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Abstract 

The possible role of somatic copy number variations (CNVs) in Alzheimer’s disease (AD) aetiology has been controver‑
sial. Although cytogenetic studies suggested increased CNV loads in AD brains, a recent single-cell whole-genome 
sequencing (scWGS) experiment, studying frontal cortex brain samples, found no such evidence. Here we read‑
dressed this issue using low-coverage scWGS on pyramidal neurons dissected via both laser capture microdissection 
(LCM) and fluorescence activated cell sorting (FACS) across five brain regions: entorhinal cortex, temporal cortex, 
hippocampal CA1, hippocampal CA3, and the cerebellum. Among reliably detected somatic CNVs identified in 1301 
cells obtained from the brains of 13 AD patients and 7 healthy controls, deletions were more frequent compared 
to duplications. Interestingly, we observed slightly higher frequencies of CNV events in cells from AD compared to 
similar numbers of cells from controls (4.1% vs. 1.4%, or 0.9% vs. 0.7%, using different filtering approaches), although 
the differences were not statistically significant. On the technical aspects, we observed that LCM-isolated cells show 
higher within-cell read depth variation compared to cells isolated with FACS. To reduce within-cell read depth varia‑
tion, we proposed a principal component analysis-based denoising approach that significantly improves signal-to-
noise ratios. Lastly, we showed that LCM-isolated neurons in AD harbour slightly more read depth variability than 
neurons of controls, which might be related to the reported hyperploid profiles of some AD-affected neurons.
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Introduction
Alzheimer’s disease (AD) is a neurodegenerative disease 
of multifactorial aetiology, with numerous genetic and 

environmental factors each explaining a small proportion 
of variance in disease onset and progression [1]. One of 
the less-studied potential contributors is somatic copy-
number variations (CNVs) in neurons, which can include 
the gain or loss of whole chromosomes (aneuploidy) or 
of chromosomal segments. It is generally accepted that 
mature neurons in healthy brains can carry somatic 
CNVs, but their frequency is uncertain. Early studies esti-
mated aneuploid neuron frequencies between 4 and 40% 
in neurotypical brains [2–4], while analyses using single-
cell whole-genome sequencing (scWGS) estimated aneu-
ploid neuron frequencies at < 1% [5]. Beyond aneuploidy, 
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recent scWGS studies also estimated CNV-carrying neu-
rons at around 30% in young adults and 10% in old adults 
[6].

Over the last two decades, a number of fluorescence 
in situ hybridization (FISH) and cytogenetic-based stud-
ies investigated CNV frequencies in AD and healthy 
control brains [2, 7–12]. Several of these reported extra 
copies of chromosomes in the AD brain [7–12]. This, 
in turn, implies that the chromosomal imbalance might 
contribute to AD pathogenesis via altered gene expres-
sion levels. An example of such imbalance is seen in indi-
viduals with Down’s syndrome (DS); carrying an extra 
copy of chromosome 21 appears to facilitate aggregation 
of amyloid-β (Aβ) plaques in the brains of DS individuals 
similar to the AD phenotype [9, 13, 14].

There are various explanations for why post-mitotic 
neurons in AD brains could carry high frequencies of 
somatic CNV [15]. According to one view, the high CNV 
burden in the AD brain originates from neurogenesis in 
the embryonic period. This excessive somatic mutation 
may be pathogenic and manifest itself as increased AD 
risk during ageing [16]. However, Abascal et al. recently 
showed that somatic mutation (single nucleotide change 
or indel) accumulation in cells with mitotic capacity and 
in post-mitotic neurons follow similar trajectories. That 
is, mutational processes (possibly also including CNVs) 
appear to occur in a time-dependent manner rather than 
being division-dependent [17]. Accordingly, CNVs in 
AD brains may have accumulated during their lifetime. 
However, this scenario also appears inconsistent with 
the observation that CNV-bearing neuron frequencies 
decrease from young to old adulthood [6]. Another view 
suggests that AD itself might cause dysregulation in neu-
rons, and AD-affected mature neurons might re-enter 
the cell cycle, resulting in increased CNV load [8, 18], 
which may then be eliminated at later stages of AD, thus 
causing neurodegeneration [10].

Over the last decade, advances in next-generation 
sequencing (NGS) technologies gave fresh impetus to 
somatic CNV analyses by allowing variants to be deter-
mined at the single-cell level [19]. In one such study, 
van den Bos and colleagues used scWGS to compare the 
prevalence of aneuploidy in neurons from healthy control 
and AD patients [5]. Analyzing 1482 neurons from 10 AD 
patients and 6 control individuals, the authors reported 
aneuploid prevalence at 0.7% and 0.6% for control and 
AD neurons, respectively, and concluded that aneuploid 
cells are not more common in the AD brain.

These findings by van den Bos and colleagues implied 
that CNVs might have no relationship to AD pathogen-
esis, in contrast with earlier finds from FISH and cytom-
etry. However, the study by van den Bos and colleagues 
had a number of limitations. One was that the authors 

only estimated aneuploidy (full chromosome gain or 
loss), while large CNVs, which could also contribute to 
pathogenesis, remained uncharacterized. Another limi-
tation was that only one brain region was examined, the 
frontal cortex, while atrophy of the medial temporal lobe 
and specifically the hippocampus is generally considered 
to be a strong predictor of AD [20]. The study did not dis-
tinguish among neuron types that may carry sensitivity 
to AD differentially [21]. Thirdly, the study discarded a 
large fraction of cells (39%) for showing high within-cell 
variability in genome coverage, although it was unclear to 
what extent these represented pure technical error versus 
cells with complex karyotypes. Fourthly, only NeuN posi-
tive neurons were included, which substantially restricts 
the significance of this study due to different reasons: 
(1) Recently, up to 30% of cortical neurons have been 
reported being NeuN-negative following diffuse brain 
injury, which may be related to certain neurons being 
particularly vulnerable to membrane disruption [22], a 
process recently associated with AD [23, 24]. (2) Consid-
erable or even complete loss of NeuN immunoreactiv-
ity was also reported for neurons affected by ischemic 
insults (middle cerebral artery occlusion) without signifi-
cant cell loss [25] or in neurons that just entered the cell 
death process [26]. Interestingly, these neuronal popu-
lations are of special interest because energy and nutri-
tional deficiency and cell loss are essential characteristics 
of the AD brain [27]. (3) The intensity of NeuN staining is 
reported to be lower in AD samples [28], and further (4) 
due to many NeuN negative cortical neurons in FTLD-
TDP (frontotemporal lobar degeneration with TDP-43 
inclusions) patients, Yousef et al. suggested NeuN stain-
ing as an indicator of healthy neurons [29]. However, if 
NeuN reflects a neuron’s health, any selection of NeuN 
positive cells would lead to a substantial bias for studying 
any neurodegenerative disease.

