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Abstract 

Traditionally, analysis of neuropathological markers in neurodegenerative diseases has relied on visual assessments 
of stained sections. Resulting semiquantitative scores often vary between individual raters and research centers, 
limiting statistical approaches. To overcome these issues, we have developed six deep learning-based models, that 
identify some of the most characteristic markers of Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA). 
The deep learning-based models are trained to differentially detect parenchymal amyloid β (Aβ)-plaques, vascular 
Aβ-deposition, iron and calcium deposition, reactive astrocytes, microglia, as well as fibrin extravasation. The models 
were trained on digitized histopathological slides from brains of patients with AD and CAA, using a workflow that 
allows neuropathology experts to train convolutional neural networks (CNNs) on a cloud-based graphical interface. 
Validation of all models indicated a very good to excellent performance compared to three independent expert 
human raters. Furthermore, the Aβ and iron models were consistent with previously acquired semiquantitative scores 
in the same dataset and allowed the use of more complex statistical approaches. For example, linear mixed effects 
models could be used to confirm the previously described relationship between leptomeningeal CAA severity and 
cortical iron accumulation. A similar approach enabled us to explore the association between neuroinflammation and 
disparate Aβ pathologies. The presented workflow is easy for researchers with pathological expertise to implement 
and is customizable for additional histopathological markers. The implementation of deep learning-assisted analy‑
ses of histopathological slides is likely to promote standardization of the assessment of neuropathological markers 
across research centers, which will allow specific pathophysiological questions in neurodegenerative disease to be 
addressed in a harmonized way and on a larger scale.
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Introduction
The evaluation of histopathological brain sections is of 
great importance in neurodegenerative disease, not only 
to obtain a definite diagnosis but also to study disease-
specific pathophysiological mechanisms. Alzheimer’s 
disease (AD) and cerebral amyloid angiopathy (CAA) are 
common neurodegenerative diseases in the elderly which 
are both characterized by accumulation of amyloid-β 
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(Aβ) in the form of parenchymal plaques [2] and vascular 
Aβ in the walls of the small cortical and leptomeningeal 
blood vessels [10]. Other histopathological observations, 
such as iron deposition (indicative of hemorrhage and 
siderosis) [7, 9], reactive astrocytes and microglia (indica-
tive of neuroinflammation) [19], and fibrin accumulation 
in the walls of small vessels and surrounding cells (indica-
tive of blood–brain-barrier [BBB] leakage) [12, 16] are 
also crucial to understand complex disease mechanisms. 
These markers have so far mainly been quantified using 
visual semiquantitative scores [11] or manual count [15, 
32]. Even when the scores are well-defined and their relia-
bility assessed by inter-rating [32], they remain subjective 
and time-consuming to standardize across centers [24]. 
Moreover, the lack of continuous measures can prevent 
investigators from using more complex statistical models 
to better test hypotheses regarding disease pathophysi-
ology. Several (semi)automated assessments have been 
developed to overcome these issues, but they mainly rely 
on pre-defined ranges of pixel color and intensity, such 
as red–green–blue (RGB) or hue-saturation-value (HSV) 
ranges [25, 30]. This makes them subject to the variability 
of fixation, slice thickness, stain intensity, and laboratory 
of origin. Furthermore, they do not allow the recogni-
tion and count of specific objects (e.g. detection of spe-
cific cells, such as individual astrocytes). Software that 
allow the characterization of specific cells exists [8, 23], 
but it requires direct interaction with the code and is not 
always customizable to the needs of a research question.

In the last decade, artificial intelligence, and particu-
larly deep learning, have gained importance in the anal-
ysis of medical image data [27, 14, 22]. Convolutional 
neural networks (CNNs), a form of deep learning, are 

particularly well-suited to extract patterns from imag-
ing data [17]. More recently, fueled by the widespread 
use of high-resolution whole slide imaging of histologi-
cal sections, CNNs have been applied to the analysis of 
digitized histopathological data [14]. Their use can facili-
tate the count of cells or other histological objects [29]. 
CNNs have also previously been trained to recognize and 
quantify CAA and Aβ-plaques [31]. However, the con-
current assessment of further markers (e.g. hemorrhagic 
or inflammatory) in the same data set is of importance to 
assess complex disease associations.

