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Abstract 

Determining the presence of tumor in biopsies and the decision-making during resections is often dependent on 
intraoperative rapid frozen-section histopathology. Recently, stimulated Raman scattering microscopy has been intro‑
duced to rapidly generate digital hematoxylin-and-eosin-stained-like images (stimulated Raman histology) for intra‑
operative analysis. To enable intraoperative prediction of tumor presence, we aimed to develop a new deep residual 
convolutional neural network in an automated pipeline and tested its validity. In a monocentric prospective clinical 
study with 94 patients undergoing biopsy, brain or spinal tumor resection, Stimulated Raman histology images of 
intraoperative tissue samples were obtained using a fiber-laser-based stimulated Raman scattering microscope. A 
residual network was established and trained in ResNetV50 to predict three classes for each image: (1) tumor, (2) non-
tumor, and (3) low-quality. The residual network was validated on images obtained in three small random areas within 
the tissue samples and were blindly independently reviewed by a neuropathologist as ground truth. 402 images 
derived from 132 tissue samples were analyzed representing the entire spectrum of neurooncological surgery. The 
automated workflow took in a mean of 240 s per case, and the residual network correctly classified tumor (305/326), 
non-tumorous tissue (49/67), and low-quality (6/9) images with an inter-rater agreement of 89.6% (κ = 0.671). An 
excellent internal consistency was found among the random areas with 90.2% (Cα = 0.942) accuracy. In conclusion, 
the novel stimulated Raman histology-based residual network can reliably detect the microscopic presence of tumor 
and differentiate from non-tumorous brain tissue in resection and biopsy samples within 4 min and may pave a prom‑
ising way for an alternative rapid intraoperative histopathological decision-making tool.
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Introduction
Rapid intraoperative histopathological analysis of fresh 
frozen tumor tissue is an essential tool for biopsy and sur-
gical resection control [1]. This is based on a time-con-
suming and costly intraoperative pathology workflow for 
intraoperative decision-making that often leads to pro-
longed surgery times with the patient kept in anesthesia 
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waiting for the pathological diagnosis [2, 3]. In addition, 
not every hospital providing surgeries in patients with 
brain tumors holds a (neuro)pathology unit available for 
rapid fresh frozen diagnostics and even if, it is usually 
only available during normal working hours. Recently, a 
fully automated label-free optical laser system creating 
digital hematoxylin-and-eosin (H&E)-like images called 
stimulated Raman histology (SRH) has been introduced 
as an alternative to fresh frozen conventional histopatho-
logical section diagnostics [4–8]. In brief, SRH is an opti-
cal digital molecular microscopy technique that exploits 
the intrinsic optical properties of biological macromol-
ecules, such as lipids, proteins, and ribonucleic acids, 
and converts them into digital H&E-like images within 
3–4 min. The SRH images are then to be reviewed by a 
neuropathologist or available for analyses of a machine 
learning algorithm. The combination of SRH and the use 
of machine-learning techniques for analysis in a semi-
automated workflow has already been explored in some 
proof-of-concepts investigations [8, 9]. Using convolu-
tional neural networks and the associated evaluation of 
SRH images, various neurosurgical tumor entities can 
already be reliably detected [4, 5]. This possibility pro-
vides the neurosurgeon during the surgical resection 
with important information about the tumor entity and 
glial malignancy to tailor the surgery accordingly. How-
ever, the recently introduced CNN to determine the 
tumor entity and malignancy in the case of gliomas is 
especially limited in reliably detecting tumor tissue in the 
tumor margins for resection extent and biopsy control. 
This study aimed to develop a novel SRH-coupled deep 
residual CNN for qualitative brain tumor detection inde-
pendent of entity and dignity and test its reliability to dis-
tinguish between tumor and non-tumor brain tissue in a 
semi-automated clinical intraoperative workflow.

Materials and methods
In a prospective single-center study design patients were 
recruited in 2021 after they were indicated for surgery or 
stereotactic biopsy based on decisions of an interdisci-
plinary neuro-oncological tumor board panel. This study 
was reviewed and approved by the local ethics committee 
(Nr. 21-1238). All patients gave their written informed 
consent for the scientific use of their data according to 
European law. Inclusion criteria comprised: (1) Sus-
pected tumor lesions of the central nervous system, (2) 
aged over 18 years, and (3) the patient is willing and able 
to give informed consent for participation. Exclusion cri-
teria comprised: (1) Patient does not agree to participate 
in the study or (2) unable to or unwilling to give informed 
consent. Specimen samples were excluded if the collected 
specimen was inadequate, e.g. broken slide or specimen 
sample size under 1.7 mm diameter for SRH imaging. All 

specimen samples obtained were imaged immediately 
after collection by the intraoperative label-free fiber-
laser-based SRS microscope and evaluated by the CNN 
as the output class (1) tumor, (2) non-tumor, or (3) low 
quality. An independent neuropathologist reviewed all 
generated SRH images as a control arm.