These methodological issues could potentially explain 
the discrepancies between the findings by van den Bos 
et al. and those based on FISH and cytogenetic studies 
[7–12]. Notably, a recent technical comparison between 
FISH and scWGS using mock aneuploid cells reported 
a tendency of the latter to severely underestimate ane-
uploidy [30]. It is thus possible that both neurons with 
CNV and nuclei thereof display altered physicochemi-
cal properties. This may result in selection bias against 
abnormal nuclei with high CNV loads when using the 
fluorescence activated cell/nuclei sorting (FACS, FANS) 
isolation method (exerting mechanical stress [31]) and 
high hydrodynamic pressure [32], applied by van den 
Bos and colleagues, and artificially inflate euploidy fre-
quencies. Moreover, besides restriction to NeuN posi-
tive cells, usage of only intact nuclei could preclude or 
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bias AD neurons with nuclear envelope stress or rup-
ture [33].

These observations call for additional data and 
approaches to tackle this issue. Accordingly, here 
we generated and analyzed scWGS data to establish 
the frequency of CNVs (both full chromosome ane-
uploidies and sub-chromosomal CNVs) in five differ-
ent brain regions that differ in vulnerability to AD [34]. 
We employed two different single-cell isolation meth-
ods, laser capture microdissection (LCM) and FACS, to 
isolate neuronal nuclei. LCM, despite being technically 
challenging, has the advantages of allowing for specific 
neuron types to be chosen, and being neutral towards 
normal and abnormal nuclei. We further employed 
a principal component analysis-based denoising 
approach to eliminate false positive CNV calls that 
might result from either systematic experimental biases 
or repetitive regions in the human genome. Finally, 
we analyzed published datasets to replicate our main 
results and check the sensitivity and specificity of our 
bioinformatics pipeline.

Materials and methods
Tissue sources
Frozen postmortem human brain tissues -temporal cor-
tex, hippocampal subfields cornu ammonis (CA) 1, hip-
pocampal subfields cornu ammonis (CA) 3, cerebellum 
(CB) and entorhinal cortex (EC)- from a total of 13 AD 
patients and 7 non-demented age-matched controls were 
obtained from the GIE NeuroCEB Brain Bank (France) 
(Additional file 1: Table S1-A). AD cases were diagnosed 
according to the National Institute of Aging and Reagan 
Institute Criteria [35] and immunohistochemically pro-
cessed for tau and amyloid pathologies [36, 37]. Control 
cases were non-demented individuals who died without 
known neurological disorders. Post-mortem delays and 
mean ages of control and AD cases were not significantly 
different. The average age of death was for control cases 
(n = 7) 71 0.57 years (± 5.13 years SEM) and for AD cases 
(n = 13) 70.15  years (± 3,63  years SEM) (p = 0.822). The 
average post-mortem delays were 31.14 h (± 7.10 h SEM) 
for control cases and 26.17 h (± 4.08 h SEM) (p = 0.52). 
All experiments were conducted at Paul-Flechsig-Insti-
tute (Leipzig University, Germany).

Fluorescence‑activated cell sorting (FACS)
Neuronal nuclei were extracted following the proto-
col described in [38]. Briefly, frozen brain samples were 
thawed in the hypotonic lysis buffer. Neuronal nuclei 
were stained with propidium iodide and sorted using 
BD FACSAria II SORP (BD Biosciences). Genomic DNA 

was then isolated and amplified as described below (see 
scWGS library preparation and sequencing).

Laser capture microdissection (LCM)
Frozen brain samples at − 80 °C were thawed to − 20 °C, 
sliced using CryoCut Freezing Microtome at 30  µm 
thickness, and mounted on a membrane slide (Carl 
Zeiss). After staining with cresyl violet, single cells were 
cut out and placed into an adhesive cap by PALM Micro-
Beam (Carl Zeiss). Neurons of the individual 5603 were 
collected using both FACS (n = 12) and LCM (n = 64).

scWGS library preparation and sequencing
Genomic DNA was amplified using WGA4 (Genom-
ePlex® Single Cell Whole Genome Amplification Kit) and 
then purified using the MinElute PCR Purification Kit 
(Qiagen). The specific adapters were added to the DNA 
via Phusion® PCR followed by purification with the Min-
Elute PCR Purification Kit (Qiagen). Sample quality was 
evaluated using agarose gel electrophoresis. Sequenc-
ing was performed on the HiSeq2500 platform (Illu-
mina) with paired-end 100 bp (PE100) or 150 bp (PE150) 
modes.

Read quality control and alignment
The FastQC tool (version 0.11.9) was used to check the 
quality of the raw Illumina reads. The results of FastQC 
were summarized using MultiQC (version 1.9) [39]. The 
mean sequence lengths of the reads (ranging between 
101 and 151) were inspected using the output of the Mul-
tiQC (general_stats_table). To avoid biases that would 
affect the interpretation of the results, all  reads were 
trimmed to a length of 66 (the longest possible length 
in all reads). Illumina adapter and low-quality bases (the 
first 35 bp) were removed using Trimmomatic [40] with 
the following parameters: “ILLUMINACLIP:TruSeq3-
PE-2.fa:2:30:10:8:TRUE HEADCROP:35 MINLEN:66 
CROP:66”. The quality of the trimmed reads was checked 
again using both FastQC and MultiQC. Adapter-trimmed 
paired-end FASTQ files were mapped to the hg19 human 
reference genome using Burrows-Wheeler Alignment 
(BWA v.0.7.17) [41] with aln and sampe options.