In this study, we present a workflow (Fig. 1) for training, 
application, and validation of customizable CNNs, aim-
ing to analyze various histopathological markers com-
mon in both AD and CAA. We used Aiforia® Cloud v4.6 
(Aiforia Inc., Cambridge, United States), a cloud-based 
platform, that supports all the steps to build CNNs for 
histopathological analysis, without requiring the user to 
have specific technical knowledge about deep learning or 
programming. Furthermore, we aim to validate the per-
formance of some of the CNNs in relation to previously 
obtained semiquantitative scores in the same datasets. 
Finally, we demonstrate that the continuous measures 
obtained by the CNNs allow building more complex sta-
tistical models to assess the interplay of different patho-
logical markers.

Materials and methods
Human brain tissue
The deep learning-based models were trained on and 
applied to digitized histopathological sections derived 
from available datasets in our lab. Sections from a total 
number of 47 autopsy cases were included that came 

Fig. 1  Workflow for development of histopathological deep learning-based models. (1) Preparation and staining of histopathological tissue 
sections; (2) Digitization of high resolution whole slide images; (3) Uploading on the Aiforia ® cloud based platform; (4) Annotations on a 
representative subset (approximately 10%) of the whole dataset and repetitive training of the separate convolutional neural networks (CNNs), that 
constitute the deep learning-based model (AI-model); (5) Application of the model on the whole dataset; (6) Validation of each CNN; (7) Statistical 
analysis
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from three separate sources: 1) cases with a definite diag-
nosis of cerebral amyloid angiopathy (CAA) [18] and 
non-CAA control cases from the neuropathology depart-
ment at Massachusetts General Hospital [35], 2) Alzhei-
mer’s disease (AD) cases from the South West Dementia 
Brain Bank at the University of Bristol (REC reference 18/
SW/0029), and 3) immunized (as well as placebo-treated) 
AD cases provided by Profs Boche and Nicoll at the Uni-
versity of Southampton (REC reference 075/03/w).

Histopathology
Standard sampled formalin fixed tissue blocks were pro-
cessed, embedded in paraffin, and cut in 6 μm-thick serial 
sections on a microtome. Immunohistochemistry was 
performed with antibodies against Aβ (1:200, Dako Cat# 
M0872), fibrin(ogen) (1:500, Dako Cat# A0080), glial 
fibrillary acidic protein (GFAP) (1:1,000, Millipore Sigma 
Cat# G9269), and cluster of differentiation 68 (1:500, 
Dako Cat# M0814). Briefly, sections were deparaffinized 
and rehydrated through xylene and graded ethanol series. 
Next, endogenous peroxidase was blocked with 3% H2O2 
(20  min), followed by formic acid treatment (for Aβ, 
5  min) or antigen retrieval in heated citrate buffer (for 
GFAP, and fibrin(ogen)). Tissue was then blocked with 
normal horse or goat serum (1  h) and incubated over-
night with the primary antibody at 4  °C. On the next 

day, the biotinylated mouse or rabbit secondary anti-
body was applied (1  h), followed by a mixture of avidin 
(A) and biotinylated HRP (B) for 30 min (Vectastain ABC 
kit, Vector laboratories, 30 min). 3,3’-Diaminobenzidine 
(DAB, Vector laboratories) was used as the chromogen. 
After DAB treatment, sections were counterstained with 
hematoxylin (10  s), dehydrated, and cover slipped with 
Fisher Chemical Permount mounting medium. Adjacent 
sections were stained with Luxol fast blue hematoxy-
lin and eosin (LH&E) for myelin, von Kossa for calcium, 
and Perls’ Prussian blue for iron depositions, following 
standard histological procedures. The number of sections 
stained with each method is reported in Table 1.

