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Abstract 

Amyloid beta (Aβ) deposits in the retina of the Alzheimer’s disease (AD) eye may provide a useful diagnostic bio‑
marker for AD. This study focused on the relationship of Aβ with macroglia and microglia, as these glial cells are 
hypothesized to play important roles in homeostasis and clearance of Aβ in the AD retina. Significantly higher Aβ load 
was found in AD compared to controls, and specifically in the mid-peripheral region. AD retina showed significantly 
less immunoreactivity against glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS) compared to control 
eyes. Immunoreactivity against ionized calcium binding adapter molecule-1 (IBA-1), a microglial marker, demon‑
strated a higher level of microgliosis in AD compared to control retina. Within AD retina, more IBA-1 immunoreactiv‑
ity was present in the mid-peripheral retina, which contained more Aβ than the central AD retina. GFAP co-localized 
rarely with Aβ, while IBA-1 co-localized with Aβ in more layers of control than AD donor retina. These results suggest 
that dysfunction of the Müller and microglial cells may be key features of the AD retina.
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Introduction
Dementia is a multifactorial cognitive disorder, impact-
ing memory, daily activities, and communication leading 
to significant disability and dependency in the elderly. 
Worldwide, 47 million people, or 5% of the global geri-
atric population, are affected, with an estimated annual 
cost of $818 billion dollars [87]. The prevalence and 
impact establish dementia as a public health and research 
priority. Alzheimer’s disease (AD), characterized by 
the formation of plaques and neurofibrillary tangles in 
the brain, is the most common form of dementia and 

constitutes ~ 70% of all dementias. Although AD was first 
described more than 100  years ago, even current cut-
ting edge therapeutics such as Donanemab have failed to 
impact secondary outcomes such as cognition and sever-
ity of dementia, despite slowed decline measured by the 
Integrated Alzheimer’s Disease Rating Scale [2, 43, 54]. 
The consistent failure to treat AD through the target-
ing of amyloid plaques has indicated that they may not 
be suitable targets for treating AD, or that anti-amyloid 
treatment methods necessitates a sensitive and precise 
method for staging early AD [43]. Clearly more informa-
tion is needed to understand AD, especially the earliest 
stages of AD, to prevent its development.

Pathological hallmarks of AD in the brain include 
senile or neuritic plaques containing extracellular 
amyloid-β (Aβ) and neurofibrillary tangles composed 
of hyper-phosphorylated tau proteins (pTau) [47]. Aβ 
is an attractive brain biomarker for the early detec-
tion of AD, as it may accumulate up to 20  years prior 
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to clinical presentation of dementia [3, 30]. However, 
conventional structural imaging of the brain such as 
CT or MRI is often not sensitive enough to detect the 
subtle changes associated with early AD pathology [33, 
34]. Other methods to measure Aβ, such as in blood or 
cerebrospinal fluid are currently under development. 
Positron emission tomography (PET) with C11 labelled 
Pittsburgh compound B has been shown to distin-
guish Aβ levels in AD and non-AD brain scans, but this 
method is costly, invasive and not feasibly deployed in 
community settings [59].

Recently, there has been a focus on the retina as an 
alternative tissue bed to assess Aβ load in AD. Unlike the 
brain, the retina can be readily examined in  vivo using 
noninvasive, light-based imaging techniques such as 
fluorescent scanning laser ophthalmoscopy and optical 
coherence tomography (OCT). Examination of the retina 
for Aβ load has already attracted significant interest, as it 
is more accessible and cost-effective than neuroimaging 
of the central nervous system (CNS) [11–13, 37, 50, 53]. 
Our group and others demonstrated that Aβ is deposited 
in the AD retina, thus identifying the retina as a surrogate 
tissue in which to assess Aβ-associated pathology [37, 
42]. In addition to Aβ deposits, the AD retina displays 
other AD-related pathological changes including degen-
eration of retinal ganglion cells [4, 5, 27], significant loss 
and abnormal morphology of melanopsin retinal gan-
glion cells [40], changes in vasculature, overall thinning 
of the retinal nerve fiber layer (RNFL), ganglion cell layer 
(GCL), and choroidal layers [23, 40, 52] further empha-
sizing the utility of imaging the retina for AD biomarkers.

In the mammalian eye, macroglial and microglial cells 
live in a symbiotic relationship with retinal neurons. Reti-
nal macroglia includes astrocytes and Müller cells [9, 56]. 
Astrocytes have flattened cell bodies with radiating pro-
cesses that are brightly stained by dyes binding to glial 
fibrillary acidic protein (GFAP) [36, 71]. They are seen 
almost entirely in the RNFL [56, 71]. Astrocytes envelop 
neuronal axons and blood vessels to aid in the homeo-
stasis of the neuroretina [56]. Müller cells, on the other 
hand, span the entire width of the neuroretina from outer 
limiting membrane to inner limiting membrane [63]. 
They function to support neuronal metabolic function 
through mechanisms such as metabolizing neurotrans-
mitters such as glutamate that are secreted by neurons 
[16, 65]. As a result, Müller cells can be identified by glu-
tamine synthetase (GS) immunoreactivity [48, 66]. When 
activated by retinal insult, Müller cells also express GFAP 
[51, 70]. Microglial cells are found in every layer of the 
retina [56]. They perform phagic function after trauma 
and can be visualized using an antibody against ionized 
calcium binding adapter molecule-1 (IBA-1) [32, 56, 57].

Given that the AD retina displays pathological features 
of neurodegeneration, we hypothesized that retinal glial 
cells play a role in these neurodegenerative events by 
responding to the increased Aβ deposits in the AD eye. 
The current study investigates the laminar distribution 
and the spatial relationships between Aβ, macroglia and 
microglial cell populations in the AD retina. A better 
understanding of glial populations and neurodegenera-
tive events associated with Aβ in the AD eye will inform 
and prioritize the most relevant features to assess by 
in  vivo ophthalmic imaging towards early and accurate 
detection and staging of AD.

Materials and methods
Neuropathological assessment of Alzheimer’s disease
Neuropathological diagnoses of donor brain tissues 
were provided by clinical neuropathologists according 
to National Institute on Aging Alzheimer’s Association 
guidelines for the neuropathologic assessment of Alz-
heimer’s disease [31]. Diagnostic data are provided in 
Table  1. Post-mortem brain and retinal tissues from 
donors with AD (N = 9) were obtained from the Depart-
ment of Pathology and Laboratory Medicine at Vancou-
ver General Hospital (VGH). Post-mortem retinal tissues 
from control eyes (age-matched controls without demen-
tia) were obtained from the Eye Bank of British Colum-
bia (N = 12). Exclusion criteria for control eyes included 
central nervous system disorders including AD, multiple 
sclerosis, Parkinson’s disease, and amyotrophic lateral 
sclerosis. The AD and control eyes were obtained from 
donors whose ages ranged between 55 and 89 years. The 
mean age of AD and control donors was 77.3 years and 
74.8  years, respectively. There was no significant differ-
ence between the mean ages of the two groups (Mann–
Whitney, p = 0.12).

Retinal samples were processed as paraffin embedded 
cross-sections.  (5  µm thickness, N = 15) or free-floating 
punches (4 mm, N = 6). Only one eye per donor was pro-
cessed for this study. Slides with cross-sections of eye tis-
sues were deparaffinized and rehydrated through a series 
of xylene rinses followed by rinses in decreasing percent-
ages of alcohol solutions to distilled water. Slides were 
then washed in triplicate in Phosphate Buffered Saline 
(PBS) pH 7.2 for 5 min each. Methods for processing reti-
nal punches followed the procedures in our earlier study 
[42].

