Additional 
file 8: Table S7, Addiditional file 4: Fig. S3).

Fig. 2  Cell viability assay valuation of the predicted drugs. Triptolide 
(A), triamterene (B) and mycophenolate mofetil (C) in DIPG cell 
lines (SF8628, SU-DIPG-IV) as well as control NHA cells. Left: Graphs 
showing the proliferation response of normal human astrocytes 
(NHA) and DIPG cell lines (SU-DIPG-IV, SF8628), to increasing 
concentrations of each drug. Values shown are the average 
[mean ± standard deviation (SD)] from triplicate samples for each 
incubation condition. Right: Dot plot representation of IC50 values 
shown are the average (mean ± SD) from triplicate samples for 
each cell lines. Statistical analysis was performed using a two-tailed 
unpaired t-test: triptolide, NHA versus SU-DIPG-IV, *P < 0.05; NHA 
versus SF8628, *P = 0.05; triamterene, NHA versus SU-DIPG-IV, 
*P < 0.05; NHA versus SF8628, *P < 0.05; MMF, NHA versus SU-DIPG-IV, 
***P < 0.001; NHA versus SF8628, **P < 0.01
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Fig. 3  RNAseq analysis of treated samples in DIPG cells. t-SNE plot of treatment samples with vehicle control (0.1% DMSO), 1 µM of MMF, 2 nM of 
triptolide, and 30 µM of triamterene in SF8628 (A, left) and SU-DIPG-IV (B, left) cells. MMF reversed the DIPG disease gene expression in SF8628 (A, 
right) and SU-DIPG-IV (B, right) cells
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MMF and MPA had similar efficacy in DIPG cells
Since triptolide did not perturb SU-DIPG-IV gene 
expression (Fig. 3B), and a large dose was required for tri-
amterene, we focused on MMF for further analysis. MMF 
is a prodrug that can be hydrolyzed to MPA. We com-
pared the effects of MMF and MPA in H3K27M mutant 
DIPG cells. Both MMF and MPA induced a dose depend-
ent growth inhibition of SU-DIPG-IV and SF8628 cells 
(Fig. 4).

Guanosine can rescue decreased cell viability by MMF
As MPA is an inhibitor of inosine-5’-monophosphate 
dehydrogenase 1 and 2 (IMPDH1 and IMPDH2) in de 
novo synthesis of guanosine nucleotides [2], we tested 
whether MMF exerts its effect in DIPG cells through 
the same mechanism. Of note, IMPDH2 was highly 
expressed in H3K27M mutant DIPG cell lines, when 
compared to NHA or H3-WT GBM cell lines (Additional 

file  4: Fig. S4). Guanosine was added to SF8628 cells 
(30  µM) or CNMC-D-1428 cells (10  µM) along with 
MMF treatment. As shown in Fig.  5, guanosine com-
pletely (in SF8628 cells) or partially (in CNMC-D-1428 
cells) rescued the decreased cell viability, suggest-
ing MMF inhibited DIPG cells by depleting guanosine 
nucleotides.

MMF significantly increased overall survival in DIPG 
xenograft mouse models
Based on the biological effects of MMF in  vitro, we 
hypothesized that MMF treatment suppresses tumor 
growth and increase survival in mice with orthotopic 
patient-derived DIPG xenografts. To determine the anti-
tumor activity of MMF, the mice were implanted with 
SF8628 cells in the pons and were treated with 50  mg/
kg of MMF for 15 days. MMF treatment delayed tumor 
growth while the treatment did not show survival benefit 
in the mice bearing intracranial (brainstem) DIPG xeno-
grafts (Fig. 6A). This could be due to poor permeability 
of MMF crossing the blood–brain barrier. To address the 
brain distribution of MMF compounds, we performed 
LC/MS analysis in the mice that were euthanized one 
hour following MMF administration. Their brains were 
immediately resected, the brainstem was dissected from 

Fig. 4  Comparison of the effects of mycophenolate mofetil (MMF) 
and mycophenolic acid (MPA) in DIPG cells. A Left: Graphs showing 
the proliferation response of SU-DIPG-IV, to increasing concentrations 
of MMF and MPA for 3 days treatment. Values shown are the average 
(mean ± SD) from triplicate samples for each incubation condition. 
Right: Dot plot representation of IC50 values shown are the average 
(mean ± SD) from triplicate samples for each treatment condition. 
B Left: Graphs showing the proliferation response of SF8628, to 
increasing concentrations of MMF and MPA treatment. Values 
shown are the average (mean ± SD) from triplicate samples for each 
incubation condition. Right: Dot plot representation of IC50 values 
shown are the average (mean ± SD) from triplicate samples for 
each treatment condition. Statistical analysis was performed using 
a two-tailed unpaired t-test. No significant differences were found 
among MMF and MPA