Specimen collection and intraoperative SRH imaging 
method
Tissue samples were intraoperatively obtained from the 
lesion itself in surgery and stereotactic biopsies as well 
as from the approach area in surgery. These samples did 
not interfere with or differ from the regular tumor sam-
pling sent to (neuro)pathology to enable histopathologi-
cal diagnosis. For virtual imaging of fresh specimens, a 
small unprocessed specimen sample (3–4  mm in size) 
was squeezed onto a glass slide with the help of the cover 
glass and imaged by a clinical, fiber-laser based stimu-
lated Raman scattering microscope (Invenio Imaging 
Inc, Santa Clara, CA, USA) [8]. In brief, four main com-
ponents are used here: (1) a fiber-coupled microscope, 
(2) a dual-wavelength fiber-laser module, (3) a laser and 
microscope control module, and (4) a computer for data 
displaying, processing, and application of a CNN. Spec-
tral Raman differences and concentration cause lipids 
and proteins to reflect differently, creating contrast. Tis-
sue samples were imaged at two Raman shift wavenum-
bers, 2845  cm−1 (CH2/lipid channel) and 2940  cm−1 
(CH3/protein and ribonucleic acids). Via another process, 
a three-channel image was created after image subtrac-
tion, resulting in a digital H&E-like stained 3.06  mm2 
image for intraoperative and pathological view, which is 
referred to as Stimulated Raman Histology (SRH).

Machine learning algorithm
A residual convolutional neural network (CNN) architec-
ture named ResNet50v2 was used for image classification 
on 300 × 300 pixel SRH image patches. The final layers in 
the network were modified for classification into three 
classes: (1) tumor, (2) non-tumor, and (3) low quality. The 
network was trained on a separate previously acquired 
and annotated dataset of 570 whole-slide SRH images 
representing the full spectrum of neurooncological sur-
gery that resulted in 1.2 million labeled patches after 
patch extraction using 300 × 300 pixels sliding window 
technique with a step of 100 pixels in both x- and y-direc-
tion. The CNN training was done on 90% of the train-
ing data set, while preliminary validation of the CNN 
after each epoch was done on 10% of the training data-
set. The imbalance of the classes was taken into account 
by using the inverse class frequencies as weights for the 
categorical cross-entropy loss of the CNN. The training 
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was stopped after the preliminary validation accuracy 
exceeded 95% and the loss was lower than 0.10.

The CNN was re-trained a second and a third time with 
different random seeds on the same external dataset for 
reliability and ROC analysis (see Fig. 1).

CNN Segmentation and probability heatmap of SRH 
Images
To run the CNNs on whole-slide SRH images, test-
ing patches were extracted using a 300 × 300-pixels 
sliding window with a step size of 300-pixels in both 
x- and y-direction. In this way, there were no overlap-
ping patches in testing. Patches that had low quality as 
top-1 class were excluded from the analysis of the final 
whole-slide prediction, thus only “high-quality” patches 
probabilities were averaged over the whole-slide image 
for the final prediction. Heatmaps for whole-slide SRH 
images (e.g. 3600 × 3900 true image pixels) were created 
by interpolating the images containing predictions at the 
patch level (e.g. 12 × 13 patch prediction pixels contain-
ing class probabilities). The final probability heatmap 
of the presence of tumor (red), non-tumor (green), and 
low-quality (blue) is coded on top of the SRH image as 
a semi-transparent overlay and could assist the user in 
interpreting the SRH images by color-coded class prob-
abilities (see Figs. 2, 3).