Training of CNNs
Stained sections were digitized using the NanoZoomer 
Digital Pathology (NDP)-HT whole slide scanner (C9600-
12; Hamamatsu Photonics, Hamamatsu, Japan) with a 
20 × objective. The obtained high-resolution (457  nm/
pixel; 55,579 dpi) digital whole slide images were then 
visualized using the NDP.view2 software (version 2.8.24) 
and next uploaded to the Aiforia® Cloud v4.6 (Aiforia 
Inc., Cambridge, United States) for image processing 
(cloud.aiforia.com).

Each deep learning-based model was trained on 
annotations (labelling) made by AAS and SJvV on 

Table 1  Characteristics of AI-models

The table summarizes the six models described in this study, listing the kind of staining for each set of sections, the number of sections on which the model was 
trained, and the layers by which the model was built. For each layer it is reported whether the convolutional neural network was trained to recognize an area or an 
object. Finally, the total number of sections on which the model was applied, those excluded after QC, and those on which the model was validated is reported. Key: 
IHC: immunohistochemistry; AD: Alzheimer’s disease; CAA: cerebral amyloid angiopathy; QC: quality control
* Note that the CD68 and calcium models were trained on and applied to sections derived only from cohorts 2 and 3 (AD cases), whereas the other four models used 
data from all 3 cohorts (AD and CAA cases)

AI model Aβ-model Iron model Fibrin model GFAP model CD68 model Calcium model

Stain IHC for Aβ Perls’ Prussian blue IHC for Fibrin(ogen) IHC for GFAP IHC for CD68 von Kossa

No. of training sec‑
tions/total no. of 
sections in dataset

13/146 16/144 13/142 11/144 8/39* 9/44*

Layer 1 Area Area Area Area Area Area

Leptomeningeal 
vessels

Tissue Non-vascular tissue Tissue Tissue Tissue

Tissue Vascular fibrin posi‑
tive tissue

Layer 2 Area Object Object Object Object Area (Calcium positive)

CAA​ Iron positive cells Fibrin positive cells Reactive astrocytes CD68 positive cells Neuronal

Amyloid-β plaques Vascular

Extracellular

Layer 3 Object

Calcium positive cells

No. of sections 
excluded after QC

4 5 3 0 0 0

No. of sections for 
validation

13 14 14 14 4 4
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a subset of the digital whole slide images (Table  1). 
Annotations were made using either a drawing tool or 
an object detector provided by the graphical interface. 
The subset constituted of approximately 10% of the 
available sections, which were chosen to ensure captur-
ing the variability in image and staining quality across 
each dataset.

The models consisted of multiple nested ‘layers’, where 
each subsequent child ‘layer’ only analyses pixels passed 
by the previous. The ‘layers’ are independent CNNs that 
run in a sequential and dependent fashion mimicking 
human decision making for scoring pathology images. 
Individual CNNs (or layers) were combined sequentially 
to create a single model capable of simultaneous detec-
tion of tissue areas and objects of interest. CNNs were 
trained using an increasing number of annotations and 
iterations, until the model performed satisfactorily. Addi-
tional information for the advanced parameters of each 
CNN, such as image augmentation parameters, percep-
tive view (field of view), and level of complexity are sum-
marized in Additional file 1: Tables 1 – 6.

CNNs were trained to recognize and quantify areas or 
objects, depending on the features of interest. Examples 
of areas are “non-vascular tissue” vs “vascular tissue” or 
“cortical tissue” vs “leptomeningeal tissue”. Examples 
of object detection were “iron positive cells” and “fibrin 
positive cells” (See Table  1 for details and Fig.  2 as an 
example).

Deep learning‑based models and their output measures
Six separate deep learning-based models were trained 
to quantify distinct histopathological features common 
to both AD and CAA (Table  1 and Additional file  1: 
Tables 1, 2, 3, 4, 5, 6).

(1)	 Aβ model: Percentage area of leptomeningeal CAA 
(leptomeningeal CAA area [mm2]/leptomeningeal 
tissue area [mm2]); percentage area of CAA (cor-
tical CAA area [mm2]/cortical tissue area [mm2], 
WM CAA area [mm2]/WM tissue area [mm2]); 
percentage area of Aβ-plaques (cortical Aβ-plaques 
area [mm2]/cortical tissue area [mm2], WM 
Aβ-plaques area [mm2]/WM tissue area [mm2]).