Immunohistochemistry for TUBB3, GFAP or IBA‑1 
and double labelling with BA4
Antigen retrieval of Aβ was undertaken by incubation 
of slides in 88% formic acid for 5 min at room tempera-
ture. In separate cohorts, Tubulin β 3 class III (TUBB3), 
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GFAP and IBA-1 antigens were retrieved with 10  mM 
sodium citrate, 0.05% Tween 20, pH 6.0 at 100 °C for 10 
to 20 min. Tissues were then washed in PBS pH 7.2 for 
5 min three times. Next, sections were blocked with nor-
mal serum by incubating in 3% normal goat serum and 
0.3% TX-100 PBS for 20 min at room temperature.

Aβ immunohistochemistry employed the monoclonal 
mouse antibody against human β-amyloid, BA4 (clone 
6F/3D -Agilent, CA, USA), which labels β-amyloid con-
taining the N-terminal epitope, consisting of residues 
8–17 (ser-gly-tyr-glu-val-his-his-gln-lys-leu) of Aβ which 
are the same as residues 660–669 of amyloid precursor 
protein (APP), and therefore theoretically may label APP. 
However, we also used two additional primary antibod-
ies against human β-amyloid. Immunostaining patterns 
using BA4 were identical to those of 12F4 in our study 
(Fig. 2). 12F4 is an antibody specific to Aβ according to 
the literature ([49], see Table 1), which labels the C-ter-
minus of β-amyloid and is specific for the isoform ending 
at the 42nd amino acid (Biolegend, CA, USA). The third 
antibody, 6E10, recognizes the epitope that lies within 
the amino acids 3–8 of β-amyloid as well as the precursor 

forms (Biolegend, CA, USA) (Table  2). Primary anti-
bodies were diluted in 3% normal goat serum and 0.3% 
TX100 PBS. Sections were incubated at room tempera-
ture for 2 h before incubation at 4 °C overnight.

In separate double labelling cohorts, TUBB3, GFAP, or 
IBA-1 primary antibody incubation followed incubation 
in the primary antibody against Aβ. A dilution of purified 
rabbit anti-rat brain anti-Tubulin β 3 class III (TUBB3), 
polyclonal rabbit anti-Glial Fibrillary Acidic Protein 
(GFAP) antibody, or polyclonal rabbit anti-Ionized cal-
cium binding adapter molecule-1 (IBA-1) antibody was 
made in 3% normal goat serum and 0.3% TX100 PBS 
(Table 2). Sections were incubated at room temperature 
for 1 h before incubation at 4 °C overnight. Tissues were 
then washed in PBS pH 7.2 for 5 min three times.

Secondary antibody incubation was performed in 
the following fashion. Sections were incubated in Cy3 
Alexa-labelled goat anti mouse secondary antibody at 
room temperature for 45  min to visualize Aβ resulting 
in red (543  nm) fluorescence (Table  2). Sections were 
then sequentially incubated in Goat Anti-rabbit Alexa 
488 secondary antibody at room temperature for 45 min 

Table 1  Demographics and neuropathological assessment of AD donor brains

AD Alzheimer’s disease; DLB Dementia with Lewy bodies; CVD Cerebrovascular dementia; FTLD-TDP Frontotemporal lobar degeneration with TDP-43 inclusions; CAA​ 
Cerebral amyloid angiopathy; HS Huntington’s disease; N/A Not applicable (Control eyes). “A” stands for Alzheimer Disease eyes. “C” stands for control eyes. “N/A” stands 
for not available, or unknown. AD donors mean age was 77.4 (N = 9). Controls mean age was 74.8 (N = 12). There was no significant difference between the mean ages 
of the two groups (Mann–Whitney, p = 0.12)

Donor ID Age Sex Primary path Dx Additional Path Dx A-beta 
(Thal) 
(1–5)

Braak stage
(1–6)

Neuritic plaque 
(CERAD, Biel)

Diffuse plaque 
(CERAD, Biel)

Preparation

A1 89 M AD LBD, TDP, HS, CVD, CAA​ 5 6 Frequent Frequent Cross section

A2 82 F AD CAA​ 5 6 Frequent Frequent Cross section

A3 55 F AD N/A 5 6 Frequent Sparse Cross section

A4 84 M AD, CVD N/A 5 6 Frequent Moderate Cross section

A5 83 M DLB Mild AD 3 3 Sparse Sparse Cross section

A6 70 M AD CAA​ 5 6 Moderate Frequent Punch

A7 80 M DLB Moderate AD 3 4 Moderate Frequent Punch

A8 76 F AD Mild HS 5 6 Frequent Frequent Punch

A9 80 M AD CAA, CVD 5 6 Frequent Frequent Cross section

C1 80 M Control Control N/A N/A N/A N/A Cross section

C2 80 N/A Control Control N/A N/A N/A N/A Cross section

C3 72 F Control Control N/A N/A N/A N/A Cross section

C4 75 M Control Control N/A N/A N/A N/A Cross section

C5 75 M Control Control N/A N/A N/A N/A Cross section

C6 79 M Control Control N/A N/A N/A N/A Cross section

C7 75 M Control Control N/A N/A N/A N/A Cross section

C8 70 M Control Control N/A N/A N/A N/A Punch

C9 68 M Control Control N/A N/A N/A N/A Punch

C10 74 M Control Control N/A N/A N/A N/A Punch

C11 N/A N/A Control Control N/A N/A N/A N/A Cross section

C12 N/A N/A Control Control N/A N/A N/A N/A Cross section
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to visualize TUBB3, GFAP or IBA-1 in different experi-
mental cohorts, resulting in green (488 nm) fluorescence 
(Table  2). After secondary antibody incubation, slides 
were then washed in PBS pH 7.2 for 5 min three times.

Nuclear staining was performed using 1:500 DAPI in 
PBS incubation at room temperature for 10 min. Tissues 
were then washed in PBS pH 7.2 for 15 min four times. 
Finally, slides were coverslipped using glycerol and PBS 
(80:20) and #1.5 coverslips and sealed by enamel. Slides 
were stored at 4  °C and protected from light between 
confocal imaging sessions. Negative control slides were 
prepared by omission of the primary antibody, with all 
subsequent steps identical and in parallel with the slide 
processing.

Immunohistochemistry for GFAP and double labelling 
with GS
Antigen retrieval of GS was undertaken by incubation of 
slides in diluted Proteinase K in Tris–EDTA buffer for 
10 min at room temperature. Tissues were then washed 
in PBS pH 7.2 for 5 min three times. Next, sections were 
blocked with normal serum by incubating in 3% normal 
goat serum and 0.3% TX-100 PBS for 20  min at room 
temperature.

GFAP immunohistochemistry employed the polyclonal 
rabbit anti-Glial Fibrillary Acidic Protein (GFAP) anti-
body (Agilent/Dako) (Table 2). Primary antibodies were 
diluted in 3% normal goat serum and 0.3% TX100 PBS. 
Sections were incubated at room temperature for 1  h 
before incubation at 4 °C overnight. For secondary anti-
body immunostaining, sections were incubated in Goat 
Anti-rabbit Alexa 488 secondary antibody at room tem-
perature for 45 min to visualize GFAP resulting in green 

(488 nm) fluorescence (Table 2). Slides were then washed 
in PBS pH 7.2 for 5 min three times.

