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CASE REPORT

Single‑cell multimodal analysis 
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Karthick Natarajan1,2*  , Jesper Eisfeldt3,4, Maria Hammond5, José Miguel Laffita‑Mesa1,2, Kalicharan Patra1,2, 
Behzad Khoshnood1,2, Linn Öijerstedt1,2 and Caroline Graff1,2* 

Abstract 

We identified an autosomal dominant progranulin mutation carrier without symptoms of dementia in her lifetime 
(Reduced Penetrance Mutation Carrier, RedPenMC). This resistance to develop expected pathology presents a unique 
opportunity to interrogate neurodegenerative mechanisms. We performed multimodal single-nuclei analyses of post-
mortem frontal cortex from RedPenMC, including transcriptomics and global levels of chromatin marks. RedPenMC 
had an increased ratio of GRN-expressing microglia, higher levels of activating histone mark H3k4me3 in microglia 
and lower levels of the repressive chromatin marks H3k9me1 and H3k9me3 in the frontal cortex than her affected 
mutation carrier son and evidence of higher protein levels of progranulin in both plasma and brain homogenates. 
Although the study is limited to one case, the results support that restoring brain progranulin levels may be sufficient 
to escape neurodegeneration and FTD. In addition to previously identified modifier genes, it is possible that epige‑
netic marks may contribute to the increased progranulin expression in cases of reduced penetrance. These findings 
may stimulate similar follow-up studies and new therapeutic approaches.
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Introduction
In 2006, it was demonstrated that pathogenic progranulin 
(GRN) mutations can cause autosomal dominant Fronto-
temporal dementia (FTD), histopathologically character-
ised by aggregation of ubiquitin-binding protein p62 and 
phosphorylated TAR DNA-binding protein 43 (pTDP-
43) in the frontal cortex [4, 11, 15]. GRN is a pleiotropic 
growth factor and pathogenic mutations reduce GRN 
protein levels in the brain, plasma and cerebrospinal fluid 
[11]. Various studies identified modifiers of disease risk 
and age at onset in GRN mutation carriers [27, 28, 42, 65, 

71]. In rare cases, mutation carriers completely escape 
the disease phenotype known as “reduced penetrance” 
[2, 12]. The underlying mechanism behind reduced pene-
trance is unclear but may be influenced by several factors 
including transcriptomic and epigenetic modifications as 
well as other factors [12]. There are distinct changes in 
the transcriptome and chromatin landscape in different 
brain regions of dementia when compared to aged con-
trols [5, 7, 26, 58, 69]. Growing evidence is also showing a 
link between aging and changes in histone profiles, both 
the number of histone proteins per cell and in the bal-
ance of activating and repressing histone modifications 
[7, 10, 52].

Lately, high-throughput, droplet-based single-nuclei 
RNA-Seq (snRNA-Seq) has been employed to study dif-
ferent neurological disorders [20, 35, 50, 62]. Moreover, 
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snRNA-Seq has been combined with nuclei hashing 
using oligo-barcoded antibodies to allow for multiplex-
ing without altering transcriptional profiles [18]. Cellular 
Indexing of Transcriptomes and Epitopes by Sequencing 
(CITE-Seq) is a multimodal method that enables simulta-
neous analysis of transcriptome and protein targets at a 
single-cell resolution [55].

This study includes a rare case of reduced penetrance 
(RedPenMC), a 96-year-old female GRN mutation 
(p.Tyr294*) carrier who had no signs of FTD in her life-
time, her affected GRN mutation carrier (AMC) son from 
the same family and an unaffected non-carrier (NC). We 
used the frontal cortex to perform single-cell multimodal 
measurements [72] of the transcriptome and global lev-
els of several histone modifications using CITE-Seq [18] 
since bulk tissue transcriptome analysis will be inad-
equate to map cell-type-specific molecular changes [62, 
72].