Neuropathological validation
The SRH images analyzed by CNNs were reviewed as a 
high-resolution PNG file with 3600 × 3900 pixels by one 
board-certified independent neuropathologist, blinded 
to the CNN results and clinical data, who analyzed, and 
classified into the three diagnostic classes, (1) tumor, 
(2) non-tumor, and (3) low quality by a binary evalua-
tion pattern. The predictions of the CNNs and the inde-
pendent neuropathologist were compared by review on 
a single image-by-image basis. The highest probability 
prediction value of the corresponding output class from 
the CNNs was chosen and thus converted into a binary 
form to enable the direct comparison to the independent 
blinded neuropathologist’s evaluation.

Statistical analysis
Statistical analysis was performed using SPSS Statistics 
Version 28 (IBM, Chicago IL). For descriptive statistics, 
continuous values are given in mean with standard devia-
tion, and ordinal and categorical variables are stated in 
counts and percentages. Internal consistency (IC) of 
random areas within a specimen sample was calculated 
using Cronbach’s alpha (C  α). The inter-rater reliability 
(three raters) of the probability values between the three 
trained CNNs was calculated by the intraclass correlation 
coefficients (ICC) (single-measurement, absolute-agree-
ment, 2-way mixed-effects model). The inter-rater reli-
ability (two raters) between CNNs and neuropathologist 
was calculated using Cohen´s Kappa (κ). The diagnostic 
quality of the trained and applied CNNs was validated 
by the Receiver operating characteristic (ROC) analy-
sis. Values > 0.8 were considered as excellent and > 0.9 as 
outstanding [10]. As a non-parametric statistic test, Ken-
dall-W-Test was used for significance proofing between 
CNNs probability values. P-values below 0.05 were con-
sidered statistically significant.

Results
Demographics and baseline characteristics
We included 94 brain tumor patients, 49 (52.1.%) of them 
were female. The type of procedure to obtain specimen 
samples comprised surgical resections in 77 (81.3%) and 
stereotactic biopsies in 17 (18.1%) patients.

The final histopathological diagnosis was benign to 
malignant gliomas in 27 (28.7%), various carcinoma and 
melanoma metastases in 26 (26.6%), benign to anaplas-
tic meningioma in 13 (13.8%), pituitary adenoma in 6 
(6.4%), craniopharyngioma in 2 (2.1%), ependymoma in 
2 (2.1%), lymphoma in 7 (7.4%), medulloblastoma in 2 
(2.1%) patients, other entities such as epidermoid-cyst, 
ganglioneurinoma, hemangioblastoma, lipoma, rathke 
cleft-cyst, schwannoma in 6 (6.4%) patients, and gliosis in 
3 (3.2%) patients by stereotactic biopsy.

A total of 226 specimen samples were collected for 
SRH imaging (range 1–8 specimens per patient) result-
ing in a total of 592 SRH images that were generated 
(range 1–4 different SRH images per specimen sample). 
A minimum of three different random areas (A, B, C) per 

Fig. 1  Demonstration of the semi-automated workflow for SRH image analysis and CNN prediction of tumor and non-tumor tissue. A A squashed 
unprocessed tumor margin sample acquired by the surgeon of non-small cell lung cancer brain metastasis to test for residual tumor remnants 
in the resection bed is analyzed in the intraoperative SRH imager. B A digital H&E-like image (SRH) is created. After generating SRH patches 
(300 × 300-pixel) using a sliding window technique, each patch undergoes a residual CNN algorithm. C The final softmax layer outputs a categorical 
probability prediction with distribution over three categories: (I) tumor, (II) non-tumor, and (III) low quality. After that, another algorithm is applied 
for the patch-level prediction probabilities and outputs a single probability for each SRH image after summing. A semantic segmentation technique 
that overlays CNN prediction heatmaps was also developed and applied to facilitate the qualitative identification of regions with tumor, non-tumor, 
and low quality. D Transparency CNN prediction heatmaps were RGB color-coded (red = tumor, green = non-tumor, blue = low quality) and 
overlaid on the SRH image to provide identification and differentiation for surgeons and neuropathologist beside prediction probabilities. Scale 
bars = 100 μm

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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slide were scanned in 132 specimens (58.4%) resulting in 
402 SRH images in total for statistical analyses. In three 
cases of the 402 SRH images, one of the three random 
areas showed a 100% probability value of low quality, so 
a fourth random area (D) was obtained for SRH image 
analysis.

Seventeen (7.5%) microscopic specimen samples 
resulting in 34 (5.7%) SRH images were obtained as nega-
tive controls (healthy macroscopic brain tissue), without 
contact to a tumor margin, derived from necessary cor-
ticotomy in the approach pathway in cases of subcortical 
located lesions.