GS primary antibody incubation followed incubation in 
the primary antibody against GFAP. A dilution of puri-
fied monoclonal mouse anti-Glutamine Synthetase anti-
body, clone GS-6 (GS) antibody (MilliporeSigma) was 
made in 3% normal goat serum and 0.3% TX100 PBS 
(Table  2). Sections were incubated at room tempera-
ture for 1 h before incubation at 4 °C overnight. Tissues 
were then incubated at room temperature for 2 h before 
washed in PBS pH 7.2 for 5 min three times. For second-
ary antibody immunostaining, sections were incubated in 
Cy3 Alexa-labelled goat anti mouse secondary antibody 
at room temperature for 45 min to visualize GS resulting 
in red (543 nm) fluorescence (Table 2). Slides were then 
washed in PBS pH 7.2 for 5 min three times.

Nuclear staining was performed using 1:500 DAPI in 
PBS incubation at room temperature for 10 min. Tissues 
were then washed in PBS pH 7.2 for 15 min four times. 
Finally, slides were coverslipped using glycerol and PBS 
(80:20) and #1.5 coverslips and sealed by enamel. Slides 
were stored at 4  °C and protected from light between 
confocal imaging sessions. Negative control slides were 
prepared by omission of the primary antibody, with all 
subsequent steps identical and in parallel with the slide 
processing.

Terminology
Retinal regions refer to whether the retina image is taken 
from central (~ 5  mm from optic nerve head or ONH, 
measured circumferentially) or mid-peripheral (~ 10  mm 
from Optic Nerve Head or ONH, measured circumferen-
tially) retina (Fig. 1). Cellular profiles refer to the four types 
of cell markers used for labelling with TUBB3 (neurons), 

Table 2  List of antibodies used

Antigen Antibody (catalog no.) Dilution Source

Primary antibodies

Aβ Monoclonal Mouse Anti-Human Beta-Amyloid Clone 6F/3D (M0872) 1:100 Agilent/Dako

TUBB3 Purified rabbit anti-Tubulin P 3 (845501) 1:500 Biolegend

GFAP Polyclonal rabbit anti-Glial Fibrillary Acidic Protein antibody (Z0334) 1:300 Agilent/Dako

GS Purified Monoclonal Mouse Anti-Glutamine Synthetase Antibody, clone GS-6 1:300 MilliporeSigma

IBA-1 Polyclonal rabbit Anti-IBA-1 antibody (019–19741) 1:500 Wako

12F4 Purified mouse Anti-β-
Amyloid, 1–42 Clone 12F4 (805504)

1:100 Biolegend

6E10 Purified mouse Anti-β-Amyloid, 1–16 Clone 6E10
(803001)

1:100 Biolegend

Secondary antibodies

Cy3 Goat Anti-mouse Cy3 Alexa 546 IgG1 secondary antibody
(A21123)

1:400 Fisher scientific

FITC Goat Anti-rabbit Alexa 488 secondary antibody (A11070) 1:500 Fisher scientific
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GFAP (macroglia consisting of astrocytes and Müller 
cells), GS (Müller cells) and IBA-1 (microglia). In the fol-
lowing sections, TUBB3, GFAP, and IBA-1 cohorts refer 
to the samples double labelled with the respective markers 
and BA4 (Sect. 2.3). GS cohort refers to the samples double 
labelled with GS and GFAP (Sect. 2.4). Donor eye tissues 
were processed in cross sections in which all layers of the 
retina are visible, or in wholemount punch preparations 
in which the full thickness of the retina is intact and lay-
ers are visualized by confocal optical imaging using depth 
(z-) stacks. Retinal layers were arbitrarily grouped into 
inner layers (RNFL, GCL, IPL) and outer layers (INL, OPL, 
ONL), to facilitate the analysis and reporting of results.

Confocal microscopy and autofluorescence
After immunostaining, retinal sections were imaged 
using a Zeiss 800 confocal microscope with Zen 2.6 Blue 
version software. Aβ labelling by Cy3 was imaged at 
543 nm. TUBB3, GFAP, or IBA-1 labelling by FITC was 
imaged at 488 nm. Nuclear labelling by DAPI was imaged 
with 405 nm. In a separate cohort, GS and GFAP double 
labelled slides were imaged at 543 nm to visualize GS and 
488 nm to visualize GFAP.

It is known that melanopsin containing retinal gan-
glion cells exhibit autofluorescence, which may con-
taminate the analysis used in this study to quantify Aβ 

immunofluorescence. To differentiate potential auto-
fluorescence (due to melanopsin) from Aβ immuno-
fluorescence, we imaged Aβ under 543 nm (wavelength 
specific for the secondary antibody against Aβ) and 
488 nm (wavelength used to identify autofluorescence). 
Figure  2A-H demonstrates AD retina after Aβ immu-
nofluorescence using 6F/3D, 12F4 or 6E10 antibod-
ies against Aβ and imaged under 543  nm and 488  nm 
(Fig. 2A–D) or under 488 nm alone (Fig. 2E–H). Note 
that only the red immunofluorescence (associated 
with Aβ) was visible within what are likely to be reti-
nal ganglion cells (asterisks) and extracellular deposits 
(arrowheads). When the same areas were imaged under 
488 nm alone (wavelength associated with autofluores-
cence), none of the ganglion cells demonstrated auto-
fluorescence (Fig.  2E–H). A previous study showed 
that melanopsin containing retinal ganglion cells in the 
human retina represent a very sparse cell population, 
comprising only 0.4% of the 1.07 million ganglion cells 
in the human retina [14, 46]. As we did not observe 
autofluorescence of the retinal ganglion cells and sup-
ported by the literature that melanopsin containing 
retinal ganglion cells only comprise 0.4% of the retinal 
ganglion population, we concluded that the quantifica-
tion of Aβ by immunofluorescence was not significantly 
affected, if at all, by melanopsin autofluorescence.

Sagi�al cross sec�ons

A. B.

Fig. 1  Post-mortem human retina preparation. A Paraffin embedded sagittal cross-sections. (5 μm in thickness). The retina was divided into 4 
sectors. Central retina, C1 and C2, were sectors adjacent to the optic nerve head, around 5 mm away measured circumferentially. Sectors P1 and P2 
were mid-peripheral retinal zones, around 10 mm away from the optic nerve head measured circumferentially. B Preparation of free-floating retinal 
punches and wholemount (4 mm in diameter). Schematic not to scale



Page 6 of 19Xu et al. Acta Neuropathologica Communications          (2022) 10:145 

Quantitative analysis
Data
Quantitative analysis of the immunostaining was per-
formed using confocal images of the cross-sectional 
samples. Two cross-sections were analyzed from each 
donor, and in each cross-section two images from the 
central region (~ 5  mm from ONH) and two images 
from the mid-peripheral region (~ 10  mm from ONH), 
determined by their distance from the optic nerve head, 
were taken (Fig.  1A). A total of 81 images from the 
TUBB3 cohort, 96 images from the GFAP cohort, 91 
images from the IBA-1 cohort, and 68 images from the 
GS cohort were obtained. Difference in the image num-
bers between the cohorts is due to loss of intact retinal 
tissue during processing, or low imaging quality. Each 
image was examined for image and tissue quality, and 
to identify immunostaining artifacts due to uneven sec-
tioning, edge artifacts or small tears in retina tissue. If an 
artifact was identified within a particular layer, the data 
point from the layer was excluded from analysis, allowing 

for preservation of the data from the other layers in the 
image. Some images were completely excluded from the 
analysis because the tissue was damaged during process-
ing and the retinal layers were not readily segmentable. 
In each cohort, a unique data point was defined by donor 
and region (central (~ 5 mm from ONH), mid-peripheral 
(~ 10 mm from ONH)) in each layer.