(2)	 Iron model: Cortical density of iron positive cells 
(number of iron positive cells/cortical tissue area 
[no/mm2]).

(3)	 Fibrin model: Percentage area of fibrin positive 
vascular tissue (fibrin positive vascular tissue area 
[mm2]/(cortical tissue area [mm2] + fibrin positive 
vascular tissue area [mm2])); density of fibrin posi-
tive cells (number of fibrin positive cells/tissue area 

[mm2]). Measures were calculated for both cortex 
and WM.

(4)	 GFAP model: Cortical density of reactive astrocytes 
(number of GFAP positive cells/cortical tissue area 
[no/mm2]).

(5)	 CD68 model: Density of activated microglia (num-
ber of CD68 positive cells/tissue area [no/mm2]). 
Measures were calculated for both cortex and WM.

(6)	 Calcium model: Percentage of calcium positive 
tissue area (total calcium positive area [mm2]/
tissue area [mm2]); percentage of calcium posi-
tive vascular tissue area (calcium positive vascular 
area [mm2]/tissue area [mm2]); percentage of cal-
cium positive extracellular area (calcium positive 
extracellular tissue area [mm2]/tissue area [mm2]); 
percentage of calcium positive cellular area (cal-
cium positive cellular tissue area [mm2]/tissue area 
[mm2])). Measures were calculated for both cortex 
and WM.

Application of CNNs
Once trained, the CNNs were applied respectively to 
all available sections. To obtain results for cortical grey 
matter (GM) and white matter (WM), sections were first 
manually segmented into regions of interest, guided by 
the adjacent LH&E-stained sections, which provides 
excellent contrast between GM and WM.

All sections were then visually inspected to evaluate 
CNN performance. Firstly, quality control was performed 
at 1 × magnification to assess tissue recognition. Sections 
that showed more than 5% mislabeling of tissue were 
excluded from further analysis. Secondly, two randomly 
chosen areas of the section were inspected at 20 × magni-
fication and the respective section excluded if the objects 
or area classification within the zoomed in region was 
erroneous for more than 5% (Table 1).

Validation of CNNs
Next, validation of all CNNs was performed on an inde-
pendent test set constituted by a subset of sections 
(approximately 10% of digital whole slide images), dif-
ferent from those on which the model had been trained. 
Ten validation regions per layer, per section were drawn 
by VP. Within these regions, the marker of interest was 
annotated by three independent human validators (SJvV, 
AAS, and MGK). The percentage of false positives (FP), 
false negatives (FN), precision (TP/[TP + FP]), sensitivity 
(TP/[TP + FN]) and F1-score (2 × Precision x Sensitiv-
ity/[Precision + Sensitivity]) for each CNN versus each 
human validator were obtained for all validation regions 
and subsequently averaged across all validators. To 
determine the overall performance of each model, these 
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measures were then averaged across the three validators 
(Fig.  3). The same measures were calculated to evaluate 
the performance among validators.

Semiquantitative scores
The reliability of the Aβ and iron models were assessed 
by comparing the AI-assisted quantitative measures 
(percentage area of cortical and leptomeningeal CAA, 

percentage area of cortical parenchymal Aβ-plaques, 
and density of cortical iron positive cells) with previ-
ously obtained semiquantitative scores [10, 31]. For 
this purpose, a subset of 68 sections were used, derived 
from a total number of 17 CAA and non-CAA cases (7 
females, 10 males; mean age at death [standard devia-
tion] 76.53 [10.10] years) from the MGH cohort (see 
[11] for more details). These sections included standard 

Fig. 2  Example of the application of a deep learning-based model (fibrin). Fibrin-stained digitized whole slide section (a) and the corresponding 
heat map for the fibrin model (b). Black lines represent the manual segmentation of the cortex. Details are shown respectively in the insets (c, d). 
The fibrin model was trained to recognize the classes of fibrin positive vascular (blue) and non-vascular tissue (green), as well as fibrin-positive cells 
(circled in red). Legend of the model as it appears in the Aiforia ® interface is shown (e)
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sampled areas from the frontal, parietal, temporal, and 
occipital lobes.