Specimen samples from the tumor margins were not 
obtained from meningiomas, schwannomas, or other 
extra-axial lesions, but only from malignant intra-axial 
tumors to test the CNN algorithm reported here.

Evaluation of CNN models and prediction probabilities
Three CNN models were trained and tested with dif-
ferent random seeds on the same dataset for analysis. 
Examination and evaluation demonstrated a tumor mean 
probability of 73.9 (± 33.2) by the first CNN, 76.9 (± 35.0) 
by the second CNN, and 76.5 (± 33.7) by the third CNN. 
The interrater analysis of the probability values between 
the three CNN showed excellent reliability with an ICC 
value of 0.962 (99% CI 0.953–0.969).

The mean probability for non-tumor was 18.9 (± 33.1) 
for the first CNN, 18.0 (± 32.7) for the second, and 18.2 
(± 31.6) for the third. The ICC was found likewise excel-
lent with a value of 0.977 (99% CI 0.973–0.981) between 
the three CNNs.

The mean probability for the low-quality output class 
was 7.2 (± 15.2) for the first, 5.1 (± 16.4) for the second, 
and 5.3 (± 15.7) for the third CNN. The ICC for the low-
quality output class between the CNNs showed excellent 
interrater reliability of 0.914 (99% CI 0.895–0.929) (fur-
ther information see Table 2).

In the qualitative image inspection per viewing, some 
locations of the analyzed SRH images on patch size 
level showed some differences in the corresponding 
patch prediction output between the three CNNs but 
did not affect the overall prediction output of each SRH 
image. There were no statistically significant differences 
found between the three CNNs probability predictions 

regarding the evaluation of tumor tissue (p = 0.231), 
non-tumor (p = 0.052), and low quality (p = 0.423) SRH 
images (see Table 1; Fig. 3).

Diagnosis classification by the CNN models 
and neuropathologist
The neuropathologist established it as the ground truth, 
considering the majority area of the SRH image for the 
corresponding annotation, thus identifying 462 (78.0%) 
SRH images as tumor, 113 (19.1%) as non-tumor (includ-
ing 34 SRH image negative controls from the surgical 
access, and tumor negative SRH images derived from 
tumor margins), and 17 (2.9%) as of low quality.

If one of the three diagnostic classes contained the 
highest probability prediction value, this class was cho-
sen as the final diagnosis. After summation, the first 
CNN identified 459 (77.5%) SRH images as a tumor, 115 
(19.4%) as non-tumor, and 18 (3%) as low quality.

The second CNN evaluated 456 (77%) SRH images as 
a tumor, 117 (19.8%) as non-tumor, and 19 (3.2%) as low 
quality.

The third CNN classified 469 (79.2%) SRH images as a 
tumor, 110 (18.6%) as non-tumor, and 13 (2.2%) as low 
quality (see Table 2; Additional file 1: Table S3).

Diagnostic quality of CNN models
Due to the sensitivity and specificity of ROC analysis, a 
comparable diagnostic quality could be reached in refer-
ence to the independent neuropathological evaluation. In 
detail, the ROC-AUC of the first CNN was demonstrated 
as excellent with 0.888 (99% CI 0.838–0.938) for tumor, 
0.862 (99% CI 0.789–0.934) for non-tumor, and 0.837 
(99% CI 0.576–1.097) for low-quality SRH images.

The ROC-AUC in the second CNN was excellent with 
0.895 (99% CI 0.843–0.948) for tumor, 0.879 (99% CI 
0.810–0.947) for non-tumor, and outstanding with 0.902 
(99% CI 0.751–1.053) for low-quality SRH images.

The ROC-AUC of the third CNN was excellent with 
0.882 (99% CI 0.826–0.938) for tumor, 0.876 (99% CI 
0.810–0.941) for non-tumor, and 0.878 (99% CI 0.707–
1.050) for low-quality SRH images (see Fig. 4).