Case presentation
A 96-year-old female (RedPenMC), carrying the patho-
genic GRN mutation (p.Tyr294*) [11] and who was devoid 
of any cognitive impairment or neurological abnormali-
ties until death was identified (Fig.  1A, B). Our Sanger 
sequencing of cDNA (synthesized from total RNA) from 
frozen prefrontal cortex Brodmann Area 10 (BA10) con-
firmed that mutant mRNA was not expressed in Red-
PenMC (Fig. 1C), which is in line with previous data that 
GRN non-sense mutations cause non-sense mediated 
mRNA decay, leading to haploinsufficiency [53]. The 
GRN haploinsufficiency of the affected mutation carrier 
(AMC.26) as well as the RedPenMC, was confirmed by 
reduced serum GRN levels (Fig. 1D). The Genetic Fron-
totemporal Dementia Initiative (GENFI) have reported 
that plasma levels below 61.55  ng/mL is a predictor of 
GRN mutations [16] and more recently the suggested 
threshold was 71.0  ng/mL [51]. The relative GRN level 
was higher in RedPenMC (45.70  ng/ml) compared to 
AMC.26 (31.49  ng/ml). Whole-genome sequencing 
(WGS) of blood DNA was used to scan for genetic modi-
fiers associated with GRN mediated FTD in RedPenMC, 
and two of her offspring AMC.26, and the control NC.94 

(Additional file 2: Table S5). The genotypes for rs5848, a 
GRN 3’ UTR variant, was (C/T) in AMC.26 and (C/C) 
in RedPenMC. The ‘C’ allele is a less efficient binding 
site for miR-659 compared to the ‘T’ allele, where miR-
659 is suggested to reduce GRN expression by inhibiting 
its translation [23]. Another reported modifier known 
to affect GRN levels as well as the age of onset [13, 14, 
17, 61] in GRN mediated FTD is SNP rs1990622 in the 
TMEM106B gene, implicated in the proper functioning 
of the lysosome. The A/G genotype (G protective allele) 
was present in RedPenMC whereas the A/A genotype (A 
risk allele) was present in AMC.26. Genotypes of other 
possible modifier genes (GFAR2, CDH23, PSAP, CELSR2, 
SORT1) are presented in Additional file 2: Table S5. Red-
PenMC carries only one copy of the rs7869 T-allele asso-
ciated with increased PSAP and lower plasma PGRN 
levels [37], no C-allele for rs646776 which is associated 
with increased SORT1 mRNA levels and reduced plasma 
PGRN levels [9] and finally RedPenMC is homozygous 
AA for GFAR2 where AA homozygotes have an increased 
disease risk associated with decreased brain GFRA2 
mRNA levels but no reported effect on extracellular lev-
els of PGRN [42].

Immunohistochemistry in RedPenMC showed an 
absence of immunoreactivity towards p62 and pTDP-43 
in the frontal cortex similar to the findings in age and 
gender-matched NC whereas AMC.26 showed character-
istic p62 and pTDP-43 aggregations (Fig. 1E, red arrows).

Single‑cell multimodal analysis of RedPenMC, AMC.26 
and NC.38
CITE-Seq was performed to comprehend cell-type-
specific molecular changes in RedPenMC and AMC.26 
(Fig.  2A–D, details refer Additional files 1 & 2). Frozen 
BA10 from RedPenMC, from an unrelated age and gen-
der-matched control (NC.38) and from AMC.26 (Addi-
tional file  2: Table  S2a) were processed for unbiased 
isolation of nuclei and the nuclei were stained for a panel 
of 15 nuclear proteins (Additional file 2: Table S3) includ-
ing histone marks followed by sequencing using 10X 
genomics chromium. After quality control, we obtained 
18,266 single nuclear transcriptome profiles from 