Processing
In each cross-section image, retinal nerve fiber layer 
(RNFL), ganglion cell layer (GCL), inner plexiform layer 
(IPL), inner nuclear layer (INL), outer plexiform layer 
(OPL), and outer nuclear layer (ONL) boundaries were 
manually segmented using ITK-SNAP [89]. The images 
were first exported from the native.czi format to.tiff for-
mat using Zeiss Zen software, and the seven boundaries 
separating the six retinal layers were segmented in ITK-
SNAP [88]. Using the manual delineations, each pixel in 
the image was labelled as belonging to one of the retinal 
layers or the background. In the TUBB3, GFAP, and IBA-1 

Fig. 2  Comparisons of immunofluorescence using three Aβ antibodies. Cross sections of Alzheimer’s disease (AD) retina were processed with 
three monoclonal mouse antibodies against Aβ: A, E Clone 6F/3D, which labels β-amyloid containing the N-terminal epitope (Agilent, CA, USA); 
B, F 12F4, which labels the C-terminus of β-amyloid and is specific for the isoform ending at the 42nd amino acid (Biolegend, CA, USA); and C, G 
6E10, which recognizes the epitope that lies within the amino acids 3–8 of β-amyloid as well as the precursor forms (Biolegend, CA, USA). Note that 
immunolabeling pattern is consistent with all three antibodies and identifies what is likely intracellular labelling of retinal ganglion cells (asterisks) 
and extracellular deposits (arrowheads). Negative control sections in which the primary antibody was omitted resulted in no immunofluorescence 
(D). All sections were also imaged under 488 nm for autofluorescence that may be associated with melanopsin containing retinal ganglion cells. 
Note that no green or yellow/orange signals were observed in A–D in which both 543 nm and 488 nm were used, and confirmed in E–H in 
which the same section was imaged under 488 nm only. I-L) Cross sections of control retina were also processed for all three monoclonal mouse 
antibodies against Aβ and demonstrated both what is likely intracellular labelling of retinal ganglion cells (asterisks) and extracellular deposits 
(arrowheads). DAPI was used to label nuclei throughout all panels and imaged under 405 nm
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cohorts, each pixel was labelled by the presence of immu-
nostaining using intensity thresholding in the red chan-
nel for Aβ positivity, and in the green channel for TUBB3, 
GFAP or IBA-1 positivity. In the GS cohort, each pixel 
was labelled in the red channel for GS positivity and in 
the green channel for GFAP positivity. In order to empiri-
cally choose the intensity thresholds, multiple threshold 
values were obtained on a set of test images. These were 
then assessed by two blinded raters (ET and JAM), who 
selected the optimal threshold value by comparing the 
threshold-masked images with their original images. 
Based on the pixel labelling, the layer-wise percentages 
Aβ/TUBB3/GFAP/IBA-1/GS positive pixels, normalized 
by the total number of pixels in the layer were calculated.

Co-localization of Aβ with TUBB3/GFAP/IBA-1 was 
examined for two hypotheses: (i) whether Aβ deposi-
tion occurred preferentially at the locations of neurons/
macroglia/microglia for both AD and control groups, and 
(ii) Aβ co-localization with microglia is different between 
the two groups, suggesting a difference in the ability of 
microglia to phagocytose Aβ. To test the first hypothesis, 
we compared the percentages of Aβ co-localization in 
the TUBB/GFAP/IBA-1 positive region vs. TUBB/GFAP/
IBA-1 negative region in each image. If there was no co-
localization, then these two percentages should not dif-
fer, which would infer that Aβ was randomly distributed. 
To test the second hypothesis, we compared the percent-
age of Aβ deposition that was co-localized by microglia 
between the control and AD groups.

Co-localization of GS with GFAP was examined for 
two hypotheses: (i) GFAP labelled both astrocytes and 
Müller cells whereas GS labelled only Müller cells, and 
(ii) astrocytes and Müller cells display varying abundance 
in AD vs control retina. To test these hypotheses, we 
compared the AD and control groups separately for the 
pixels that were labelled by both GS and GFAP, GS-only, 
and GFAP-only.

The image processing and parameter computation 
were performed using MATLAB (The MathWorks Inc., 
Natick, USA).

Statistical analysis
Parameters were grouped by layer (RNFL, GCL, IPL, 
INL, OPL, ONL) and group (control, AD). In each group 
(control, AD), parameter values were averaged for each 
layer. The group averages of the control and AD retinas 
were compared layer-wise by nonparametric Wilcoxon 
test. Outliers were detected and excluded from each 
group-layer average using a sample-size adapted method 
[29]. Following removal of outliers, the results were plot-
ted. Statistical analysis and visualization were performed 

using R [81].  All p-values can be found in Additional 
file 2.

Results
Retinal Aβ load is higher in AD compared to control eyes
Figure  3 displays layer-wise axial profile of Aβ deposi-
tion in the post-mortem human retina. The percentage 
of Aβ/BA4 positive pixels of a particular layer (shown 
on the y-axis) was plotted against individual retinal lay-
ers (shown on the x-axis) in the central (~ 5  mm from 
ONH) (A) and mid-peripheral (~ 10 mm from ONH) (B) 
retina. The percentage of Aβ positive pixels was found to 
be significantly higher in the mid-peripheral (~ 10  mm 
from ONH) retina of the AD donors compared to con-
trols, specifically in the GCL (p < 0.05), IPL (p < 0.01), 
INL (p < 0.05), and OPL (p < 0.05) (Fig.  3). Interestingly, 
no significant difference was observed between AD and 
controls in the central retina (~ 5 mm from ONH). These 
results were consistent with our earlier findings in which 
we assessed Aβ deposition in retinal wholemounts [42].

Fig. 3  Layer-wise retina Aβ load in Alzheimer’s disease (AD) retina 
compared to controls. Red bars represent AD donors (N = 5). 
Blue bars represent age-matched controls (N = 7). BA4 labelled 
post-mortem human retina cross-sections were imaged at central 
and mid-peripheral locations in relation to optic nerve head. 
Normalized area percentage of BA4 labelled Aβ was calculated in 
each retinal layer and plotted against the particular layer. Aβ was 
significantly higher in the AD donors in the mid-peripheral GCL 
(p < 0.05), IPL (p < 0.01), INL (p < 0.05), and OPL (p < 0.05). However, 
in central retina there was no significant differences between AD 
and control retina. * represent p < 0.05. ** represent p < 0.01. Error 
bars = Standard Error
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Less macroglia and more microglial immunoreactivity 
found in AD compared to control eyes
To reveal glial distribution in the AD retina, we studied 
macroglia and microglia in each retinal layer. Macroglia 
labelling was measured by the percentage of GFAP-pos-
itive pixels, while microglial labelling was measured by 
the percentage of IBA-1-positive pixels in each retinal 
layer. These percentages of GFAP or IBA-1 positive pixels 
were plotted against individual retinal layers (Fig. 4).

In the central retina (~ 5 mm from ONH), both AD and 
control eyes displayed similar levels of IBA-1 immuno-
reactivity, while in the mid-peripheral retina (~ 10  mm 
from ONH), the AD eye (red bars) displayed higher 
levels of IBA-1 compared to the control eye (blue bars). 
Significance was reached in mid-peripheral retina only 
(~ 10  mm from ONH), and in one (INL) of the three 
inner layers and one (OPL) of the three outer layers.