The digitized histopathological sections were visually 
assessed using the NDP.view2 software (version 2.8.24). 
Cortical and leptomeningeal CAA severity respectively 
were evaluated on Aβ-stained sections using a 4-point 
scale: absent (0), scant Aβ deposition (1), some circum-
ferential Aβ (2), and widespread circumferential Aβ 
(3) [24]. Similarly, degree of cortical Aβ-plaques was 
assessed using a 4-point scale as absent (0), mild (1), 
moderate (2), and severe (3) [21]. Presence and sever-
ity of iron-positive deposits in the cortical layers were 
determined on Perls’ Prussian blue-stained sections as 
absent (0), mild (1), moderate (2), and severe (3). For 
these scores, consensus was achieved or inter-rating 
performed, as previously reported [11]. Within the 
CAA cases (n = 13 cases, total number of 52 sections), 
we used a linear mixed effects (LME) model to assess 
the relationship between cortical and leptomeningeal 
CAA and density of iron-positive cells in the cortex.

Association between reactive astrocytes and Aβ 
pathologies in CAA​
Next, the association between reactive astrocytes, 
Aβ-plaques, and cortical CAA was assessed within a 
subset of the CAA cases from the MGH cohort (n = 13 
cases, total number of 52 sections) [11]. The analysis 
was performed using an LME model.

Statistical analysis
Statistical analyses were performed using the software 
R, version 3.6.0 (R Foundation for Statistical Com-
puting, Vienna, Austria; www.R-​proje​ct.​org) and the 
Statistical Package for Social Science (IBM SPSS Statis-
tics), version 25. Significance was set at p < 0.05 and all 
values were two-tailed. Spearman rank-order correla-
tion coefficient was calculated between CNN-derived 
measures (percentage of cortical and leptomeningeal 
CAA area, percentage of Aβ-plaque area, and density of 
iron-positive cells) and semiquantitative scores.

We then used linear mixed effects models (LME), with 
the R-package “lme4” version 1.1–26 [4], to test whether 
leptomeningeal and/or cortical CAA were a predictor of 

density of iron-positive cells in the cortex. Subject and 
cortical region (frontal, temporal, parietal, and occipital) 
were defined as random factors, in this way accounting 
for subject and region dependent differences in pathol-
ogy. A second LME model was adopted, to assess the 
association between Aβ-plaques, cortical CAA, and 
reactive astrocytes. Fixed factors were age at death, 
sex, percentage of cortical CAA area and percentage of 
Aβ-plaque area, whereas subject and cortical region were 
set as random factors. Cortical density of GFAP-positive 
cells was the dependent variable.

Results
Performance of deep learning‑based models
Visual quality control was completed on all sections on 
which the models were applied and showed an excel-
lent performance of the GFAP (Additional file 1: Fig. 1), 
CD68, and calcium models. Based on our pre-specified 
exclusion criteria, no section needed to be excluded 
in these models. Misclassification of > 5% tissue or one 
of the markers of interest resulted in exclusion of four, 
five, and three sections in respectively the Aβ, the iron, 
and the fibrin model (Table  1). Hence, the number of 
excluded sections remained below 5% for each dataset.

All CNNs were validated according to the annota-
tions performed by three independent validators on 
predefined validation regions. Precision, sensitivity, and 
F1-score were good (> 80%) to excellent (> 90%) for all 
CNNs (Fig. 3), except for GFAP- and fibrin-positive cells, 
which showed a precision of 73.94% and 75.12% respec-
tively. This can be attributed to a relatively high number 
of GFAP and fibrin positive cells that were identified by 
the CNN, but not consistently classified as reactive astro-
cytes by the raters (false positives). Validators showed 
similar levels of agreement among each other as com-
pared with the CNNs (Additional file 1: Fig. 2).