Fig. 1  Clinical, genetic and immunohistochemical analysis of AMC and RedPenMC. A Pedigree of the RedPenMC (I-2). 96-year-old female with GRN 
(p.Tyr294*) mutation. AOD: age of death, AO: age of symptom onset. Also see Additional file 2: Table S1. B Genotyping by Sanger sequencing of the 
family members for the GRN (p.tyr294*) mutation showing the T > G substitution (c.882T > G) at g.42428777T > G known as rs794729670 [11, 39]. 
C Sanger sequencing of GRN (exon9) cDNA generated from frozen brain BA10 of RedPenMC showing only the wild type allele T at position c.882. 
D Serum levels of GRN measured using ELISA in three technical replicates for each donor. E Immunohistochemical staining of the frontal cortex 
of AMC.26 (red arrows) and RedPenMC against p409/410 TDP-43 and p62. A 96-yr-old female NC was used as a control. Hematoxylin was used as 
a nuclear counterstain. The control paraffin sections were obtained from the Netherlands Brain Bank (NBB, refer Additional file 2: Table S2b). Scale 
bar:200 µm & 2 µm. L2/3: Cortical layer 2/3

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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RedPenMC, AMC.26 and NC.38 with a median detec-
tion of 2223 expressed genes per cell. In parallel, nuclei 
hashing yielded 9925 protein profiles after the quality 
control, we used the Nuclear Pore Complex (NPC) for 
quantification. Cell clusters were identified using the 
Seurat single cell analysis toolkit [56], and the distinct cell 
clusters were annotated according to different cell lineage 
markers, resulting in the detection of 15 cell types includ-
ing excitatory and inhibitory cortical neurons, astrocytes 
and microglia (Fig.  2B, C). Neuronal subtypes included 
excitatory neurons upper layer CUX2, middle layer 
RORB, deep layer TSHZ2 [59] as well as inhibitory neu-
rons (IN) marked with GAD1, which included different 
subtypes IN-PV, IN-SST, IN-VIP and IN-SV2C (Fig. 2C). 
All the cell types were represented in all three samples 
except IN-SST (only in NC.38), T-cells (only in AMC.26 
and RedPenMC) and perivascular macrophages (only in 
RedPenMC). These cell types were not considered in the 
subsequent analysis. Using cellular annotation from the 
transcriptome, we mapped the global levels of 14 nuclear 
proteins for each cell type (Fig.  2D). The protein panel 
included chromatin marks: H3k4me3, H3k9me1 and 
H3k9me3.

We assessed the GRN expression by analysing the 
expression levels of the different GRN-splice variants 
in frozen BA10 (refer Additional file1 & 2) from Red-
PenMC, AMC (n = 3), and unrelated NC (age and gen-
der-matched to AMC and RedPenMC, n = 3, Fig.  3B). 
Overall, the total GRN expression, including all splice 
variants (S1, S2, S3, S4) was higher (P < 0.005) in Red-
PenMC compared to AMC. Especially, splice variant ‘S2’ 
was significantly increased in RedPenMC compared to 
AMC and NC. The ‘S2’ splice variant upregulated in Red-
PenMC, includes rs5848 in the 3’ UTR region [44]. These 
results indicate that total GRN expression in bulk RNA 
was higher in RedPenMC compared to AMC and NC, at 
least for some isoforms.

GRN is a ubiquitously expressed protein [36]. To char-
acterize the GRN expression in BA10 of RedPenMC, we 
computed the distribution of cells expressing detectable 
levels of GRN across each cell type (Fig. 3A). The fraction 
of microglia expressing GRN was higher in RedPenMC 
(P < 0.05) compared to AMC.26 and NC.38 (Fig.  3A). 
However, there was only a trend towards a significantly 

lower total GRN expression in AMC.26 compared to 
RedPenMC (P = 0.054, log2fold change − 0.254), possi-
bly due to the low sequencing-depth and relatively low 
overall signal to noise GRN expression levels. We also 
observed a high concordance between GRN expres-
sion and PSAP expression [71] in microglia in both GRN 
mutation carriers (Additional file  2: Table  S4). Western 
blot analysis of homogenized frozen BA10 showed that 
RedPenMC had brain progranulin protein-levels closer to 
the levels in the control NC.38 than the levels in AMC.26 
(Additional file 3: Fig. S2A).

To apprehend the transcriptome profile of Red-
PenMC, we compared nuclear profiles with AMC.26 
and NC.38 (Additional file 2: Table S6). We detected 465 
differentially expressed genes (DEGs, P < 0.05; log2fold 
change ± 0.5) in the comparison between RedPenMC 
and AMC.26 (Fig. 3C) and 555 DEGs between AMC.26 
and NC.38. Finally, we compared RedPenMC and NC.38, 
resulting in the detection of 589 DEGs.