Müller marker shows a significant decline in AD compared 
to controls in mid‑peripheral retina
GFAP labels macroglia in the retina, which includes 
astrocytes and Müller cells [70]. While resting Mül-
ler cells express minimal levels of GFAP, activated Mül-
ler cells display upregulation of GFAP expression after 
retinal injury [20, 21, 44, 51, 70]. Since GFAP alone can-
not be used to distinguish between astrocytes and Mül-
ler cells, GS immunolabelling was performed to better 
understand the role of the Müller cell, a specialized mac-
roglial cell only found in the retina [20]. Confocal images 
were taken for GFAP and GS labelled post-mortem 
human retinal cross-sections, and in separate red and 
green channels the images were segmented pixel-wise 
into GS (red)—or GFAP (green)—positive areas. Figure 5 
A and D shows a representative confocal image with the 
red, green and blue channels. Pixels positive for both GS 
& GFAP represent activated Müller cells, as only acti-
vated (not resting) Müller cells express GFAP. Figure 5B 
and E show an example confocal image derived by sub-
tracting GS & GFAP double labelled pixels from all GS 
pixels, yielding the GS only pixels with no GFAP stain-
ing, representing resting Müller cells. Figure  5C and F 
show an example confocal image derived by subtracting 
GS & GFAP double labelled pixels from all GFAP pixels, 
yielding the GFAP only pixels with no GS staining, rep-
resenting astrocytes. In each image, the amount of GS 
and/or GFAP staining in the inner layers (NFL, GCL, 
IPL) and outer layers (INL, OPL, ONL) was calculated as 
the percentage of the positive pixels in each region, and 
the group averages were compared between the AD and 
control groups, as shown in Fig. 6. Activated Müller cells 
(GS & GFAP) shows lower levels of immunoreactivity 
in AD (red bars) compared to control eyes (green bars). 

This was significant in the inner layers of mid-peripheral 
retina (~ 10 mm from ONH) (Fig. 6A). Astrocytes (with-
out the Müller cell component, i.e., GFAP only) show 
similar immunoreactivity for AD (red bars) and control 
eyes (green bar) (Fig. 6C). This suggests that amongst the 
GFAP positive cells within the retina, it is the Müller cell 
that demonstrates lower immunoreactivity in AD eyes 
compared to age-matched control eyes. 

Representative images for Aβ with neuronal and glial cell 
markers in the AD and control eyes
Figure  7 demonstrates representative cross-sections 
after double labelling immunoreactivity for Aβ/GFAP, 
Aβ/IBA-1 and Aβ/TUBB3. Aβ immunoreactivity (red) 
was present in what was likely  the cytoplasmic com-
partment of some retinal ganglion cells (asterisks and 
inserts) and the extracellular spaces within the neuropil 
(arrowheads) in AD and control eyes. Likely extracel-
lular deposits (arrowheads) are shown as clusters or 
single specks of Aβ immunoreactivity. Double labelled 
deposits are noted by arrows. Note that there was more 
Aβ labelling in the AD eyes, consistent with the quanti-
tative analysis shown in Fig. 3.

Glial cells in the retina were sampled using antibod-
ies against GFAP and IBA-1. GFAP is a 50 kDa filamen-
tous cytoskeletal protein found in retinal astrocytes and 
Müller cells. Few double labelled profiles were observed 
in either the AD or control retinal sections immunore-
acted for Aβ and GFAP (Fig. 7 A, B). GFAP labelling was 
present predominantly in the RNFL and GCL, and more 
abundant in the control eyes compared to AD eyes, con-
sistent with the quantitative analysis in Fig. 4A.

IBA-1 is a 17 kDa protein that is specifically expressed 
in the microglia/macrophage lineage in the retina. IBA-1 
immunoreactivity was mostly observed in microglial pro-
cesses in the inner layers of both AD and control eyes 
(Fig. 7 C, D). The distribution of IBA-1 was significantly 
higher in the mid-peripheral (~ 10 mm from ONH) com-
pared to the central retina (~ 5  mm from ONH) in the 
AD eyes only, suggesting a greater microglial response to 
the higher levels of Aβ in the mid-peripheral (~ 10  mm 
from ONH) retina of the AD eye (Fig. 4B). Interestingly, 
even though levels of IBA-1 and Aβ were generally lower 
in the control eyes, the control eyes had greater co-local-
ization of IBA-1 and Aβ compared to AD eyes (Fig. 4B, 
yellow profiles in Figs. 7D, and 8).

Sections processed for immunoreactivity against Aβ 
and TUBB3, demonstrate similar patterns of labelling 
in the AD (Fig.  7E) and control (Fig.  7F) eyes including 
double labelled (yellow/orange) retinal ganglion cells, as 
well as single (green) and double labelled (yellow/orange) 
axonal profiles.
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In addition to the retinal cross-sections, we also stud-
ied the immunolabelling in the horizontal plane in 
wholemount retinal punches (Fig.  8). The GFAP immu-
nolabelling (Fig.  8A, B) revealed morphologies of mac-
roglial processes in the AD and control eyes. IBA-1 
immunolabelling (Fig.  8C, D) revealed more amoeboid 
microglial cell profiles in the AD compared to the control 
eyes. The increased surface area of amoeboid microglia 
is consistent with higher levels of IBA-1 immunofluores-
cence in AD (Fig. 4). Control eyes demonstrated micro-
glial processes that were more reminiscent of the resting 
state of microglia. TUBB3 immunolabelling (Fig.  8E, F) 
revealed a unique nodular and tortuous morphology of 
the axonal processes in the AD eye, which may be an ana-
tomical correlate associated with axonal degeneration of 
the retinal ganglion cells.

Additional file 1: Figure S1 shows Aβ labelling in z-stack 
image volumes of AD and control retinal punches, scan-
ning through the layers from RNFL to INL. Additional 
file  1: Figure S2 shows additional examples of GS and 
GFAP double-labelling at higher power. Additional file 1: 

Figure S3 shows quantitative methods used to analyse 
macroglia. Additional file  1: Figure S4 illustrates double 
labelling.

Aβ co‑localized with neuronal profiles in both control 
and AD eyes, Aβ co‑localized with microglia predominantly 
in control eyes
Figures  9, 10 and 11 display Aβ co-localization analy-
sis with each of the three cell markers: GFAP labelled 
astrocytes, IBA-1 labelled microglia, and TUBB3 
labelled neurons, respectively. All three markers were 
visualized using FITC secondary antibody fluores-
cence in separate experimental cross-section slide 
preparations. Green bars represent the percentage of 
Aβ-positive pixels among FITC-positive pixels, while 
the black bars represent the percentage of Aβ-positive 
pixels among FITC-negative pixels. If Aβ immunolabel-
ling occurred on all locations (pixels) randomly, there 
would be no statistically significant difference between 
these percentages (green and black bars). Instead, we 

Fig. 4  Layer-wise GFAP and IBA-1 in Alzheimer’s disease (AD) retina compared to controls. Red bars represent AD donors (N = 5). Blue bars 
represent age-matched controls (N = 7). A GFAP labelled post-mortem human retina cross-sections are imaged at central and mid-peripheral 
locations in relation to optic nerve head. Normalized area percentage of GFAP positive pixels is calculated in each retinal layer and plotted against 
the particular layer. GFAP immunoreactivity, is lower in AD donors, as seen by the red bars generally lower than the blue bars. This is significant 
in the central GCL (p < 0.05), IPL (p < 0.01), and OPL (p < 0.05) and mid-peripheral RNFL (p < 0.01), IPL (p < 0.05), and OPL (p < 0.05). B IBA-1 labelled 
post-mortem human retina cross-sections are imaged at central and mid-peripheral locations in relation to optic nerve head. Normalized area 
percentage of IBA-1 positive pixels is calculated in each retinal layer and plotted against the particular layer. IBA-1 immunoreactivity is higher in AD 
donors, as seen by the red bars generally higher than the blue bars. This is significant in mid-peripheral INL and OPL (p < 0.05). Note that the ranges 
of the y-axes of the two panels are different as there was generally more GFAP immunoreactivity than IBA-1 throughout our study * represent 
p < 0.05. **represent p < 0.01. Error bars = Standard Error
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saw a significantly larger percentage of FITC-positive 
pixels that were also labelled with Aβ, indicating that 
Aβ immunolabelling preferentially co-localized with 
each cell marker in their respective cohort.