Association between visual semiquantitative scores 
and deep learning‑derived measures
After visual quality control, three of the 68 sections were 
excluded for calculations concerning the Aβ model and 
three from those concerning the iron model (see above). 
Semiquantitative scores (0–3) of cortical and leptomenin-
geal CAA strongly correlated with deep learning-derived 

(See figure on next page.)
Fig. 3  Heatmaps for validation measures of deep learning-based models. The heatmaps show validation measures for all deep learning-based 
models, with precision, sensitivity and F1-score (rows) for each convolutional neural network (CNN) (column) calculated as an average of all regions 
of interest and all three validators. These values represent therefore the performance of the model compared to the ground truth (i.e. all external 
validators). Key: False positives (FP), false negatives (FN), precision (TP/[TP + FP]), sensitivity (TP/ [TP + FN]) and F1-score (2 × Precision x Sensitivity/
[Precision + Sensitivity])

http://www.R-project.org
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Fig. 3  (See legend on previous page.)
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measures of cortical and leptomeningeal CAA percent-
age area (cortical CAA: ρ = 0.82, p < 0.001; leptomenin-
geal CAA: ρ = 0.75, p < 0.001) (Fig.  4). Semiquantitative 
scores (0–3) of cortical Aβ-plaques were also strongly 
associated with deep learning-derived Aβ-plaques per-
centage area (ρ = 0.84, p < 0.001) (Fig.  4). Moreover, 

semiquantitative scores (0–3) of iron deposits strongly 
correlated with the density of iron positive cells identified 
by the AI (ρ = 0.72, p < 0.001) (Fig. 5).

The few discrepancies between the results of the CNNs 
and the semiquantitative scores were visually inspected 
and could be explained by either human error, higher 

Fig. 4  Correlation between semiquantitative scores and deep learning-derived measures for the amyloid-β model. Leptomeningeal vessels 
differentially affected by CAA are shown (a absent; b mild; c moderate; d severe) together with the related deep learning-derived prediction (a’–d’). 
Similarly, representative cortical vessels with different degrees of CAA accumulation are shown (f absent; g mild; h moderate; i severe) together 
with the related deep learning-derived prediction (f’-i’). Finally, degrees of Aβ-plaque severity are shown (k absent; l mild; m moderate; n severe) 
together with the deep learning-derived prediction of the same area (k’–n’) Box plots show the correlation between semiquantitative visual scores 
obtained in a total number of 65 whole slides for leptomeningeal CAA (e), cortical CAA (j), and Aβ-plaques (o) and the respective measure obtained 
using the deep learning-model. Interquartile range (top and bottom of the box), median (central band), outliers (data points beyond the whiskers), 
and individual data points are visualized. Key: green = cortical tissue; yellow = leptomeningeal tissue; red = CAA; blue = Aβ-plaques
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sensitivity of the deep learning-based model, or patchy 
distribution of the pathology (Additional file 1: Fig. 3).

Next, we used the newly obtained continuous meas-
ures from the iron and Aβ models which reproduced the 
previously reported relationship between leptomeningeal 
CAA severity and degree of cortical superficial sidero-
sis in a clinical CAA cohort [11]. Using an LME model, 
the density of iron-positive cells in the cortex was asso-
ciated with the percentage of leptomeningeal CAA area 
(β = 0.64; 95% confidence interval (CI) [0.08—1.150]; 
p = 0.014), but not percentage of cortical CAA area 
(β = -6−29; 95% confidence interval (CI) [−18.21—5.65]; 
p = 0.278), confirming previous observations derived 
from semiquantitative scores. The total LME model’s R2 
was 0.49.

Cortical CAA is associated with density of reactive 
astrocytes
Finally, we explored the relationship between reactive 
astrocytes and disparate types of Aβ pathologies, using 
an LME model. Cortical CAA percentage area (β = 7.28; 
95% confidence interval (CI) [−  0.71–14.80]; p = 0.059), 
but not Aβ-plaques area (β = −  1.36; 95% confidence 
interval (CI) [− 3.81–1.23]; p = 0.260) tended to be asso-
ciated with the density of reactive astrocytes in the cor-
tex. This exploratory finding suggests that accumulation 
of Aβ in the walls of blood vessels rather than the paren-
chyma may result in neuroinflammation in the form of 
reactive astrocytes. The total LME model’s R2 was high 
(0.81).