In RedPenMC vs AMC.26, the highest number of 
DEGs were found in microglia followed by astrocytes and 
endothelial cells. The statistical testing revealed the DEGs 
burden in microglia were significant (P < 0.05) compared 
to other cell types. Similar DEGs burden analysis per 
cell type was carried out for AMC.26 vs NC.38 and Red-
PenMC vs NC.38 and the analysis yielded no significant 
differences (Fig.  3C). Previously, it was reported that 
GRN haploinsufficiency can be extended to the micro-
glial expression of GRN [20, 49] and loss of GRN affects 
microglial phenotype as well as transcriptome profile. 
Next, we explored the intersection of DEGs in microglia 
and 257 Disease-associated microglial genes (DAM) [8, 
29, 35, 54] and found APBB2, PMP22, CD9 to be upreg-
ulated in the AMC.26 (Additional file  2: Table  S6). GO 
analysis of DEGs indicated that “astrocyte differentia-
tion”, “oligodendrocyte differentiation” and “regulation of 
neuron differentiation” were among the enriched dysreg-
ulated pathways (Additional file 3: Fig. S1A). Thereafter, 
we intersected the number of DEGs and GO among three 
comparison groups described earlier (Fig.  3D, Addi-
tional file  3: Fig. S1B). 10% of DEGs were overlapping 
between RedPenMC vs AMC.26 and AMC.26 vs NC.38. 
Moreover, 26% of DEGs were overlapping between Red-
PenMC vs NC.38 and AMC.26 vs NC.38 (Fig.  3D). GO 

(See figure on next page.)
Fig. 2  Overview of the experimental approach and CITE-Seq datasets. A Cellular Indexing of Transcriptomes and Epitopes by Sequencing 
(CITE-Seq) multi-modal analysis of nuclei isolated from frozen Brodmann area 10 (BA10) which includes NC.38, AMC.26 and reduced penetrance 
(RedPenMC, refer Additional file 2: Table S1 & S2a). NC.38 frozen brain was obtained from Mount Sinai Brain bank part of NIH Brain and Tissue 
Repository (NIH NeuroBioBank, USA). AMC.26 and RedPenMC frozen brain were obtained from Brain Bank at Karolinska Institutet, Sweden. B UMAP 
of integrated snRNA-Seq 18,266 profiles from AMC.26, NC.38 and RedPenMC annotated according to the expression of known markers. C Known 
markers for pan-neuronal, excitatory neurons, glial and endothelial cells (OPCs: Oligodendrocyte progenitor cells). D Representative protein profiles 
for different cell types after normalization of the unique molecular identifier (UMI) counts, (ADT Antibody derived tags)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Fraction of GRN expressing cells in the BA10 region and cell-type-specific associated changes in RedPenMC and AMC. A The ratio between 
number of GRN expressing to non-expressing cells for each cell type in Brodmann area 10 (BA10) sampled from RedPenMC, AMC.26 and NC.38. The 
P value calculated by comparing different cell types. *indicates P < 0.05. B Different GRN splice variants (S1, S2, S3, S4) expressed in BA10 region of 
NC (n = 3), AMC (n = 3) and RedPenMC (n = 1) analyzed using Digital Droplet™ PCR (ddPCR). RNA was isolated from the bulk tissue for each donor. 
GRN splice variants were detected amplifying exon-exon junctions, for S1:E1_E2, S2:E13_3’UTR, S3:E6_E7 and S4:E10_E12. Transcript expression 
is expressed as number of copies per microliter. The threshold was set automatically above any positive signal detected in multiples negative 
controls that contained a digital droplet PCR (ddPCR) cocktail and water in place of either of the cDNA. Multiple negative controls were included 
in each plate. Statistical differences in the expression of four splice variants in NC, AMC and RedPenMC were calculated by one-way ANOVA with 
Bonferroni’s multiple comparison (Post Hoc test). *P < 0.05, ****P < 0.005. C Differentially expressed genes (DEGs) in RedPenMC, AMC.26 and NC.38 
(upregulated and downregulated) obtained from all cell types. P values were calculated by comparing the number of DEGs between different cell 
types per group comparison. *indicates P < 0.05. D The intersection of DEGs in different comparison groups
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intersection indicates that RedPenMC vs AMC.26 and 
AMC.26 vs NC.38 share 21% of biological processes 
(Additional file 3: Fig. S1B). In contrast, GO-intersection 
analysis of RedPenMC vs NC.38 did not show overlap 
with any of the other two comparisons (Additional file 3: 
Fig. S1B). The results may suggest that the identified GO 
in our study were associated to the pathological pheno-
type in affected mutation carrier and not the mutation 
per se or a combination of the mutation and pathological 
phenotype.