Fig. 5  Guanosine but not xanthosine rescued MMF inhibitor 
response of DIPG cells. Graphs showing the proliferation response 
of SF8628 (A) and CNMC-D-1428 (B), to increasing concentrations 
of MMF in the presence of Guanosine or xanthosine treatment 
for 6 days in SF8628 cells or 3 days in CNMC-D-1428 cells. Values 
shown are the average (mean ± SD) from triplicate samples for each 
incubation condition
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the surrounding brain, and the serum was collected 
by cardiac puncture. LC/MS analysis of tissue extracts 
revealed an MMF concentration in the mice brainstem 
at 243.50 ± 50.20  ng/ml, which is only 1.07 ± 0.46% of 
serum concentration (Table 1).

Due to low brain penetration of MMF, we developed 
subcutaneous (sc) xenograft models to evaluate the 
MMF anti-tumor activity. We subcutaneously implanted 
SF8628 cells into the right flank of mice and treated the 
mice with MMF (100 mg/Kg) or vehicle intraperitoneally 
when tumor size reached at size of 100 mm3. Mice were 
euthanized when the tumor size reached to 1,000 mm3. 
MMF treatment significantly inhibited the sc tumor 
growth (P = 0.0002, Fig.  6B) and extend the survival of 
recipient mice with SF8628 sc xenografts compared 
to the control (DMSO treatment) group (P = 0.0003, 
Fig.  6B). This in  vivo efficacy study included euthaniz-
ing the mice at the end of treatment to obtain sc tumor 
samples to analyze tumor cell proliferation (Ki-67) and 
apoptosis (TUNEL). IHC analysis of Ki-67 staining 
revealed MMF treatment significantly reduced Ki-67 
positive cells (46.80 ± 1.68%) relative to DMSO treatment 
(84.10 ± 3.44%) (P = 0.0002, Fig.  6C). TUNEL staining 
results showed a higher proportion of positive cells in 
tumors from mice receiving MMF (4.00 ± 0.90%) relative 
to DMSO control (0.50 ± 0.25%) (P = 0.0060, Fig. 6C).

Alternative to systemic delivery of MMF, we treated 
orthotopic (brainstem) DIPG xenografts using a local 
drug delivery system, convection-enhanced delivery 
(CED). 10uL of 1 mM MMF was directly infused to the 
brainstem tumor using a mini-infusion pump as previ-
ously described [48, 51]. CED of MMF inhibited brain-
stem tumor growth and significantly extend survival of 
mice bearing SF8628 orthotopic xenopgrafts (P = 0.0439, 
Additional file 4: Fig. S5).

Discussion
Drug repurposing offers a relatively short approval pro-
cess and straightforward path to clinical translations. 
This study demonstrated a deep learning autoencoder 
for identifying reference controls from other studies, and 
combining disease signatures from two bulk RNAseq 
samples, resulted in the best predictive power analysis. 
The inferior performance of scRNAseq data might be 
due to the sparsity of scRNAseq and/or the suitability of 
using oligodendrocytes as a control. As more and more 
scRNAseq data becomes available, the comparable per-
formance of scRNAseq-based signature could unleash 
the potential of applying scRNAseq in computational 
drug repurposing, in particular for individual patients.

In this study, we focused on the identification of new 
classes of drugs and excluded kown or non-specific 
chemotherapy agents (HDACs inhibitors, CDK inhibiors, 

TOP inhibitors) which have been investigated in DIPG. 
Lin et al. have used a high-throughput chemical screen-
ing of patient-derived DIPG cultures along with RNAseq 
analysis to identify HDAC inhibitor panobinostat, as a 
potential therapeutic agent for DIPG [33]. CDK inhibi-
tors have been evaluated as single agents in multiple 
studies [9, 19]. TOP inhibitors have the potential to exac-
erbate DNA damage causing a high level of stress to the 
cancer cell [49]. This class of agents could be used in 
combination with radiation, which is currently used for 
DIPG patients. However, none of these chemotherapeu-
tic strategy has been shown to improve overall survival in 
children with DIPG [41].