Filtering
The output of the BWA aligner in Sequence Alignment/
Map (SAM) format was further processed by SAMtools 
v1.10 [42] to obtain high-quality uniquely aligned reads. 
The applied steps are as follows: (1) keep reads mapped 
in proper pair and discard reads marked with SAM flag 
3852 (using the command “samtools view -f 2 -F 3852 -b 
file.sam > file.bam”), (2) extract uniquely mapped reads 
from BAM files (“samtools view -h file.bam | egrep -i 
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"^@|XT:A:U" | samtools view –Shu - > file.bam2”) [43], 
(3) obtain reads having MAPQ scores 60 (“samtools 
view -h -q 60 file.bam2 > file.bam3”), (4) sort BAM files 
(“samtools sort file.bam3 > file.sorted.bam”), (5) filter out 
PCR duplicates (“samtools rmdup -S file.sorted.bam file_
rm.sorted.bam”), (6) index BAM files (“samtools index -b 
file_rm.sorted.bam”), (7) convert BAM file into BED for-
mat using the Bedtools bamToBed command (Bedtools 
v2.27.1) [44].

Coverage
Bedtools v2.27.1 algorithm genomeCoverageBed was used 
to obtain coverage of the bases on each BAM file.

CNV prediction and cell elimination
CNV calling was performed using Ginkgo [45]. We had 
three main reasons for using Ginkgo over its most com-
monly used alternative, HMMcopy [46]. First, a recent 
study [47] performed benchmarking on Ginkgo and two 
other widely used methods HMMcopy and CopyNum-
ber, and found that Ginkgo was the most accurate algo-
rithm for inferring the absolute copy number profiles 
(although HMMcopy was superior in identifying break-
points and running time). Second, Ginkgo provided the 
advantage of outputting data with normalised coverages 
per cell, which we could use in our PCA-based denoising 
method, and further in estimating the genome-wide copy 
number of each cell, which we used to filter cells for high 
levels of variability in read depth. Third, our tests on the 
sensitivity and specificity of Ginkgo using trisomy-21 in 
DS and monosomy-X in males in published data [5, 48] 
revealed 100% and 94% detection rates across the two 
published datasets. The command-line version of Ginkgo 
was downloaded from https://​github.​com/​rober​tabou​
khalil/​ginkgo. The tool was run under the following set-
tings: (1) variable size of 500 kb bins [43] based on simu-
lations of 76 bp reads aligned with BWA, (2) independent 
segmentation method, (3) ward and euclidean options 
for the clustering method and clustering distance met-
ric, respectively. Before the segmentation step, GC cor-
rection was performed by Ginkgo using the R function 
LOWESS (see [45]). For segmentation, Ginkgo uses the 
CBS algorithm implemented in DNAcopy in R [49]. DNA-
copy runs with the following parameters: alpha = 0.0001, 
undo.SD = 1, min.width = 5 [50]. We also run HMMcopy 
as described in [43] (using the parameter e = 0.995).

The number of reads was divided into the variable size 
of 500  kb bins that correspond to 5578 genomic win-
dows. Only cells with > 50,000 reads were kept in down-
stream analyses (approximately nine reads per window), 
resulting in n = 1337 cells.

Published datasets
The van den Bos 2016 dataset: Data was downloaded 
from EBI ArrayExpress with the accession numbers 
E-MTAB-4184 and E-MTAB-4185 [5]. Only the cells 
that were reported as having good quality libraries were 
included in the analysis (AD: 883; control: 586; Down’s 
syndrome: 34). Adapter sequences were trimmed with 
the following parameters: “ILLUMINACLIP:adapter.
fa:2:30:10:8:TRUE MINLEN:51”. Single-end reads were 
aligned to the hg19 human reference genome using BWA 
with aln and samse options. The remaining steps are the 
same as those described in sections Filtering, except that 
here we used the SAM flag 3844 (because this dataset 
was single-end sequenced) and used MAPQ scores 20 
(because this dataset did not have enough reads which 
having the MAPQ 60). Note that due to the missing 
sample information in the database, the number of cells 
we analyzed does not match what van den Bos and col-
leagues reported in their original publication.

The McConnell 2013 dataset: FASTQ files of 110 
cells were downloaded from the NCBI SRA data-
base with accession number SRP030642 [48]. Adapter 
sequence was trimmed with the following parameters: 
“ILLUMINACLIP:adapter.fa:2:30:10:8:TRUE MIN-
LEN:39”. Paired-end reads were aligned to the hg19 
human reference genome using BWA with aln and sampe 
options. The remaining steps are the same as those 
described in sections Filtering.

Statistical modeling of CNV frequencies and index 
of dispersion (IOD) levels
When modelling CNV frequencies, our null hypothesis 
was no difference in the frequency of CNVs in the AD 
brain when compared to healthy controls. The overdis-
persed and zero-dominated nature of the response vari-
able, i.e. the frequency of CNVs, suggested that the data 
should be fitted using a zero-inflated negative binomial 
model. For this reason, we used the “glmmadmb” func-
tion (package: glmmADMB) [51] in R 3.6.3 with the 
following parameters: “zero-inflated = TRUE” and “fam-
ily = nbinom1”. The fixed factors of the model were diag-
noses (AD and control), chromosomes (autosomes), sex 
(male and female), brain regions (temporal cortex, hip-
pocampus CA1, hippocampus CA3, cerebellum, entorhi-
nal cortex), and coverage per cell. The individual effect 
was added as a random factor. Note that sex could not 
be used as a fixed factor in the van den Bos 2016 dataset 
because cells that remained after filtering only belonged 
to females. We also compared the difference between AD 
and control in terms of CNV frequency using HMMcopy 
estimates. The fixed factors of the model were diagnoses 
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(AD vs. control) and coverage per cell. The individual 
effect was added as a random factor.

When modelling the index of dispersion (IOD, the ratio 
between the variance of read coverage and the mean), we 
used the same approach as above. Levels of the response 
variable, IOD, was predicted using diagnoses (AD and 
control), brain regions (temporal cortex, hippocampus 
CA1, hippocampus CA3, cerebellum, entorhinal cortex) 
and coverage as explanatory variables using the “glm-
madmb” function (package: “glmmADMB”) [51] in R 
3.6.3. Individual effects were added as a random factor. 
The distribution of the IOD was right-skewed and the 
model was run with the “family = gamma” parameter.

To compare the IOD across different brain regions, 
we used “lme” function (package: “nlme”) in R 3.6.3 with 
diagnoses as fixed effects and the individual as a random 
effect.

Copy number statistics
After reads were mapped into the bins, read counts in 
each bin were divided by the mean read counts across 
bins for each cell. This value corresponds to the normal-
ized read counts as calculated by Ginkgo (see [45]).