Finally, we performed analysis of global changes of 
open and closed chromatin marks to understand the 
chromatin state of RedPenMC and AMC.26 across dif-
ferent cell types. These analyses revealed that 9 out of 
14 nuclear proteins (Additional file  2: Table  S7) were 
changed (P < 0.05) among different cell types in AMC.26, 
RedPenMC and NC.38 (Fig. 4A, B, 5A). 

In cortical layer 2/3 (L2/3), NeuN expression was 
reduced in AMC.26 compared with RedPenMC and 
NC.38 (Fig. 4A). Typically, in FTD associated with GRN 
mutation, cortical layers 2/3 are affected by the loss of 
neurons [30] and downregulation of NeuN levels [67]. 
NeuN quantitative reduction in L2/3 is indicative of a 
decline in neuronal health in the cortex of AMC.26, our 
results are in agreement with previous findings of FTD 
mediated by GRN mutations [30, 67].

The repressive mark H3k9me1 and H3k9me3 were 
overexpressed in AMC.26 compared to RedPenMC and 
NC.38 across different cell types analysed (Fig.  4A-B). 
H3k9me1 is a key mark for functional heterochromatin 
[47, 48] and preferred substrate for suppressor of varie-
gation 3–9 (SUV39) methyltransferase, which catalyses 
H3k9me3 formation [33, 48]. Elevated levels of H3k9me1 
in mouse models of Alzheimer’s disease (AD) [63] leads 
to the downregulation of BDNF (brain-derived neuro-
trophic factor). BDNF is critical for neuronal synaptic 
plasticity and mediates neuronal differentiation and cog-
nitive functions [40, 46]. Moreover, GRN is co-trans-
ported with BDNF within neuronal axon and dendrites 
[41]. H3k9me3 is associated with transcriptional silenc-
ing and altered chromatin plasticity in neurodegen-
eration [32, 66]. Moreover, H3k9me3 is essential in cell 
identity establishment and maintenance [36]. Previously, 
overexpression of H3k9me3 has been reported in AD [32] 
and Huntington disease (HD) [31]. RedPenMC showed 
a higher expression of H2A2 than AMC.26 in L2/3, L4, 
astrocytes, microglia, oligodendrocytes, endothelial cells 
and OPCs (Fig.  5A). H2A2 is critical in stabilizing dif-
ferentiated cell identity as well as chromatin compaction 
[34, 57].

On the other hand, global levels of H3k4me3 were 
decreased in both RedPenMC and AMC.26 across 
cell types compared to NC.38 (Fig.  4A, B). However, 

microglial H3k4me3 expression was higher (P < 0.05) in 
RedPenMC compared to AMC.26. H3k4me3 levels are 
associated with the upregulation of transcription activity, 
reflects the extent of transcription and ‘activating’ his-
tones [6, 22]. Recently, Proximity Ligation-Assisted ChIP-
Seq (PLAC-Seq) analysis indicated that GRN expression 
is regulated by H3k4me3 in microglia [38]. Previously, 
reduced levels of H3k4me3 have been reported in HD, 
and locus-specific loss and gain of H3k4me3 have been 
implicated in AD [7, 19].