(See figure on next page.)
Fig. 2  Stepwise semantic segmentation of SRH images for regions with tumor, non-tumor, and low quality. SRH images on the left side are shown 
before segmentation. In the middle probability, heatmaps are demonstrated for each output P (tumor, non-tumor, low quality). Using a sliding 
window algorithm, smaller parts in the SRH images created a probability distribution for each output. It is a function of neighboring overlapping 
patch predictions to generate a smoother overall heatmap after summing each part of the SRH images. Each heatmap is RGB color-coded as 
an overlay on the SRH image. Demonstration of prediction heatmap (A) with tumor (red) and low quality (blue) regions out of a Non-Hodgkin 
lymphoma specimen (* and + with atypical cell components), B with corresponding outputs classes from a non-small cell lung cancer brain 
metastasis specimen, C as well as only tumor (red) and non-tumor (green) prediction from an IDH-wildtype glioblastoma specimen (the arrow 
demonstrates the infiltrative tumor character). Scale bars = 100 μm



Page 6 of 13Reinecke et al. Acta Neuropathologica Communications          (2022) 10:109 

Fig. 2  (See legend on previous page.)
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Agreement between CNN models and neuropathologist
The lowest inter-rater agreement was found between the 
first CNN and neuropathological assessment in 86.5% 
SRH images with a moderate Cohen’s Kappa (κ = 0.572).

Compared to the neuropathological evaluation, the 
second CNN showed an inter-rater consistency in 87.3% 
SRH images with a substantial Cohen’s Kappa (κ = 0.607).

The best Inter-rater agreement was found between the 
neuropathological evaluation and the evaluation of the 
third retrained CNN with 89.6% out of 402 SRH images 
with correct prediction and differentiation of tumor and 
non-tumor tissue. There was a substantial Cohen’s Kappa 
(κ = 0.671) (see Table 1).

Internal consistency analysis
After analysis of the inter-rater agreement between 
CNNs and neuropathologist, the internal consistency of 
the three random area SRH images within the same slide 
(n = 132) was investigated.

The third CNN, which presented the strongest agree-
ment compared to the neuropathological evaluation, 
demonstrated an excellent IC in 90.2% (Cα = 0.942) of 
the specimen slides. Here, the qualitative SRH image 
analysis with a review of the overlaying heatmap of the 
CNN showed minor differences in some areas on patch 
size level, which did not affect the overall prediction out-
put (Further information see Fig.  5 as Additional file  1: 
Tables S1 and S2).

Discussion
One of the main challenges in neurosurgery remains to 
distinguish tumorous tissue safely and efficiently from 
non-tumorous brain tissue to enable successful stereo-
tactic biopsies and surgically complete resections. In 
addition, reliable quick histopathological diagnostics are 
increasingly needed for intraoperative decision-making 
and gain importance, e.g. for applying local adjuvant 
treatment options such as chemotherapeutic wafers [11] 
or intraoperative radiotherapy [12, 13]. The use of con-
ventional rapid frozen section diagnostics with tissue 
processing and sectioning and white light microscopy by 
the (neuro)pathologist is the gold standard of care but 
involves a physical and time-consuming disruption of the 
surgical workflow [3]. Despite efficiency optimization of 
the process over years it remains user-dependent, costly- 
and time-consuming with 20 to 30 min turnaround time, 

in some cancer centers even longer, and needs high 
resource requirements due to interdepartmental logisti-
cal challenges [3, 14]. Furthermore, destructive, freezing, 
and compressing artifacts can occur during tissue pro-
cessing [14]. Lastly, a (neuro)pathology unit is not always 
available in every surgical tumor center.

As an alternative histopathological assessment pathway 
the digital SRS microscopy has recently been introduced 
in the clinical setting as a label- and dye-free micro-
scopic chemical imaging technique for unprocessed tis-
sue specimens [8, 9]. The additive and encouraging use 
of AI applications with SRH microscopy has already been 
reported, allowing rapid prediction of tumor entity and 
glial dignity with encouraging agreement with the neuro-
pathologist’s diagnosis [4, 5]. Hollon et al. recently dem-
onstrated an SRH-based CNN to distinguish between 
predefined tumor entities and dignity [5] but was limited 
in a qualitative conclusion on whether tumor or no tumor 
tissue is present. A qualitative assessment of a CNN that 
distinguishes between tumor and non-tumor has not yet 
been reported.

We developed three CNNs trained and tested on the 
same dataset and examined their diagnostic perfor-
mance, reliability between CNNs, between CNNs and a 
neuropathologist, and the IC of multiple random areas 
within a sample.

Using cellular and nuclear morphological features, our 
trained and deployed CNNs were able to accurately iden-
tify and discriminate tumor from non-tumorous brain 
tissue or judge them as low-quality tissue by analyzing 
SRH images in a fully automated pipeline.