A Z1-score for each CNV was calculated using the nor-
malized read counts. It was calculated as the cell mean 
(mean normalized read counts across autosomes) minus 
the CNV mean (mean read counts between CNV bound-
aries) divided by the standard deviation (sd) of CNV:

The Z2-score of each CNV was calculated by calculat-
ing the difference between the Ginkgo-estimated integer 
copy number state (1 or 3) and the observed normalized 
read count, dividing by the standard deviation (sd) of the 
normalized read counts:

CNVs with two standard deviations below or above the 
cell’s mean and CNVs with Z2-score smaller than or equal 
to 0.5 were kept in the analysis. Using these combina-
tions, monosomy X (≥ 90% of the chromosome’s length) 
was correctly predicted in 58.1% (217 of 373) of males in 
the uncorrected data.

Principal component analysis (PCA)
To remove experimental noise from the data, the fol-
lowing steps were applied for every cell: (1) one cell 
(x) at a time was discarded from the analysis. For the 
remaining cells, PCA was applied on the normal-
ized read counts using the”prcomp” function with the 

Z1-score = (meancell − meanCNV )/ sdCNV

Z2-score = [a− b]/sdCNV

with a = ESTIMATED_STATECNV

b = mean(OBSERVED_READCOUNTCNV ).

parameter”scale = TRUE” in R 3.6.3. (2) n PCs that 
explained at least 90% of the variance in total were cho-
sen. (3) To remove the effect of the chosen PCs from 
the focal cell x, a linear regression model with normal-
ized read counts from cell x as a response, and the n 
PCs as explanatory variables was constructed using the 
R”lm” function. (4) Residuals from this model were cal-
culated. (5) To prevent errors during a lowess fit of GC 
content (log transformation of negative residuals pro-
duces NaNs), we added the constant 1 to the residuals. If 
there still remained values ≤ 0, these were replaced with 
the smallest positive number for the focal cell x. (6) The 
resulting value was set as a new value of the focal cell x, 
and Ginkgo was run with the new values.

PCA of the normalized read counts across different 
datasets was performed in R 3.6.3 using the “prcomp” 
function with the parameter “scale = FALSE”.

Results
Summary of the dataset
We used scWGS to determine the frequency of CNVs 
in the temporal cortex, hippocampal subfields cornu 
ammonis (CA) 1, hippocampal subfields cornu ammonis 
(CA) 3, cerebellum (CB) and entorhinal cortex (EC) 
of 13 AD patients and 7 age-matched healthy controls 
(Figs.  1A, 2A,B, Additional file  1: Table  S1). The Braak 
stages of AD patients ranged between III and VI (Fig. 2C). 
Neuronal nuclei were isolated using either FACS (sorted 
with propidium iodide, n = 12) or LCM (sorted with cre-
syl violet, n = 1552), the latter performed on frozen brain 
slices (Fig. 1B, see Methods). LCM-isolated non-neuronal 
“blank” regions were used as negative control (n = 10). 
The LCM method, although more difficult to implement 
than FACS, was chosen to ensure the selection of nuclei 
of pyramidal neurons for sequencing, known to be par-
ticularly sensitive to AD [21]. For technical comparison, 
neurons of a single individual were collected both using 
FACS (n = 12) and LCM (n = 64) (see Methods). scWGS 
libraries were prepared using GenomePlex whole-
genome amplification and specific adapters were inserted 
using Phusion® PCR. Paired-end reads were mapped to 
the human reference genome, followed by stringent fil-
tering to obtain uniquely mapped reads (see Methods). 
This resulted in a median of 276,446 reads, correspond-
ing to a coverage of 0.006X per LCM-isolated cell (range 
[133–1,909,016] reads and [0.000003X–0.04X] coverage) 
(Fig. 3A).

CNVs were predicted using Ginkgo, which uses circu-
lar binary segmentation (CBS) to estimate deletion or 
duplication events [45]. Negative controls (n = 10) and 
FACS-isolated neurons (n = 12) were analyzed separately 
and are not included in the main results. Ginkgo was run 
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on our dataset with n = 1542 cells, while in parallel, we 
also analyzed two published scWGS datasets: one by van 
den Bos and colleagues (“van den Bos 2016”), comprising 
n = 1469 cells from healthy and AD brains (median cov-
erage 0.005X) and another by McConnell and colleagues 
(“McConnell 2013”), comprising n = 110 cells from 
healthy brains (median coverage 0.047X) (Fig. 3D) [5, 48]. 
Note that the van den Bos 2016 dataset includes only 61% 
of cells produced in that study, because data from cells 
filtered for high noise levels were not published and thus 
could not be included here.

LCM‑isolated cells show a high frequency of depth 
variability
We first evaluated the sensitivity and specificity of our 
bioinformatics pipeline on scWGS data using trisomy-21 

in DS and monosomy-X in males in published data. Ana-
lyzing n = 34 neuronal nuclei from DS individuals [5], 
trisomy-21 was correctly predicted across all samples 
without any false positive or false negative calls. In addi-
tion, monosomy-X was accurately predicted in 94.2% 
(338 of 359) of cells from males across the two published 
datasets [5, 48].

Ginkgo includes an algorithm that uses the distribu-
tion of read depth across the genome to infer the average 
DNA copy number of each cell, which is estimated within 
a range of 1.5 to 6. It would be expected that the major-
ity of human neurons would carry on average two copies 
of each autosome, although high frequencies (10–35%) of 
hyperploid neurons have also been reported, especially in 
AD brains [10].

Fig. 1  Schematic of the workflow and information about the samples. A The pipeline of NGS data analysis and CNV detection. B Images from a 
frozen hippocampal brain slice stained with cresyl-violet showing a pyramidal cell before (B1) and after (B2) laser capture microdissection-based 
isolation process using the PALM device. Circles in B1 indicate positions where two pyramidal cells have already been isolated just prior to the 
picture being taken. Scale bar, 50 µm
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Applying Ginkgo on the two published datasets, we 
found that for 99.9% (1577 of 1579) of cells the estimated 
average copy number lies within [1.9–2]. Using the same 
algorithm on our dataset, however, only 45% (687 of 
1542) of the cells had average copy numbers estimated 
within the [1.9–2] range; i.e. 55% were non-euploid. 
Although hyperploid neurons have been described in 
control brains at ~ 10% frequency using FISH [10], the 
observed non-euploidy estimates suggest that our dataset 
carries particularly high levels of variability in read depth. 
These differences, in turn, could be related to the LCM 
protocol used, as the published scWGS experiments had 
used FACS.