Conclusions and discussion
Here, we investigated a GRN mutation carrier with 
reduced penetrance using WGS and multi-modal genom-
ics single-cell analyses [49]. Previously, TMEM106B [15] 
and GFRA2 [42] were identified as modifiers of GRN 
mediated FTD. As of date, we lack a systematic under-
standing of the disease process and modifiers [65]. 
Reduced penetrance cases have the potential to uncover 
endogenous escape mechanisms [2, 12]; providing 
insights that may be useful for designing future molec-
ular therapies. Naturally occurring cases of reduced 
penetrance can only be explored using patient-derived 
materials and cannot be replaced by genome-editing or 
mouse models [2, 12].

Our bulk ddPCR and Western blot analyses revealed a 
higher brain progranulin RNA and protein expression in 
RedPenMC compared to AMC. Our single-cell analyses 
revealed an increased ratio of GRN expressing microglia 
as well as microglial-specific higher levels of H3k4me3 
and lower levels of global H3k9me1 and H3k9me3 
expression in RedPenMC compared to AMC. RedPenMC 
carried one or more extra copies of the “protective” 
genetic-modifier-variants in GRN, TMEM106B, SORT1 
and PSAP in contrast to her affected son. Although our 
study is limited by sample size and there is a great need 
of finding a larger number of RedPenMC for example by 
collaborative sharing of patient materials or screening 
genomic population genomic data, such as the SweGen 
[1], we still think our data can generate some interesting 
new ideas hypothesis and caveats are presented below.

For GRN haploinsufficiency, the obvious therapeutic 
approach is to increase the progranulin protein levels. 
However, it is unclear whether an increase of GRN in all 
cell types, or in specific cell types are needed to maintain 
normal brain function. Our data suggests that selective 
increase of GRN expression in microglia, with drug mod-
ulation [60] or genome engineering [3, 45] may prevent 
the initiation of the neurodegenerative process which has 
successfully been demonstrated in mouse models earlier 
[68]. In addition to that, combinatorial inhibition of G9a, 
SETDB1 and GLP may contribute to the modulation of 
histone methylation enzymes; which has been proven 
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Fig. 4  Cell-type-specific changes of histone marks in the BA10 region in RedPenMC and AMC. Global expression profile of 5 distinct nuclear 
proteins in different cell types among RedPenMC, AMC.26 and NC.38 in neuronal cell types (A) and non-neuronal cell types (B). The p values for the 
donor versus donor comparison were listed in the Additional file 2: Table S7. The boxplot represent variation among the cells of each cell type in 
each donor
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effective in models of AD [70] and HD [31]. In addition, 
the levels of H3k4me3 can be increased by inhibiting the 
activity of histone deacetylases [25, 64]. However, future 
studies are needed in RedPenMC to understand the 
microglial cellular processing of GRN into granulin pep-
tides [24] and its interaction with neuronal and astrocyte 
counterparts.

The CITE-Seq approach is limited in resolution and by 
technical artefacts, including doublets and difficulties in 
assembling the transcripts. These technical limitations 
could be overcome through cell sorting and running full-
transcript length single-cell sequencing [21] on similar 
materials, allowing the pinpointing of specific transcripts 
(alternative splice forms) in different cell populations. 
Alternatively, microglia could be sorted from BA10 and 
then sequenced using long-read sequencing. Genome-
wide single-cell chromatin accessibility [43] analy-
sis of BA10 is needed to understand cell-type-specific 
H3k9me3 and H3k9me1 binding sites in RedPenMC, 
AMC and NC. Although the two CITE-sequenced 
mutation carriers included were biological relatives 
and obtained via the same brain biobank, the control 
was obtained from another biobank, was unrelated and 
matched with respect to age and sex only to RedPenMC 
which may further limit the interpretation of the data.

To conclude, our preliminary analysis of a single 
reduced penetrance case indicates that the presence of 

sustainable levels of both RNA and protein progranulin, 
at least in some cell types in brain, may be the result of 
both genetic as well as epigenetic modifiers. It is possi-
ble that a near normal level of progranulin is sufficient to 
preserve cognition and prevent neurodegeneration but 
needs to be further explored and we hope our data can 
generate new testable hypothesis for therapeutic inter-
vention in presymptomatic GRN carriers.
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