MMF is a prodrug of MPA, which is an inhibitor of 
IMPDH, a rate-limiting enzyme in de novo purine syn-
thesis of guanosine nucleotides. MPA is an inhibitor of 
the type 2 isoform of IMPDH, which is expressed in acti-
vated T and B lymphocytes, and five-fold more potent 
than of the type 1 isoform, which is expressed in most 
cell types [11]. Because of the requirement of de novo 
purine synthesis in T and B lymphocytes proliferation 
[4], MMF was developed as an immunosuppressive drug 
[1]. With our machine-learning aided drug repurposing 
pipeline, we identified MMF as one of the top hits that 
can reverse the DIPG disease gene signature (Fig.  1F, 
Additional file 3: Table S3).

Since the drug reversal scores were computed based on 
the drug-induced gene expression profiles generated in 
non-DIPG cell lines, we generated new profiles in DIPG 
cell lines. We observed that MMF, triamterene, and/or 
triptolide treatment significantly reversed the DIPG gene 
expression (Fig.  3, Additional file  4: Fig. S3), suggesting 
the feasibility of using the computational approach to 
predict drugs for DIPG. Anti-cancer effect of MMF has 
been reported in various types of cancers [10], while 
immunosuppressive microenvironment is associated 
with progression, recurrence or metastasis of cancers 
[42]. Although combination of immunosuppressive drugs 
and anti-cancer drugs is not harmful in all cancers, for 
example combination of procarbazine and vincristine, an 
alkylating agent and an microtubule inhibitor, in addition 
to methotrexate, an immunosuppressive drug, is effec-
tive for primary central nervous lymphomas [36], further 
investigation would be required whether combination of 

Table 1  MMF concentration in brain and serum

MMF concentration (ng/ml)

Brainstem 243.50 ± 50.20

Serum 26,150.00 ± 16,051.32

MMF brain penetration ratio (%)

Brainstem / Serum 1.0747 ± 0.4677
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MMF and antic-ancer drugs clinically used is effective or 
not in H3K27M-mutant gliomas.

As proliferating cancer cells have increased metabolic 
demands, biosynthesis of key molecules such as purines 
are of vital importance. Guanosine nucleosides, in par-
ticular, seem to be in high demand. Traut reported that 
GTP levels were 200% increased in cacner cells com-
pared to normal cells, whereas ATP levels were only 20% 
increased [57]. In the analysis of prostate cancer cell, 
guanosine monophosphate (GMP) utilizes the metabo-
lism of glutamine which is a critical nutrient in can-
cer [59]. Guanosine metabolism has been reported as a 
potential therapeutic target in other types of malignancy 
such as multiple myeloma [55], pancreatic cancer [46], 
prostate cancer [7, 59], hepatocellular carcinoma [16] 
or glioblastoma [31, 52] as well as our study. The anti-
tumor effect of MMF in DIPG results from its inhibi-
tion of GMP synthesis, as exogenous GMP or guanosine 
can rescue the decreased cell viability caused by MMF 
in vitro (Fig. 5). However, exogenous xanthosine did not 
improve cell viability. Since no kinase activity exists for 
guanosine in human cells thus preventing its direct phos-
phorylation to GMP [53], the rescue effect of guanosine 
suggests that the salvage pathway of purine synthesis 
catalyzed by hypoxanthine-guanine phosphoribosyltras-
nferase (HGPRT) is compensating for the de novo purine 
synthesis in DIPG cells. Xanthosine, on the other hand, 
does not appear to be phosphorylated by any ATP-medi-
ated nucleoside kinases nor to be salvaged by the HGPRT 
pathway [23]. However, it was reported that xanthosine 
was salvaged to xanthosine monophosphate (XMP) via 
the phosphotransferase activity of cytosolic 5’-nucleoti-
dase [8] in rat brain cytosolic extract and in intact human 
colorectal cancer cell line. It is possible that MMF/MPA 
can also inhibit GMP synthase, the enzyme catalyzing 
the conversion of XMP to GMP. Yet this function of MPA 
remains controversial [3].