To investigate this possibility, we compared the qual-
ity metrics of cells we had collected using FACS or 
LCM for this study. These metrics were mapping pro-
portion (the number of mapped reads/ the total num-
ber of reads), coverage, and index of dispersion (IOD, 
the ratio between the variance of read coverage and the 
mean). FACS-isolated cells had higher sequencing cov-
erage and mapping proportions than the LCM-isolated 

ones (Wilcoxon two-sided rank-sum test, p < 0.0001 and 
p < 0.001 for coverage and mapping proportion, respec-
tively) (Fig.  3A, B). Note that the difference in cover-
age variability between FACS and LCM has not been 
reported elsewhere. In addition, FACS-isolated cells had 
low IOD values, indicating less variation in sequence 
depth than the rest of the samples (Kruskal–Wallis test, 
p = 1.5e−07) (Fig.  3C). Because our LCM and FACS 
samples originated from different brain regions with dif-
ferent cell type proportions, we also asked whether such 
differences could explain the observed LCM vs. FACS 
differences. To rule out this possibility, we compared 
the index of dispersion value of the cells that were taken 
from the temporal cortex of the same individual using 
FACS (n = 12) and using LCM (n = 64). We found a sig-
nificant difference in the direction of higher variability 
in LCM (Wilcoxon rank-sum test p < 0.001), indicating 
that the observed variability between LCM and FACS can 
not be simply explained by differences in cell type pro-
portion among brain regions. We note that the higher 
noise observed in LCM data was not solely due to higher 

Fig. 2  Sample information. A Bar plot showing the number of cells that have been sequenced for each individual. Brain regions are illustrated 
in different colors (see the colour key on the top of the figure). B Dot plot showing age of AD (pink) and control (green) individuals. C The table 
summarises sex, diagnoses and Braak level of the individuals. Detailed information on the individuals is available at Additional file 1: Table S1-A
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genome coverage, as the FACS-based data from the van 
den Bos 2016 dataset had a median coverage comparable 
to ours (0.005X vs. 0.006X), but did not show comparable 
variability as in our LCM data (Fig. 3D). These differences 
in IOD between LCM and FACS could be potentially 
explained by the higher sensitivity of the LCM procedure 
to experimental noise, compared to FACS. Alternatively, 
they could partly represent abnormal nuclei selected out 
in FACS but captured by LCM.

We next investigated the possibility that underlying 
variation may be caused by technical and/or biologi-
cal factors. For this, we used a generalized linear mixed 
model (GLMM) to explain IOD (the response variable) 
per LCM-isolated cell (n = 1542) as a function of diagno-
sis (AD vs. control), genome coverage, and brain region 
as fixed factors, and individual as a random factor (see 
Methods). Note that p-values of the pairwise differences 
between AD and control (Fig.  4A–C) was calculated 
using a linear mixed-effects model (see Fig.  4 legend). 
We found that coverage has a significant negative effect 
on IOD, as may be expected (z = -21.06, p < 0.0001). 
Compared to the cerebellum, the region least affected by 
neurodegenerative diseases [34], we found a significantly 
high IOD for the entorhinal cortex (z = 2.61, p < 0.05), 

hippocampal CA1 (z = 3.34, p < 0.001) and hippocampal 
CA3 (z = 3.75, p < 0.001), but not for the temporal cortex 
(z = − 0.28, p = 0.78) (Fig. 4B). Finally, neurons from con-
trol individuals have slightly less IOD than AD patients 
(z = − 1.93, p = 0.054) (Fig. 4A–C). This result might sug-
gest a tendency for neurons of AD patients to carry more 
variable DNA content and is consistent with cytometry 
analyses reporting a high occurrence of hyperploid neu-
rons in the AD brain [10]. Although these findings imply 
a role of biological factors in read count variation within 
cells, it still remains possible that confounding technical 
factors influence our data. Given this uncertainty about 
the source of variability, we continued the analyses by fil-
tering our dataset to remove the most variable cells.

No significant difference in CNV frequency between AD 
and control in the “uncorrected‑filtered” dataset
We then used Ginkgo to call CNV events from the 
"uncorrected-filtered" dataset (n = 882 cells from 13 AD 
patients, and n = 660 cells from 7 healthy controls). We 
found 19,608 events in 882 cells from AD patients (22.2 
per cell), and 14,844 events in 660 cells from healthy 
controls (22.5 per cell). We then tested the observed 

Fig. 4  The distribution of index of dispersion (“IOD”) for LCM-isolated cells (n = 1542) according to A diagnoses (Alzheimer’s disease (“AD”), control), 
B brain regions (hippocampal subfields CA1 (“Hippocampal CA1”), hippocampal subfields CA3 (“Hippocampal CA3”), Entorhinal cortex, Cerebellum, 
Temporal cortex). For each brain region, we tested whether AD diagnosis was predictive of IOD using a linear mixed-effects (lme) model (see 
Methods). Individuals were added as a random factor. Across all tested brain regions, differences were only marginally significant (p = 0.069). C The 
distribution of IOD across individuals (n = 20). Box plots were ordered by the median. Y-axes illustrate the IOD values on the log10 scale
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frequency difference between AD and control using a 
GLMM with a negative binomial error distribution (see 
Methods). The response variable (the frequency of CNVs) 
was predicted using a combination of fixed factors, 
including diagnoses, chromosomes, brain regions, sex 
and coverage (Fig.  6D). The individual effect was added 
as a random factor. We found no statistically significant 
difference between AD and control across all tested com-
binations (GLMM, p ≥ 0.17; Additional file 3: Table S3).

CNV estimation from low coverage scWGS data is 
known to be highly sensitive to technical noise, and a 
large proportion of the called CNV events likely repre-
sent false positives. We thus decided to filter both cells 
and CNV events in our dataset to obtain a more reli-
able dataset [6, 52, 53]. We started by removing the 
most highly variable cells among the LCM-isolated ones 
(n = 1542) using the following criteria. First, 13% (205 of 
1542) of the cells with a low number of reads (< 50,000) 
were discarded from the analysis (see Methods). Second, 
as most cells are expected to be diploid, and also given 
that the Ginkgo-estimated copy number (CN) profiles 
of 99% of cells in the McConnell 2013 and van den Bos 
2016 datasets were observed to lie between [1.9–2], we 
excluded those cells with CN values beyond this range 
(54% excluded, 726 of 1337). Third, we filtered out 23 of 
the remaining 611 cells (4%) that showed extreme CNV 
intensity, which we defined as three or more chromo-
somes of a cell carrying predicted CNVs that cover > 70% 
of their length (Fig. 6A). Information about the remaining 
cells (n = 588) is provided in Additional file  2: Table  S2 
and Additional file 4: Fig. S1.