The co-localization results were analyzed in geo-lay-
ers, defined as categories representing a specific geo-
graphical region (ie. Central (~ 5  mm from ONH) or 
mid-peripheral (~ 10  mm from ONH)) and a specific 

Fig. 5  Thresholding for GS and GFAP immunostaining. Glutamine synthetase (GS) immunolabelling (red) marks both resting and activated Müller 
cells. Glial filamentary acidic protein (GFAP) immunolabelling (green) is present in activated Müller cells and astrocytes. Representative images of 
cross-sections stained with GS and GFAP. A, D Pixels positive for both GS and GFAP (yellow) activated Müller cells. B, E Pixels positive for GS Only 
represent resting Müller cells. C, F Pixels positive for GFAP Only represent astrocytes

Fig. 6  Quantitative analysis of GS and/or GFAP staining in AD compared to control eyes. Retinal layers were grouped into inner layers (RNFL, GCL, 
IPL) and outer layers (INL, OPL, ONL). Red bars represent AD eyes, green bars represent control eyes. A Percentage of pixels double labelled by both 
GS & GFAP in inner and outer retina is shown. Activated Müller cells, labelled with both GS & GFAP, shows lower levels of immunoreactivity in AD 
(red bars) compared to control eyes (green bars). This was significant in the inner layers of mid-peripheral retina. B Percentage of pixels labelled with 
GS only in inner and outer retina is shown. C Percentage of pixels labelled with GFAP only in inner and outer retina is shown. * represent p < 0.05. 
Error bars = Standard Error
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retinal layer (ie. RNFL, GCL, etc.). Geo-layers contain-
ing Aβ/GFAP co-localization were compared between 
AD and control eyes (Fig. 9A and B). In total, only 4 out 
of 24 geo-layers reached significance, namely control 
mid-peripheral (~ 10  mm from ONH) INL (p < 0.01), 
AD central (~ 5  mm from ONH) INL (p < 0.01), AD 
central ONL (p < 0.05), and AD mid-peripheral RNFL 
(p < 0.05), indicating Aβ/GFAP co-localization was less 
prevalent than Aβ/TUBB3, described later. Figure  9 
shows 5.18% of AD astrocytes are co-localized with Aβ, 
and 0.96% of control astrocytes are co-localized with 
Aβ. As macroglia mainly function to maintain neuronal 
homeostasis and are not known to play a phagocytic 
role, as with microglia, co-localization with Aβ is not 
generally expected of macroglia cells.

Next, we assessed the Aβ/IBA-1 co-localization 
between AD and control eyes (Fig.  10 A and B). There 
was significant Aβ/IBA-1 co-localization in 10 out of 12 
geo-layers in control eyes. However, in AD eyes, there 
was significant Aβ/IBA-1 co-localization in only 4 out of 
12 geo-layers. Figure 10 shows 8.86% of control microglia 
is co-localized with Aβ and 4.60% of AD microglia is co-
localized with Aβ. This was a novel finding, one that may 
suggest that the phagocytic role of microglia is dysfunc-
tional in AD eyes.

Figure  11 A and B displays the layer-wise analysis of 
Aβ co-localization with TUBB3-labelled neurons in 
AD and control eyes. There was significant Aβ/TUBB3 

co-localization in all mid-peripheral retinal layers 
(~ 10  mm from ONH) of both controls and AD donors 
(p < 0.05). In the central retina (~ 5 mm from ONH), there 
was significant Aβ/TUBB3 co-localization in all layers 
of the AD donors (p < 0.01), but only in the ONL of the 
control eyes (p < 0.05). This is consistent with (and pos-
sibly due to) the fact that there is a lower amount of Aβ 
in control eyes compared to AD eyes, which is further 
compounded by the finding that central retina (~ 5  mm 
from ONH) has even less Aβ compared to mid-periph-
eral retina (~ 10 mm from ONH) in both control and AD 
eyes [42]. Nineteen out of 24 geo-layers of the combined 
AD and control eyes showed significant co-localization 
between Aβ and TUBB3 (Fig. 11 A and B). This is con-
sistent with the literature since it is known that Aβ is a 
cleaved product of amyloid precursor protein (APP), a 
protein that is produced principally by neurons in the 
CNS. Figure  11 shows 14.85% of AD neurons are co-
localized with Aβ, and 5.68% of control neurons are co-
localized with Aβ.

Aβ colocalization by microglia compared between control 
and AD retina
In the retinal tissues, microglia are one of the cell 
types capable of phagocytic function needed to destroy 
abnormal or toxic deposits, such as Aβ. Therefore, we 
studied the percentage of IBA-1 labelling that was co-
localized with Aβ to further assess the relationship 

Fig. 7  Representative immunofluorescence images of retinal cross-sections. A, C, E Post-mortem human retina samples were processed from 
AD donors (Mean age = 78.6) (N = 5). B, D, F Post-mortem human retina samples were processed from controls (Mean age = 76.8) (N = 6). Tissues 
underwent immunohistochemistry staining for Aβ (red), nuclei (blue), and either GFAP for astrocytes/Müller cells (green) or IBA-1 for microglia 
(green) or TUBB3 for neuronal microtubules (green). Aβ immunofluorescence was evident within what is likely the retinal ganglion cells (asterisk) 
and the neuropil and extracellular spaces (arrowheads). Double labelling is seen (arrows). Stronger Aβ immunoreactivity (red) was observed 
intracellularly in retinal ganglion cells and in the neuropil of AD donors compared to controls. Scale bar = 25 µm
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between microglia and Aβ deposits, as this would 
shed light on the ability of microglia to phagocy-
tose Aβ. Figure  12 shows the result of this analysis. 
The x-axis shows retinal layers in the central (~ 5  mm 
from ONH) and mid-peripheral retina (~ 10  mm 
from ONH), while the Y-axis shows the percentage of 
Aβ-labelled pixels that were co-localized by microglia. 
The difference between the control and the AD eyes in 
Aβ-colocalization by microglia was not significant but 
the geo-layer averages were larger for the control eyes 
in 10 out of 12 geo-layers. We note that although not 
significant, this result may be interpreted with the co-
localization result in Fig.  10 which compares the Aβ 
concentration in the microglia regions vs. non-micro-
glia regions, to test if Aβ indeed is preferentially co-
localizing in the microglia-positive pixels. In Fig.  10, 
Aβ in the control eyes showed a strong preference for 
co-localizing in the microglia region compared to the 
non-microglia region, whereas this was less consistent 

in the AD eyes. A similar test in Fig.  11 showed that 
Aβ in the AD retina was preferentially co-localized in 
the neuronal profile region, compared to the non-neu-
ronal region across all regions and layers, and this was 
less consistently so in the control retina in the central 
region.