No significant differences in terms of probability pre-
diction values of the tumor, non-tumor, and low-quality 
class were found between the three trained CNNs. In this 
context, previous studies show similar values but did not 
report detailed analyses of prediction probability values 
of several CNN models [4, 5, 14, 15]. We were able to 
demonstrate excellent concordance of the diagnosis pre-
diction between the three CNNs, although some differ-
ences in qualitative image inspection were found at the 
patch size level, which did not negatively affect the over-
all prediction output of the whole SRH image.

Furthermore, in the reliability analysis between the 
CNNs and the independent neuropathological evalu-
ation as the gold standard, the third developed CNN 
demonstrated the highest inter-rater agreement with 

Fig. 3  Step by step segmentation by analyzing patch-pixels. A Examples of SRH patches with metastatic tumor area (red box), a non-tumor area 
with reactive astrocytes (green box) and low-quality area without cells (blue box), SRH from a cervical squamous cell carcinoma brain metastasis. 
B Pixel-level probability heatmaps of each output class after patch-passing through all three residual CNNs in comparison. Small differences in 
classification at the patch size level did not affect the overall prediction output for the whole SRH image. See the left side of the asterisk (*) in the 
second CNN model. C The overall probability heatmaps after summing all patch predictions and mapped as a semi-transparent overlay to assist 
surgeon and neuropathologist for SRH image interpretation in addition to residual CNNs predictions. Scale bars = 100 μm

(See figure on next page.)
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Fig. 3  (See legend on previous page.)
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Table 1  Comparison of prediction probabilities of the three trained residual convolutional neural networks (CNN) in mean and 
standard deviation, and Intraclass correlation coefficient (ICC)

SRH images (n = 402) mean 
probability (± SD)

CNN 1 CNN 2 CNN 3 Reliability (ICC)

All

Tumor 73.9 (± 33.2) 76.9 (± 35.0) 76.5 (± 33.7) 0.962 (99% CI 0.953–0.969)

non-tumor 18.9 (± 33.1) 18.0 (± 32.7) 18.2 (± 31.6) 0.977 (99% CI 0.973–0.981)

Low quality 7.2 (± 15.2) 5.1 (± 16.4) 5.3 (± 15.7) 0.914 (99% CI 0.895–0.929)

Table 2  Overall distribution of the diagnostic classes from the residual CNNs and the independent neuropathologist with the inter-
rater agreement between CNNs correct predictions and the neuropathologist (NP)

NP CNN 1 CNN 2 CNN 3

SRH images n = 592

(All) 100%

Tumor 462 (78.0%) 459 (77.5%) 456 (77%) 469 (79.2%)

Non-tumor 113 (19.1%) 115 (19.4%) 117 (19.8%) 110 (18.6%)

Low quality 17 (2.9%) 18 (3%) 19 (3.2%) 13 (2.2%)

SRH images (three random 
areas)

n = 402

(Ground truth)

Tumor 326 (100%) 297 (91.1%) 298 (91.4%) 305 (95.0%)

Non-tumor 67 (100%) 46 (68.7%) 48 (71.6%) 49 (73.1%)

Low quality 9 (100%) 5 (55.6%) 5 (55.6%) 6 (66.7%)

Fig. 4  SRH image prediction ROC curves of the three trained and applied CNNs for A tumor, B non-tumor and C low quality tissue, ROC-AUC were 
similar across each CNN and are showing excellent diagnostic quality in accordance with the independent neuropathological review as ground 
truth

Fig. 5  Visual demonstration and internal consistency of the third CNN. A Shown is a specimen slide from the surgical approach, close to the tumor 
margin of a non-small cell lung cancer metastasis, with three random areas (A, B, C). B Digital H&E-like images A–C. C Visualization of prediction 
heatmaps for each output class. D Shown are the overlaying heatmaps with the largest and correctly calculated green area part for non-tumorous 
tissue (white matter). The asterisk and arrow in the middle image demonstrate small non-significant differences at patch size level between random 
areas. Scale bars = 100 μm

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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approximately 90% and showed excellent diagnostic sen-
sitivity and specificity regarding the evaluation of tumor, 
non-tumor tissue, and low-quality SRH images. It was 
therefore chosen for further validation and analysis. 
Other studies showed similar overall accuracy as well 
as ROC-AUC ranging from approximately 84 to 97% 
between the CNN- and neuropathological-based SRH 
image analysis [4, 5, 15, 16]. However, it should be noted 
that the CNN deployed in these studies had different out-
put classes with different loss functions.