From these 588 cells, we called 3521 CNVs (~ 5.9 
events per cell) in the uncorrected data, which we call 
the “uncorrected-filtered” dataset. We further applied 
a number of conservative filtering criteria to remove 
potential false positives: (1) We only included megabase 
scale CNVs (≥ 10  Mb), considering that detection of 
small events with low coverage data will be unreliable. 
(2) We limited the analyses to 1-somy and 3-somy events, 
assuming that most somatic CNVs involving chromo-
somes or chromosome segments would involve loss or 
duplication of a single copy. (3) We only included CNVs 
with unique boundaries across all analysed cells, assum-
ing that somatic CNV breakpoint boundaries should 
be generally randomly distributed across the human 
genome. (4) We removed CNVs on the proximal portion 
of the chr19 p-arm, where frequently observed duplica-
tions were previously reported as low coverage sequenc-
ing artifacts [43]. (5) To ensure the reliability of the CNV 
signal, we calculated a standard Z-score for each CNV 
that reflects the deviation in read count distribution in 
that region compared to the rest of the cell (which we 
call Z1, see Methods), and only accepted CNVs with 

absolute values of Z1-scores ≥ 2. (6) We reasoned that 
read counts in a real CNV should be closely clustered 
around expected integer values (e.g. 1 or 3). To assess 
this, we calculated a Z-score for the deviation from the 
expectation (called Z2), and only accepted events with 
absolute values of Z2-scores ≤ 0.5 (see Methods, Fig. 6A, 
Additional file 4: Fig. S3).

After CNV filtering, we found 12 CNV events across 
295 cells in 13 AD individuals and 4 CNV events across 
293 cells in 7 controls. Among the 295 pyramidal neu-
rons analyzed from the 13 AD patients, we found 10 dele-
tions (3.39% per cell) and 2 duplications (0.68% per cell) 
(Fig.  6B). These events ranged in size from about 10.14 
to 77.01  Mb (median: 19.31  Mb) and were observed in 
the temporal cortex and the entorhinal cortex. Of the 293 
neurons from 7 control brains, 1 deletion (0.34% per cell) 
and 3 duplications (1.02% per cell) were detected in the 
temporal cortex with a size range of 10.81 to 54.67  Mb 
(median: 14.51 Mb) (Fig. 6B). Again testing the CNV fre-
quency differences between AD and control brains using 
a GLMM, we found no statistically significant effect 
(GLMM, p ≥ 0.88) (Additional file 2: Table S2, Additional 
file 3: Table S3).

We also implemented an alternative algorithm, HMM-
copy [46], to predict CNVs (see Methods). Overall, 75% 
(12/16) of the HMMcopy predictions overlapped with the 
CNV events that we found after filtering the uncorrected 
Ginkgo predictions. Comparing predicted CNV event 
frequencies between AD and control we again found no 
significant difference (z = -1.34, p = 0.18).

A PCA‑based denoising approach minimizes within‑cell 
depth variability
To gain further insight into within-cell variability in our 
dataset (the uncorrected-filtered version) compared to 
the two published scWGS datasets, we calculated the 
median CN of chr1 and chr21 (the largest and smallest 
chromosomes) across all three. We still found conspicu-
ously higher within-cell variation in our dataset, despite 
having discarded highly variable cells (Fig. 3F). We then 
used the autosomal normalized read counts to perform 
a PCA on the uncorrected-filtered data and published 
datasets. We also included blank (negative control) 
samples and FACS-isolated cells to illustrate how reads 
counts from these two groups relate to others. According 
to the PCA, LCM-isolated uncorrected-filtered data and 
blank samples were separated from the published data-
sets and FACS-isolated cells (Fig.  3E). This result might 
also highlight distinct profiles of LCM-isolated cells.

We then sought an approach that could reduce this 
elevated within-cell variability in read depth, assum-
ing it is of technical origin and possibly related to the 
LCM procedure. Experimental biases could involve 
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cross-contamination across cells during isolation, or 
biases that arise during DNA amplification. Although the 
former should be mainly random, the latter may follow 
systematic patterns, such as some chromosome segments 
being more or less prone to be amplified.

We thus devised a procedure for removing putative 
patterns of systematic read depth variation across cells 
(see Methods). The algorithm starts by choosing a focal 
cell x in the dataset, and calculating principal compo-
nents (PCs) from the normalized read counts per auto-
some across the rest of the cells (except cell x). It then 
collects all PCs explaining ≥ 90% of the variance. Treat-
ing these as representatives of systematic variation, it 
removes their values from the normalized read counts of 
cell x using multiple regression analysis. These steps are 
performed on all cells individually, creating a “denoised” 
dataset. The final dataset contains residuals from the 
multiple regressions instead of the normalized read 
counts. Notably, this procedure should remove experi-
mentally-induced variation in read depth shared among 
cells, and also any recurrently occurring somatic CNVs. 
Rare somatic CNVs, instead, would be mostly unique to 
each cell and randomly distributed in the genome, and 
thus would not be affected.

After filtering cells with a low number of reads 
(n = 205) and denoising our dataset with this approach, 

CN and CNV prediction were performed using Ginkgo. 
We further compared the results between the PCA-
corrected and “uncorrected-filtered” datasets. Examples 
of cells having “noisy” profiles before and after correc-
tion are shown in Fig. 5A–C, which suggests a dramatic 
reduction in within-cell variability. Beyond visual inspec-
tion, we also analyzed three statistics. First, we studied 
the CN profile of cells after PCA correction. We found 
97% (1302 of 1337) now lie between 1.9 and 2 (Fig. 6C). 
This result is comparable to the two published datasets 
described above and much higher than uncorrected data 
(45%). Second, we calculated the number of CNV events 
per cell (sum of the number of CNV/ number of cells) 
across datasets. In the van den Bos 2016 and McConnell 
2013 datasets, we estimated 5.6 and 8.1 CNVs per cell, 
respectively (Fig. 5E). In our dataset, in the uncorrected 
version, we found 23.9 CNVs per cell, in the “uncor-
rected-filtered” data 6.0 CNVs per cell, and in the PCA-
corrected data, we estimated on average 1.0 CNV event 
per cell. The denoising leads to lower CNV estimates 
in our data, which is more conservative and possibly 
more realistic than the higher estimates without correc-
tion. Third, we estimated the standard deviation in CN 
among cells for chr1 and chr21. For chr1 and chr21, the 
standard deviations in the PCA-based data were 4 and 
2.3 times lower than in the “uncorrected-filtered” data, 