Discussion
Higher Aβ load in AD compared to control retina
Our results demonstrated Aβ levels were signifi-
cantly higher in the mid-peripheral retina (~ 10  mm 
from ONH) of AD compared to controls. For cen-
tral retina (~ 5  mm from ONH), we observed Aβ lev-
els to be higher in AD compared to controls, but this 
did not reach significance (Fig.  3). Our findings are 
in agreement with our earlier study [42] and those of 
other labs [37, 38]. Lee et al. showed a higher amount 
of Aβ in mid-peripheral retina of AD donors, with no 
significant difference between AD and controls in the 

Fig. 8  Representative immunofluorescence images of retinal punches. A, C, E Post-mortem human retina samples were processed from AD 
donors (Mean age = 75.3) (N = 3). B, D, F Post-mortem human retina samples were processed from controls (Mean age = 70.7) (N = 3). Tissues 
underwent immuno-histochemistry staining for Aβ (red), and either GFAP for astrocytes/Müller cells (green), IBA-1 for microglia (green) or TUBB3 
for neuronal microtubules (green). Aβ (red) immunofluorescence was evident within what was likely the retinal ganglion cells (asterisk) and in 
the neuropil and extracellular spaces (arrows). Stronger Aβ immunoreactivity (red) was observed intracellularly in retinal ganglion cells and in the 
neuropil of AD donors compared to controls. Note abnormal nodular appearance of axonal profiles (green TUBB3) in AD (E). Scale bar = 20 µm. Error 
bars = Standard Error
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central retina [42]. Koronyo et  al. found retinal Aβ in 
the mid- and far-periphery in both AD donors and live 
AD patients [37]. Many factors may have contributed to 
the topographical difference in Aβ deposition, includ-
ing retinal blood vessel parameters, tissue permeability 
and light stimulation [37]. The mid-peripheral retina 
was also shown to have more intermediate hard drusen 
in AD eyes compared to controls, which is consistent 
with the theory that physiological differences between 
topographical areas may provide a permissive environ-
ment for abnormal deposition to occur in the mid- and 
far-peripheral retina [13, 83]. 

Our quantitative data were obtained from immunohis-
tochemical processing of human eye tissues with the BA4 
antibody. BA4 labels Aβ but also may additionally label 
full-length APP [49]. However, we also used 12F4, an 
antibody that is considered specific for Aβ and compared 
labelling patterns with BA4. In Fig. 2, we show that both 
BA4 and 12F4 have similar labelling patterns, includ-
ing the presence of intraneuronal Aβ in retinal ganglion 
cells (See Table  1 in [49]). However, in de Haan et  al. 
2018, 12F4 and an APP-specific antibody co-localized to 
retinal ganglion cells, suggesting the possibility that even 
12F4 may not show specificity to the cleaved Aβ peptide 

[18]. Of note, the full-length protein, APP, should be pre-
sent in all retinal ganglion cells, yet our immunolabeling 
results demonstrated that Aβ/BA4 and Aβ/12F4 labelled 
only a very small minority of retinal ganglion cells in our 
study. Future studies should focus on the development of 
more specific antibodies which can be assayed in western 
blot (WB) methods that can distinguish full-length APP 
(~ 100  kDa) from cleaved Aβ peptide (~ 4  kDa) by WB 
banding patterns and their relative molecular weights.

Although many studies support the presence of 
increased Aβ in the AD retina, some controversy remains 
in the literature. Qualitative studies by den Haan et  al. 
did not see a difference in Aβ deposition in the AD retina 
compared to controls [18]. They reported that Aβ and 
tau deposits were present in the retina, although they do 
not resemble the typical pattern seen in the brain. Our 
findings on retinal Aβ concur, as likely extracellular Aβ 
appears as small, punctate deposits, unlike the brain Aβ 
plaques, which are several times larger than retinal Aβ 
deposits. Williams et al., reported that they were unable 
to find immunohistochemical evidence for Aβ deposits in 
any part of the globe [86].

In this study and our earlier study, we observed an 
increased number of retinal ganglion cells that contained 

Fig. 9  Layer-wise cross-sectional colocalization profile of GFAP labelled astrocytes with Aβ. Left panel illustrate age-matched controls (N = 7). 
Right panel illustrate AD donors (N = 5). The primary antibody against GFAP was visualized using a FITC-labelled secondary antibody. The primary 
antibody against Aβ was visualized using a Cy3-labelled secondary antibody. Green bars represent the percentage of Aβ positive pixels among FITC 
(GFAP) -positive pixels. Black bars represent the percentage of Aβ positive pixels among FITC (GFAP) -negative pixels. Colocalization is defined by 
FITC-positive pixels having a significantly higher percentage of Aβ positivity than FITC-negative pixels. Aβ colocalization with GFAP is calculated in 
each retinal layer and plotted on the x-axis. One out of 12 geo-layers in controls (A) and 3 out of 12 geo-layers in AD donors (B) showed significant 
Aβ-GFAP colocalization. * represent p < 0.05. ** represent p < 0.01. Error bars = Standard Error
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likely intracellular Aβ in the AD retina compared to con-
trols [42]. In the AD brain, intracellular Aβ plays a key 
role in early neuronal and synaptic dysfunction. Intra-
cellular Aβ is observed prior to extracellular Aβ deposi-
tion, suggesting its potential as an earlier indicator of AD 
pathology [24, 79]. If intracellular Aβ precedes extracel-
lular Aβ deposition in the retina, as it does in the brain, 
our results may indicate that the AD retina lags behind 
the AD brain in progression of extracellular deposits 
of Aβ [24, 79]. This may be due to extracellular retinal 
deposits of Aβ being more readily cleared by the retinal 
vasculature than in the brain. Future studies are needed 
to further understand the different morphologies of Aβ 
deposits in the retina compared to the brain.

Metabolic decline of Müller cells in AD retina
Our initial GFAP immunoreactivity results suggested 
degeneration of GFAP labelled macroglia in the post-
mortem human retina, which seemed at odds with 
reports of increased GFAP immunoreactivity in AD 
brain tissues compared to controls [60, 85]. Unique 
to the retina, GFAP also labels Müller cells, a special-
ized type of macroglia not present in brain tissues. 
As GFAP can label both astrocytes and Müller cells, 

GS was introduced as a Müller-specific cell marker. 
Within the macroglia cells, activated Müller cells, iden-
tified by having both GS and GFAP immunoreactivity, 
displayed lower levels in AD compared to the control 
retina (Fig.  6A). It is known that declining GS activ-
ity can indicate progression of neurodegeneration in 
many neurological disorders, potentially due to gluta-
mate toxicity [35]. However, we were unable distinguish 
whether the loss of GS immunoreactivity was due to 
a decrease in the number of Müller cells, or merely a 
decline in the GS enzyme within the Müller cells. Both 
conditions would result in lowered glutamine synthe-
sis and subsequent imbalances in GABA and glutamate 
neurotransmitters.

While there are no studies, to the best of our knowl-
edge, that directly compares GS changes in the AD eye 
and brain, previous studies have shown conflicting evi-
dence of GS levels in the AD brain. Most studies showed 
a decrease in GS activity and levels in AD, including in 
the post-mortem human brain and transgenic mouse 
models [7, 39, 41, 58, 67, 68, 80]. Other studies showed an 
increase of GS in the prefrontal cortex and cerebrospinal 
fluid [6, 82]. GS in the brain mainly exist in astrocytes, 
while GS in the retina mainly exist in Müller cells [22, 35]. 