The question has been previously raised whether multi-
ple scans in different areas of the same sample may even 
increase the diagnostic sensitivity. However, the intra-
sample consistency throughout multiple areas has not 
yet been addressed in previous studies. In that regard, we 
found an excellent consistency of the applied prediction 
output between the three different random areas from 
the corresponding specimen slide of tumor, tumor mar-
gin area, or healthy brain tissue. Even if small differences 
were observed on patch size level, the renormalized sum-
mation could anyway result in a consistent diagnosis. 
In the evaluation of IC, the third trained CNN with the 
highest agreement in accordance with the neuropatho-
logical evaluation also showed an excellent agreement 
between three random areas within a specimen sample in 
90.2%. This suggests that multiple scans within one sam-
ple in random areas may be deemed no longer necessary, 
resulting in an additional intraoperative time-saving.

Despite intraoperative technological advances like neu-
ronavigation, intraoperative MRI-guidance, fluorescence-
guided surgery, ultrasound modalities, and recently 
augmented reality applications [17–23], the surgeon still 
relies on rapid intraoperative histopathological diagnoses 
on a qualitative microscopic level for decision-making, as 
the aforementioned techniques have diverse limitations 
such as being prone to potential brain shift, limited reso-
lution sensitivity and signal specificity as well as depend-
ent to the varying uptake of fluorescent dyes used [18, 
24].

Alternative advanced techniques to our presented 
AI-based intraoperative optical laser system for quali-
tative diagnostics are the intraoperative confocal laser 
endomicroscopy. It provides noninvasive real-time imag-
ing. However, this technique is limited by the need for 
potential toxic fluorophores for contrast-enhancement 
and microstructure visualization [25]. Moreover, this 
technique requires intense user training and merely pro-
vides non-static gray scale confocal microscopic images 
[26–28], which is challenging imaging data to interpret 
even for trained neuropathologists. In comparison, the 
CNN-based label-free SRH image acquisition and analy-
sis studied here provides user independently fast feed-
back, and applicability in the operating room ex-situ and 

digital images familiarly color-coded like conventional 
H&E staining. The immediate assessment and connec-
tivity through digital image transfer systems may even 
provide rapid image and analysis review by the (neuro)
pathologist remotely.

Further randomized prospective studies in comparison 
to conventional histopathological workflows are manda-
tory for more detailed analysis and validation to establish 
such a workflow as a potential standard of care on a sus-
tainable basis.

A limitation of our study is that the neuropathologi-
cal evaluation and, thus, assessment of the ground truth 
for CNN comparison was performed by only one board-
certified neuropathologist. However, all pathological 
reviews of the SRH images have been done by the same 
trained independent neuropathology attending with over 
20  years of experience minimizing the systematic error. 
In addition, the diagnosis strategies differed between the 
CNNs (highest probability prediction value) and the neu-
ropathologist (binary value), which could influence the 
final comparison and therefore the accuracy of compari-
son between both. Since the CNN algorithm sums the 
patches and averages their prediction values for each of 
the three output classes, rather than providing the high-
est tumor prediction value of any of the patches, the 
sensitivity of CNN-based tumor probability diagnosis 
is, thus, limited in images containing very small tumor 
infiltrations. That is, in particular, true in cases when 
single or very few patches predict tumor—equivalent to 
tumor infiltration in the low micrometer range—while 
the rest of the SRH image is free of tumor. However, 
the averaging approach minimizes the misdiagnosis of 
the sample due to potential artifactual tumor detec-
tions in individual patches given the small size of a single 
patch (14.2 × 13.8  µm) relative to the whole SRH image 
(1.7 × 1.8 mm). In order to still enable the image reader’s 
correct interpretation of the CNN results in those cases, 
SRH image overlaying probability maps are provided in 
addition and spatially color-code these small tumor areas 
for a focused look where the CNN has detected tumor.

Additionally, it reports on a large dataset representing 
the entire spectrum of neurooncological diagnoses.

Conclusions
In conclusion, CNN-based intraoperative evaluation 
of SRH images enables label-free tumor detection, irre-
spective of dignity and entity, in a fully automated pipe-
line and provides a reproducible alternative pathway for 
intraoperative decision-making in neurooncological sur-
gery, independent of the conventional histopathologic 
frozen section examination.
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