Fig. 5  A PCA-based denoising approach helps eliminate technical noise. A–C Examples of CN estimates of cells using uncorrected data 
(upper panels) and using data after PCA-based correction (lower panels). The x-axes show chromosomes and the y-axes show the CN profile of 
chromosomes estimated by Ginkgo. Each grey dot represents the scaled and normalized read counts per bin. Amplifications (CN > 2) are shown in 
red; deletions (CN < 2) in blue; disomy (CN = 2) in black. Our denoising approach increased variability for only three cells tested (out of 1301), the 
CN profiles of which are shown in Additional file 4: Fig. S2. D Distributions of the number of CN before (n = 3,521) and after correction (n = 1,298) 
across autosomes. For illustration purposes, the bar plot includes up to 10-somy. E Bar plot showing the number of CNVs per cell across datasets. 
The datasets from our study include cells from both AD and control (Uncorrected, Uncorrected-filtered, PCA-corrected): blue; van den Bos 2016 
(including cells from both AD and control): brown; McConnell 2013: purple). The number of cells that were used to calculate CNVs per cell was 
shown on the X-axis label
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respectively, and comparable to CN standard deviations 
in the two published datasets.

Subchromosomal CNVs are enriched in deletions 
in the PCA‑corrected data
Based on these three statistics, we decided to study this 
PCA-corrected version of our dataset. For downstream 
analysis, we further eliminated cells that deviated from 
the ploidy range of [1.9–2] (2.6%, 35 of 1337) or showed 

extreme CNV intensity (0.08%, 1 of 1302) (Fig. 6A). We 
thus created a denoised dataset of 1301 pyramidal neu-
rons from 20 individuals.

Estimating CNVs in this dataset using Ginkgo, we found 
1298 CNVs in total (~ 1 event per cell). To remove false 
positives, we also performed the same CNV prediction 
and downstream analyses on our PCA-corrected data 
(Additional file 4: Fig. S3). After these steps, we found a 
total of 9 deletion events (0.7% per cell) and 1 duplication 

Fig. 6  Genome-wide distribution of predicted CNVs in neurons. A Overview of cell and CNVs elimination steps in the uncorrected and corrected 
data. We applied the same criteria for excluding CNVs to the PCA-corrected results. *We discarded CNVs if their breakpoints were within the three 
base pairs window around each other. B Bar plots represent the number of CNVs per cell for AD and control groups. Blue area: 1-somy (deletions); 
pink area: 3-somy (duplications). The number of unique individuals with at least one cell identified with a reliable CNV is indicated within the panel. 
C The table shows the ploidy levels of cells in corrected and uncorrected versions of the data. D The table shows several combinations of fixed 
factors that were used to test the difference between AD and control in the frequency of CNVs (“Freq of CNVs”). The fixed factors of the model 
included: diagnoses (AD and control), chromosomes (“Chr”, 22 autosomes as categorical variable), sex (male and female), brain regions (“Brain reg”, 
temporal cortex, hippocampus CA1, hippocampus CA3, cerebellum, entorhinal cortex) and coverage. Considering correlation due to repeated 
measurements on the same subject, individual (“Indiv”) effects were added as a random factor. In addition to the interaction of chromosomes and 
diagnoses (i.e. “Chr * Diagnosis + Coverage”), the effects of the chromosomes were also tested individually (i.e. “Chr + Diagnosis + Coverage”. The 
results were not significant across any of the seven GLMM models tested, in any of the analyses datasets. In the main text, we report the lowest 
“diagnoses” p-value across the seven tests. Note that we did not apply any multiple testing correction. E The heatmap shows the genome-wide 
copy number profile of cells analyzed in the corrected data (n = 10) with at least one reliable CNV. CNVs, brain regions and diagnoses are illustrated 
in different colors (see the color key on the left of the figure). Each row shows a cell and each column shows a chromosome
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event (0.08% per cell) across 1301 cells in 20 individuals 
among all tested brain regions (except for the hippocam-
pal CA1 where no CNV event was found). This excess 
of deletions is unexpected under the null hypothesis of 
equal expectation of duplication and deletions (two-sided 
binomial test p = 0.021), but consistent with previous 
observations of more deletions than duplications among 
somatic mutations [6, 48, 50, 53].

No significant difference between AD and control 
after PCA‑correction or in the van den Bos dataset
Studying CNV frequencies with respect to diagnosis, we 
found 6 CNV events across 688 cells in 13 AD individuals 
and 4 CNV events across 613 cells in 7 controls (Fig. 6E). 
Performing the formal test for the hypothesis of AD ver-
sus control differences with this data, we again found 
no significant difference between the groups (GLMM, 
p ≥ 0.80; Additional file  3: Table  S3). Information about 
the CNVs and cells can be found in Additional file  2: 
Table S2.

We also repeated the same analysis on the van den Bos 
2016 dataset, from which originally only aneuploidy was 
reported. Here we identified 11 CNV events across 883 
cells in 10 AD individuals and 3 CNV events across 585 
cells in 6 controls. The difference was in the same direc-
tion as in our dataset, but again not significant (GLMM, 
p ≥ 0.79) (Fig. 6B, Additional file 2: Table S2, Additional 
file 3: Table S3).

Discussion
Here we discuss technical aspects and the biological out-
comes of our work.

The sources of variability among LCM‑isolated cells
To the best of our knowledge, this is the first study to use 
LCM to collect neuronal nuclei for scWGS. Our results 
showed that LCM-isolated cells showed significantly 
higher within-cell read depth variation compared to 
FACS-isolated ones. One random source of high varia-
tion could be cross-contamination of LCM-isolated cells 
during the isolation [54], which in turn might be reflected 
in the downstream analysis as duplications. In line with 
this possibility, we found that the number of duplications 
(≥ 3-somy) is higher than the number of deletions (0- and 
1-somy) in the uncorrected data (deletion to duplica-
tion ratio: 0.39). We applied several elimination steps to 
remove “noisy” cells and to filter nominally false posi-
tive CNVs. After these elimination steps, the deletion to 
duplication ratio increased to 6.46 in the uncorrected-
filtered data.

