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Lack of astrocytes hinders parenchymal 
oligodendrocyte precursor cells from reaching 
a myelinating state in osmolyte‑induced 
demyelination
Melanie Lohrberg1†, Anne Winkler1†, Jonas Franz1,11,12, Franziska van der Meer1^, Torben Ruhwedel2, 
Nikoloz Sirmpilatze3, Rakshit Dadarwal3, Ronja Handwerker1, Daniel Esser4, Kerstin Wiegand4, Christian Hagel5, 
Andreas Gocht6,7, Fatima Barbara König8, Susann Boretius3, Wiebke Möbius2,9, Christine Stadelmann1*†   
and Alonso Barrantes‑Freer1,10†

Abstract 

Demyelinated lesions in human pons observed after osmotic shifts in serum have been referred to as central pon‑
tine myelinolysis (CPM). Astrocytic damage, which is prominent in neuroinflammatory diseases like neuromyelitis 
optica (NMO) and multiple sclerosis (MS), is considered the primary event during formation of CPM lesions. Although 
more data on the effects of astrocyte-derived factors on oligodendrocyte precursor cells (OPCs) and remyelination 
are emerging, still little is known about remyelination of lesions with primary astrocytic loss. In autopsy tissue from 
patients with CPM as well as in an experimental model, we were able to characterize OPC activation and differentia‑
tion. Injections of the thymidine-analogue BrdU traced the maturation of OPCs activated in early astrocyte-depleted 
lesions. We observed rapid activation of the parenchymal NG2+ OPC reservoir in experimental astrocyte-depleted 
demyelinated lesions, leading to extensive OPC proliferation. One week after lesion initiation, most parenchyma-
derived OPCs expressed breast carcinoma amplified sequence-1 (BCAS1), indicating the transition into a pre-myeli‑
nating state. Cells derived from this early parenchymal response often presented a dysfunctional morphology with 
condensed cytoplasm and few extending processes, and were only sparsely detected among myelin-producing or 
mature oligodendrocytes. Correspondingly, early stages of human CPM lesions also showed reduced astrocyte num‑
bers and non-myelinating BCAS1+ oligodendrocytes with dysfunctional morphology. In the rat model, neural stem 
cells (NSCs) located in the subventricular zone (SVZ) were activated while the lesion was already partially repopulated 
with OPCs, giving rise to nestin+ progenitors that generated oligodendroglial lineage cells in the lesion, which was 
successively repopulated with astrocytes and remyelinated. These nestin+ stem cell-derived progenitors were absent 
in human CPM cases, which may have contributed to the inefficient lesion repair. The present study points to the 
importance of astrocyte-oligodendrocyte interactions for remyelination, highlighting the necessity to further deter‑
mine the impact of astrocyte dysfunction on remyelination inefficiency in demyelinating disorders including MS.
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Introduction
Several diseases of the central nervous system are char-
acterized by more or less selective damage to the myelin 
sheaths, referred to as demyelination. A common aspect 
of all demyelinating diseases (including their respec-
tive experimental models) is the inherent capacity of 
the adult brain to react to myelin loss by a spontaneous 
regeneration process, termed remyelination. In multiple 
sclerosis (MS) patients, a higher degree of remyelination 
has been related to less disability [9, 12]. But especially 
in MS, remyelination is highly variable and becomes less 
efficient with age [12, 13, 29, 34, 53, 69, 70, 73, 80]. Oligo-
dendrocyte precursor cells (OPCs) are crucial for remy-
elination because they are able to differentiate into new 
oligodendrocytes, thereby enwrapping axons with myelin 
[18, 19, 77, 96, 107]. Still, current studies in animal mod-
els as well as in MS patients point to a remyelinating 
capacity of preexisting and probably also mature oligo-
dendrocytes [24, 106].

Myelination is most efficient during development. 
Under pathological conditions, remyelination is inher-
ently limited, as most demyelinating lesions are in an 
environment very different from the healthy developing 
brain [28]. As the key players in myelination, oligoden-
drocytes are in close contact to other glial cells, particu-
larly astrocytes. All processes necessary for myelination 
such as recruitment, proliferation, differentiation and 
maturation of oligodendrocytes, are tightly regulated 
by factors secreted by astrocytes or by direct cell-to-cell 
contact (see review [23]). Astrocytic impairment in the 
context of myelin loss and inflammation is observed in 
several demyelinating diseases, particularly in neuromy-
elitis optica (NMO) as well as in progressive multifocal 
leukoencephalopathy (PML). Astrocytic loss has also 
recently been reported in acute MS lesions [74]. How-
ever, the role of astrocytes in demyelinating diseases is 
still not fully understood, with contradictory reports 
claiming either beneficial or detrimental effects [2, 3, 8, 
27, 35, 85, 86, 88, 95].

Primary astrocytic loss followed by secondary oligo-
dendrocyte and myelin loss is rare, but has been reported 
in Alexander disease, which is caused by a mutation in 
the GFAP gene [90] and in NMO due to autoantibod-
ies targeting the astrocytic water channel aquaporin-4 
(AQP4) [48, 56, 103]. Moreover, osmotic insults have 
been connected to primary astrocytic loss, leading to the 
osmotic demyelinating syndrome (ODS) [1, 30].