Discussion
In this study, we presented a deep learning-based work-
flow to obtain quantitative measures of common histo-
pathological features of AD and CAA. The cloud-based 
platform Aiforia ® enabled us to build six deep learning-
based models to identify and quantify the two hallmark 
Aβ pathologies of AD and CAA (Aβ-plaques and vas-
cular Aβ-deposition), as well as other histopathologic 
alterations that play a role in the pathophysiology of both 
neurodegenerative diseases. The models enabled us to 
produce objective, continuous measures for density of 
iron-positive cortical cells, which have been identified 
in AD [7, 11] and which represent the pathological cor-
relate of cortical superficial siderosis, a characteristic 

neuroimaging marker of CAA [11, 34]. Furthermore, we 
were able to identify GFAP positive cells (a marker of 
reactive astrocytes) and CD68 positive cells (a marker of 
activated microglia), which are both indicative of neu-
roinflammation [3, 20, 26]. The activation of neuroin-
flammatory pathways has increasingly been recognized 
as a key element involved in AD and CAA [18, 33] and 
may be a response to BBB leakage [16]. The fibrin model 
detects and quantifies fibrin positive cells and vessels as a 
measure of plasma protein extravasation from the blood 
vessels and is thus an indicator of BBB leakage [11, 15, 
23]. The final model targeted calcium positive areas, 
which have previously been observed in the hippocam-
pus of AD patients [30] and within the context of severe 
CAA [7].

The performance of the CNNs based on precision, 
specificity and F1-score was very good (> 80%) to excel-
lent (> 90%) for all models. Validators showed similar 
measures of agreement between each other and with 
the deep learning-based models. Exceptions were pre-
cision for the identification of GFAP and fibrin positive 
cells (73% and 75% respectively). Both indicate a lower 
positive predictive value, due to relatively high number 
of false positives: non-astrocytic GFAP positive cells for 
the former and capillaries for the latter. Further optimiza-
tion of these models may therefore be warranted prior to 
applying them to additional (external) datasets. The deep 
learning-derived measures were consistent with experts’ 
observations for leptomeningeal and cortical CAA, 
Aβ-plaques, and iron-positive cells, as it has previously 
been shown with similar approaches [29]. These results 
represent an incentive to use these deep learning-derived 
measures in future studies.

In general, deep learning-based models can help to 
upgrade the pathological staging and grading of CAA 
and Aβ-plaques. Scales that assess severity of CAA [1, 
24] and Aβ-plaques [21] pathology on single histopatho-
logical sections could benefit from such models that 
increase precision (e.g. using percentage area of the tis-
sue occupied by the pathology of interest, rather than 
semiquantitative scores). Even when the scoring proto-
cols are carefully described and inter-rating performed, 
they can be misinterpreted and often leave some room 
for subjectivity (e.g. does the score report the CAA/
Aβ-plaques averaged severity of the whole section or the 

(See figure on next page.)
Fig. 5  Iron model and correlation with the respective semiquantitative score. Severity of cortical iron deposits is shown in the overview (a 
absent; b mild; c moderate; d severe) and in greater detail in the insets, which reveal iron-positive cells (in blue) (a’–d’). a’’–d’’ show the respective 
deep learning-derived prediction. Within the manually segmented cortex (black lines in a–d), tissue area recognized by the model is overlaid in 
green, while objects (iron-positive cells) are identified by light blue circles. Iron-model heat map of a whole slide from a CAA case with cortical 
superficial siderosis (e). Box plots show the correlation between semiquantitative visual scores and continuous measures derived using the deep 
learning-based model in a total number of 65 whole slides. Interquartile range (top and bottom of the box), median (central band), outliers (data 
points beyond the whiskers) and individual data points are visualized. Key: green = cortical tissue; light blue = iron-positive cells
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Fig. 5  (See legend on previous page.)
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most severe pathology found?). Furthermore, while the 
harmonization of a semiquantitative score requires time-
consuming consensus meetings among experts [24], the 
performance of an AI-model could be easily and objec-
tively evaluated across cohorts, thus increasing feasibil-
ity of harmonized multicentric studies. Moreover, the 
description of neuropathological stages of AD based on 
the topographical distribution of Aβ-plaques [13] and 
neurofibrillary changes [6] might benefit from adding 
a more quantitative approach to the existing descrip-
tive ones. The distinction between different pathologi-
cal subtypes of Aβ-plaques (e.g. diffuse, neuritic, dense 
core, and the newly described coarse-grained plaques) [5] 
and CAA (e.g. capillary CAA) [22, 35] has proven feasi-
ble with CNNs [29] and can also be achieved through our 
workflow. Given that different types of Aβ-plaques may 
reflect different mechanisms [28], their differential quan-
tification could provide more insight into the disease 
pathophysiology. The added value of using deep learning 
is the possibility to incorporate many different aspects of 
pathological phenotyping (different forms of proteinopa-
thy, quantification of their severity, their subtypes, and 
topographical distribution) within a single analysis.