In addition to filtering the uncorrected data, we devised 
a PCA-based denoising approach to remove systematic 

variation across the genome, which could be experimen-
tally-induced, but could also reflect convergent somatic 
CNVs shared among different individuals. Segments 
systematically deviating from the genome average have 
also been described in other neuronal scWGS datasets 
[6]. Our results showed that PCA-based denoising can 
strongly reduce within-cell variance in CN among cells. 
If the noise that was removed is experimentally-induced, 
then our result means that this noise was partly shared 
among cells and not entirely random. One source of 
systematic bias might be genome-wide variation in the 
propensity to DNA degradation and/or DNA amplifi-
cation, perhaps due to GC content, chromatin struc-
ture or nuclear location of chromosomal segments [50]. 
Such biases would be shared among cells and effectively 
removed by PCA.

Beyond technical biases, biological factors could also 
explain the higher read-depth variability in LCM-isolated 
than FACS-isolated neurons. Chronister and colleagues 
recently reported that CNV frequencies in neurons (4%–
23.1%) are higher than non-neuronal cells (4.7%–8.7%) 
[6]. Moreover, cytological studies suggested that AD 
brains harbour hyperploid neurons more frequently than 
healthy controls [10]. Consistent with the latter report, 
we found that neurons from AD patients tend to have 
higher IOD than control individuals. Also, the cerebel-
lum, which is relatively spared from AD, had lower IOD 
than the entorhinal cortex and hippocampal areas (but 
not the temporal cortex). This might be interpreted as 
a reflection of biological factors on the read-depth vari-
ation which is captured efficiently in LCM data. Indeed, 
if the FACS procedure eliminated cells having abnormal 
karyotypes, this would result in a cell population with 
artificially uniform and “clean” ploidy levels. In conclu-
sion, we predict that although random factors (e.g. con-
tamination) and systematic biases most likely contribute 
to relatively high variation in LCM-collected scWGS 
data, biological variation may also be a contributor.

PCA‑based denoising: advantages and caveats
scWGS is a promising method for predicting CNVs per 
cell using shallow sequencing. However, as in our study, 
within-cell variation that may represent false-positive 
CNVs hinder analyses in low coverage data. Our PCA-
based denoising method can be used as a practical solu-
tion for in silico cleaning of such data. The approach is 
based on the idea that somatic CNVs are randomly dis-
tributed in the human genome and are particular to each 
cell. One possible drawback of this approach is that if 
some neurons from the same individual share the same 
CNV due to shared developmental ancestry, our method 
will eliminate such real signals. A more subtle approach 
could take into account possible clonal relatedness 
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among cells [55]. Another drawback could arise if certain 
genomic regions are predisposed to undergo copy num-
ber changes; in that case, our method may cause overcor-
rection. In our dataset, observing an unexpectedly high 
frequency of CNVs (23.9 events) per cell in the uncor-
rected version, we chose to remove ≥ 90% of the common 
variance. After applying PCA-based correction, the CNV 
rate per cell decreased by 96% (Fig. 5D, E). This, in turn, 
resulted in a lower number of CNVs per cell in the cor-
rected data, even compared to published datasets. This 
difference might be attributable to the overcorrection of 
normalized read counts.

We note that our PCA-based approach could also be 
used to detect recurrent breakpoints in single-cell cancer 
genomics. Because clonal cancer cells would also inherit 
the same CNVs, shared CNV breakpoints identified in 
PCAs can be used to study clonal evolution.

Limitations
Our study has a number of limitations. First, we only 
focused on relatively large (≥ 10  Mb) CNVs for sake of 
sensitivity. However, smaller CNVs may still be much 
more common and could have contributions to neuro-
degenerative disease. Future studies on somatic genomic 
variation in AD might therefore focus on a smaller scale 
(< 10 Mb) CNVs, for which improvement of experimental 
protocols and/or the use of higher coverage data appears 
to be needed [47]. Second, our PCA-based denoising is 
expected to have removed any CNVs and aneuploidies 
that are shared among neurons (instead of being cell-
specific), due to common origin in the same individual 
or due to recurrent mutations. Therefore our results only 
pertain to single cell-specific CNVs. Third, our analysis of 
published data from van den Bos et al. (2016) could not 
include a large fraction of cells that they had discarded 
for showing high depth variability.

Finally, recent work has suggested that CNV-bearing 
neurons may be eliminated through lifetime in neuro-
typical individuals [6], and work on hyperploid neurons 
has also suggested selection against hyperploidy dur-
ing AD progression [10]. This raises the possibility that 
dynamic elimination may have obscured a possible signal 
of AD-control difference in neuronal CNV loads, because 
our sample size did not allow studying disease stage as a 
separate factor.

Conclusion
Our main motivation in this study was to describe the rel-
ative prevalence of CNVs in the AD brain, where the evi-
dence has been equivocal. Contrary to earlier cytogenetic 
work [7–12], an scWGS study had reported no difference 
in neuronal aneuploidy levels in the frontal cortex of AD 

patients versus controls [5]. However, the CNV load in dif-
ferent brain regions and relative frequency to the healthy 
age-matched controls had remained unclear. For example, 
the entorhinal cortex and hippocampal CA1 have roles in 
memory formation and learning and are the earliest and 
most heavily affected regions in AD [56]. On the other 
hand, hippocampal CA3 is less affected, and neurons in 
the cerebellum are thought to be relatively spared from 
neurodegenerative disease [34]. Here we tackled the same 
question by comparing AD patients and controls using 
LCM-isolated cells across five different brain regions, 
either using the raw data (n = 588 cells after filtering) or 
using a denoising approach (n = 1301 cells after filtering). 
To our knowledge, this is the first dataset that includes 
scWGS data from pyramidal neurons isolated from AD 
and control brains in multiple brain regions. Although 
our AD sample contained slightly higher CNV frequen-
cies than the control sample, none of the comparisons 
was statistically significant. Our analysis of the van den 
Bos 2016 dataset yielded a qualitatively similar result, also 
consistent with the original observation of no significant 
difference in aneuploidy levels in this dataset [5]. Overall, 
our results call for further research into the possible role 
of CNVs in AD pathogenesis.
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