In our in vivo efficacy study, MMF showed anti-tumor 
activity in the mice bearing sc xenografts (Fig.  6B). 
This is consistent with the results from the study using 

U-87MG GBM sc xenograft models [31]. However, 
MMF treatment did not show the survival benefit in the 
mice bearing intracranial (brainstem) DIPG xenografts 
(Fig.  6A) due to the low MMF brainstem concentration 
at 1.07 ± 0.46% of serum concentration (Table 1). Shire-
man et  al. showed MMF treatment increase sensitivity 
of GBM intracranial xenogrfats to temozolomide, while 
MMF monotherapy did not show anti-tumor activity 
in vivo [52]. Additionally, Zhou et al. [65] demonstrated 
that purine synthesis regulates DNA repair in response 
to radiation in GBM models. MMF was found to signifi-
cantly improve the anti-tumor efficacy of radiation both 
in  vitro and in  vivo. While the orthotopic GBM xeno-
grafts in this studies did show improved survival with the 
combination of orally administered MMF and radiation 
therapy, there was no efficacy of MMF alone, suggesting 
the possibility that the irradiation disrupted the blood–
brain barrier thus improving drug penetration in those 
mice. Based on these findings, a clinical trial in adult 
GBM patients combining MMF with radiation is under-
way (ClinicalTrials.Gov: NCT04477200).

In this study as well as the previous studies from other 
groups [31, 52], MMF was administered systemically 
at daily dose of 100  mg/kg, which is approximately five 
times higher than recommend dose for use as an immu-
nosuppressive agent in pedaitric patients [15, 21]. While 
the high dose are needed to achieve therapeutic lev-
els, nonspecific distribution to the normal healthy tis-
sue includung kidney can lead to substantial toxicity by 
systemic drug administration [24, 62]. In this study, we 
demonstarated the anti-tumor activity of CED of MMF 
in orthtotopic (brainstem) xenograft models (Additional 
file  4: Fig. S5), as an alternative strategy for direct drug 
delivery to the brainstem tumor. CED of MMF would 
reduce systemic toxicity and increase the therapeutic effi-
cacy in vivo, and has a potential for next level clinical use.

(See figure on next page.)
Fig. 6  In vivo anti-tumor activity of MMF in patient-derived DIPG xenografted models. A Mice with SF8628 intracranial tumors were either 
treated with vehicle (DMSO, n = 7) or MMF (50 mg/kg for 15 days, n = 9). Left: Tumor growth curve for bioluminescence values in each treatment 
group. Tumor bioluminescence values show mean and upper SD. Upper left: Corresponding tumor bioluminescence intensity overlay images 
for representative DMSO (left) and MMF (right)-treated mice on day 11 post-tumor cell implantation. Right: Corresponding survival plots of each 
treatment group. B Mice with SF8628 subcutaneous (sc) tumor were either treated with vehicle (DMSO, n = 7) or MMF (100 mg/kg, n = 7) daily for 
15 days for 3 weeks. Left: Growth plots for sc tumors in each treatment group. Tumor volumes were normalized against tumor volume obtained 
at day 6 post-tumor cell injection. Normalized tumor volume show mean and upper SD. Middle: Dot plot representation of sc tumor volume in 
mice at day 42 post-tumor cell injection. Unpaired t-test values for comparisons between DMSO and MMF treatment: ***P = 0.0002. Photographs 
of nude mice (upper) and sc tumor taken from these mice (lower) in which SF8628 cells were inoculated into the right flank. Right: Animal survival 
at the indicated days after inoculation. Log-rank test was used for comparisons between DMSO and MMF treatment: ***P = 0.0003. C Left: Images 
of representative Ki-67 and TUNEL staining for sc tumors from mice euthanized at the end of treatment. The scale bar is defined as the length of 
50 µm. Right, mean and SD values representing the average number in positive cells in four-high-powered fields in each tumor. Statistical analysis 
was performed using the unpaired t-test. Ki-67: DMSO versus MMF, ***P = 0.0002. TUNEL: DMSO versus MMF, **P = 0.0060
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Fig. 6  (See legend on previous page.)



Page 13 of 15Zhao et al. Acta Neuropathologica Communications          (2022) 10:150 	

Conclusion
We identified clinically available drugs, MMF and MPA, 
with the ability to reverse gene signatures and anti-tumor 
activity for DIPG cell lines in vitro and in vivo. This novel 
approach can repurpose drugs and significantly decrease 
the cost and time normally required in drug discovery.
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