The availability of continuous measures allows the use 
of more complex statistical models that depend on con-
tinuous outcome variables, such as LME models, which 
can combine a greater number of predictors than the 
more limited approaches applicable to discontinuous cat-
egorical variables. For example, we assessed the relation-
ship between density of cortical iron-positive cells and 
CAA using an LME model. In this way, we reproduced 
the previously observed association between leptomenin-
geal CAA and iron-positive cells (i.e. the histopathologi-
cal correlate of cortical superficial siderosis) [11], while 
also controlling for cortical CAA as a potential con-
founder. As suggested before, these findings confirm the 
notion that cortical superficial siderosis is the result of 
chronic bleeding form leptomeningeal blood vessels with 
severe CAA rather than cortical blood vessels, which 
are significantly less affected in CAA cases with sidero-
sis. Adopting a similar model, we were able to investigate 
the association between reactive astrocytes and two dis-
parate manifestations of Aβ deposition within the same 
brain area: parenchymal vs. vascular Aβ. Interestingly, we 
found that reactive astrocytes were more strongly associ-
ated with cortical CAA compared to Aβ-plaques. This is 
in line with the notion that astrocytes play an important 
role in regulating the BBB [9] and the neurovascular unit 
[15], which are both disrupted in the context of severe 
vascular Aβ deposition. Similar approaches of neuro-
pathological analysis could benefit the precise localiza-
tion and quantification of microglia, pericytes, and other 
cell types and thus better understand the role these cells 

play in neuroinflammatory responses in individuals with 
coexisting AD and CAA pathologies.

In summary, the use of deep learning in the assessment 
of histopathological markers has several advantages over 
traditional approaches. First, it provides more objec-
tive measures than semiquantitative scores. Second, the 
availability of continuous measures enables the applica-
tion of more complex statistical models, such as LME 
models, that allow to account for a greater number of fac-
tors. Third, after the successful training of a CNN, this 
approach is more sustainable when compared with the 
alternative time-consuming rating or counting and can 
thus potentially facilitate harmonization of histopatho-
logical analysis across cohorts. Finally, the use of an online 
cloud-based platform such as Aiforia ®, offers the possi-
bility to researchers without specific knowledge in deep 
learning to train and validate CNNs for histopathological 
analysis.

A limitation of this study includes the use of a proprie-
tary software that is not open source. That said, the mod-
els described in this study are available within the Aiforia 
® platform to other investigators who seek to analyze 
similar datasets. These models offer advantages that are 
particularly valuable for statistical analysis and thus for 
research purposes, whereas their use and potential ben-
efit for clinical neuropathological diagnostic has not been 
evaluated here.

Conclusion
To the best of our knowledge, this is the first study to 
present a variety of deep learning-based-models, able to 
identify and quantify several biologically relevant histo-
pathological markers of AD and CAA. Most importantly, 
the chosen workflow is easy for any researcher with 
pathological expertise to implement, provides objective 
quantitative measures, and is customizable for further 
markers and research questions. In conclusion, the appli-
cation of deep learning in general opens new avenues for 
the use of histopathology in the study of neurodegenera-
tive disease and facilitates harmonization across datasets 
and centers.
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