Fig. 10  Layer-wise cross-sectional colocalization profile of IBA-1 labelled microglia with Aβ. Left panel illustrate age-matched controls (N = 7). 
Right panel illustrate AD donors (N = 5). The primary antibody IBA-1 was visualized using a FITC-labelled secondary antibody. The primary antibody 
against Aβ was visualized using a Cy3-labelled secondary antibody. Green bars represent the percentage of Aβ positive pixels among FITC (IBA-1) 
-positive pixels. Black bars represent the percentage of Aβ positive pixels among FITC (IBA-1) -negative pixels. Colocalization is defined by FITC 
(IBA-1) -positive pixels having a significantly higher percentage of Aβ positivity than FITC-negative pixels. Aβ colocalization with IBA-1 is calculated 
in each retinal layer and plotted on the x-axis. Ten out of 12 geo-layers in controls (A) and 4 out of 12 geo-layers in AD donors (B) showed significant 
Aβ-IBA-1 colocalization. * represent p < 0.05. **represent p < 0.01. *** represent p < 0.001. Error bars = Standard Error
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Therefore, elevated GS in the brain may represent part 
of the astrogliotic process, whereas decreased GS in the 
retina may represent Müller cell degeneration. Interest-
ingly, structural perturbation of the GS protein was seen 
in the AD brain, as well as with exposure of GS protein to 
Aβ [7]. This raises the possibility of GS dysfunction in an 
environment rich with Aβ, which is confirmed by a later 
study that showed lower GS activity and higher GS level 
in the AD brain [10]. In light of these studies, it seems 
probable that GS plays a unique, and likely different, roles 
in the retina compared to the brain.

Microgliosis
As part of embryonic and postnatal development, micro-
glia enter the retina as mononuclear phagocytes via the 
ciliary body and hyaloid. Microglia are known to be 
located in the GCL, IPL and OPL [64], although they can 
migrate to any layer of the retina in response to apoptotic 
cells or toxic deposits such as Aβ [84].

Our study revealed higher amounts of IBA-1-la-
belled microglia in AD donor eyes compared to con-
trols (Fig. 4B), which is consistent with the literature, as 

microglial activation and microgliosis in neurodegen-
erative diseases has been well documented [55, 62, 69]. 
Microglia activation was significantly higher in the retina 
of a mouse model of AD [61]. In a similar experiment 
performed by Grimaldi and colleagues, a higher num-
ber and density of IBA-1-positive cells were seen in AD 
donor retina compared to controls [25]. The increased 
microglial activation in AD (and associated higher levels 
of Aβ) is consistent with the pro-inflammatory microglia 
hypothesis, which states that chronic microglia activa-
tion due to Aβ deposition leads to neurotoxicity [1, 73]. 
Interestingly, although AD pathogenesis may lead to 
more microglia activation, the quality of the microglial 
response may not be as robust. In our study, Aβ/IBA-1 
co-localization was less consistent throughout layers 
in AD eyes compared to controls (Fig.  10), suggesting 
microglial cell dysfunction. In addition, fewer retinal lay-
ers in AD eyes showed significant Aβ/IBA-1 co-localiza-
tion than controls (Fig.  10). The microglial dysfunction 
hypothesis proposes that the ability of microglial cells to 
phagocytize and clear Aβ is blunted and reduced due to 
Aβ accumulation in AD, and thereby plays a role in AD 

Fig. 11  Layer-wise cross-sectional colocalization profile of TUBB3 labelled neurons with Aβ. Left panel illustrate age-matched controls (N = 7). 
Right panel illustrate AD donors (N = 5). The primary antibody against TUBB3 was visualized using a FITC-labelled secondary antibody. The primary 
antibody against Aβ was visualized using a Cy3-labelled secondary antibody. Green bars represent the percentage of Aβ positive pixels among FITC 
(TUBB3) -positive pixels. Black bars represent the percentage of Aβ positive pixels among FITC (TUBB3) -negative pixels. Colocalization is defined by 
FITC (TUBB3) -positive pixels having a significantly higher percentage of Aβ positivity than FITC-negative pixels. Each bar-pair represent a geo-layer. 
Aβ colocalization with TUBB3 is calculated in each retinal layer and plotted on the X-axis. Seven out of 12 geo-layers in controls (A) and 12 out of 12 
geo-layers in AD (B) showed significant Aβ-TUBB3 colocalization. *represent p < 0.05. **represent p  < 0.01. Error bars = Standard Error
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pathogenesis [78]. Microglial dysfunction may include 
inappropriate microglial activation and the loss of its 
neurosupportive function [55, 75–77].

To further explore microglial dysfunction in AD 
donors, we analyzed the percentage of IBA-1 immunore-
activity that co-localized with Aβ. This indirectly relates 
to how robustly microglia migrate towards or phagocyt-
ize Aβ (Fig. 12) [15]. Consistent with Aβ co-localization 
data (Fig.  10), control retina had more IBA-1 immuno-
reactivity co-localized with Aβ compared to AD retina, 
suggesting that microglia in control eyes maintained 
their immunological function to migrate towards and 
phagocytize Aβ better than in AD eyes (Fig.  12). These 
data are consistent with the proliferation of dysfunctional 
microglia, with the exhaustion of healthy microglial cells, 
observed in the brain [15, 28, 45, 55].

Figure  13 shows a summary schematic of layer-wise 
location of Aβ, GFAP, and IBA-1 immunostaining. The 
representative schematic demonstrates the qualitative 
and quantitative data from this study. Blue represents Aβ 
immunoreactivity. Green represents GFAP immunoreac-
tivity. Pink represents IBA-1 immunoreactivity. AD ret-
ina is shown on the right, and control retina is shown on 
the left. The asterisks on the layer abbreviations represent 
the types of cells seen in this layer.

Fig. 12  Aβ co-localization with Microglia. Percent of IBA-1 
immunoreactivity in a BA4 immunoreactive area was plotted 
against the retinal layers in central vs. mid-peripheral retina. 
Red bars represent AD donors (N = 5). Blue bars represent 
age-matched controls (N = 7). Although the average values of IBA-1 
immunoreactivity in a BA4 immunoreactive area in the control eyes 
were larger than those in the AD eyes, the difference did not reach 
significance (alpha = 0.05), Error bars = Standard Error.

Fig. 13  Summary schematic of layer-wise location of Aβ, GFAP, and IBA-1 immunostaining. Representative schematic demonstrates the qualitative 
and quantitative data from this study. Blue represents Aβ immunoreactivity. Green represents GFAP immunoreactivity. Pink represents IBA-1 
immunoreactivity. AD retina is shown on the right, and control retina is shown on the left. The asterisks on the layer abbreviations represents the 
types of cells seen in this layer. RNFL Retinal nerve fiber layer. GCL Ganglion cell layer. IPL Inner plexiform layer. INL Inner nuclear layer. OPL Outer 
plexiform layer. ONL Outer nuclear layer. RPE Retinal pigment epithelium. *Represent p < 0.05. **Represent p < 0.01
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Conclusion
New strategies in biomarkers for AD
This study is the first to analyze layer-wise Aβ distri-
bution in a quantitative manner and in relationship to 
glial profiles in the postmortem human retina. In vivo 
imaging of retinal Aβ with fluoroprobes has made tre-
mendous progress for staging and diagnosing individu-
als with AD [17, 37, 38, 74]. In addition, hyperspectral 
retinal imaging may also provide information on reti-
nal Aβ as an additional tool for non-invasive Aβ detec-
tion [8, 26]. Our study demonstrated that both Muller 
degeneration and microgliosis may be promising bio-
markers in addition to Aβ. In fact, in the occipital 
lobe, microglia activation was quantified in  vivo with 
the (R)-[11C]PK11195 positron emission tomography 
(PET) ligand, which was significantly increased in AD 
patients compared to healthy controls [72]. In the eye, 
a recent study reported in vivo hyperreflective granular 
membranes consisting of microgliosis material, visual-
ized on adaptive optics scanning laser ophthalmoscopy, 
raising the possibility of using microgliosis as a new 
potential biomarker for early AD detection [90]. Fewer 
studies have identified in vivo probes for astrocyte and. 
future studies are needed to develop novel astrocyte 
probes for in  vivo retinal imaging, as well as to char-
acterize Müller degeneration at early stages AD in the 
retina [19].
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