ODS is most often linked to rapid correction of chronic 
hyponatremia, which leads to demyelinated lesions in the 
pons (central pontine myelinolysis, CPM) or other CNS 
regions (extrapontine myelinolysis, EPM) [1, 40, 43, 51, 66, 
87, 93, 102]. ODS is most often accompanied by comorbid-
ities that include shifts in Na+ levels, e.g. alcoholism or liver 

transplantation (see reviews [45, 65]). The main histological 
characteristics of ODS, besides demyelination, are reduced 
astrocyte densities with loss of aquaporins, widespread 
macrophage/microglia activation with myelin phagocytosis 
and relative neuronal and axonal preservation despite acute 
axonal damage early in lesion formation [33, 72]. There is 
little data on remyelination in ODS; only one post-mortem 
case report with histologically confirmed remyelination in 
an asymptomatic CPM patient, analyzed 2 years after MRI-
based diagnosis, is available in the literature [36]. Studying 
remyelination in lesions with primary astrocyte pathology 
can provide important insights into the mechanisms of 
CNS regeneration of pathologies generally associated with 
severe clinical deficits and poor myelin repair such as MS.

Experimental models mimicking histopathological char-
acteristics of human CPM lesions have been established 
in several species [11, 43, 68]. Using these models, astro-
cyte pathology has been confirmed as the primary event 
in lesion formation [30]. Consequently, first indications of 
myelin loss can be seen 24–48 h after astrocytic loss, fol-
lowed by microglia activation [30, 43]. Disturbance of the 
panglial syncytium, as indicated by a downregulation of 
gap junction proteins Cx43 and Cx47 at the beginning of 
astrocyte pathology, is hypothesized to lead to the loss of 
oligodendrocytes [11, 30]. In ODS mice, adenomatous 
polyposis coli (APC)-positive oligodendrocytes are nearly 
absent prior to myelin loss but gradually return to the 
lesion site afterwards. Thus, a secondary demyelination 
following the demise of oligodendrocytes as opposed to a 
direct osmotic insult to the myelin sheaths, can be assumed 
[11].

The present study aims at investigating the cellular 
mechanisms of remyelination in the presence of a promi-
nent primary astrocytopathy. We focus particularly on 
the recruitment of parenchymal versus stem cell-derived 
oligodendrocytes and the temporal relation to astrocytic 
repopulation.

Methods
Human tissue
This retrospective study was performed in accordance 
with the ethical standards as laid down in the 1964 Dec-
laration of Helsinki and its later amendments, and was 
approved by the institutional ethics committee of the 
University Medical Center Göttingen. To characterize 
remyelination and further neuropathological charac-
teristics of CPM, microscopic transverse sections of the 
pons from archival autopsied tissue from the University 
Medical Center Göttingen (Germany) and the Univer-
sity Medical Center Hamburg-Eppendorf (Germany) 
were used. 18 pathologically confirmed CPM and 8 
control cases were included. Inclusion criteria were 
the presence of recognizable demyelinating lesions in 
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the pons upon LFB-PAS staining and sufficient archi-
val tissue for pathological analysis. In addition, for anti-
nestin immunohistochemistry (IHC) archival autopsy 
tissue of fetal pons was used. Clinical information was 
obtained from the medical records (Additional file  1: 
Table  S1). Clinical and histopathological information 
on 7 cases has been previously published [32]. CPM 
patients had a mean age of 50.3 ± 19.7  years, control 
patients 58.6 ± 15.2  years. A history of alcohol abuse 
was recorded for 15/18 CPM cases.

Light and fluorescence IHC on paraffin sections of 
human autopsy tissue were carried out according to 
standard procedures using the antibodies listed in 
Table 1.

Animals
This study was carried out at the University Medical 
Center Göttingen in strict accordance with recommen-
dations of European and German guidelines for welfare 
of experimental animals. Animal experiments were 
approved by the Review Board for the Care of Animal 
Subjects of the district government of Lower Saxony 
(LAVES, approval number 13/1197). Female Lewis 
rats (Charles River Laboratories), aged approximately 
3 months, were included in the study. Unless specified 
otherwise, anesthesia was performed using i.p. injec-
tion of ketamine (60 mg/kg) and xylazine (8 mg/kg).

ODS protocol
ODS was induced according to an adapted protocol [98]. 
Briefly, an osmotic minipump (Model 1007D, Charles 
River Laboratories, Germany) filled with desmopressin 
(dDAVP, 10  µg/ml, Sigma Aldrich, USA) was implanted 
subcutaneously caudal to the shoulder blade (day 0). 
Standard chow was switched to low-sodium liquid diet 
(EF15710-10 EF R/M AIN 76A, Ssniff, Germany), fed 
ad  libitum during hyponatremia. At day 6, i.p. injection 
of sodium chloride solution (1  M, 1  ml per 100  g body 

weight) was used to increase serum sodium levels close 
to normonatremia. After sodium correction, food was 
switched back to standard pellet chow. At days 0 and 6, 
blood sodium levels were measured. All animals were 
monitored daily and brain tissue was harvested after 3 
(n = 4), 4 (n = 3), 6 (n = 4), 7 (n = 3), 13 (n = 5), 14 (n = 2) 
and 21 (n = 6) days post correction (dpc). Untreated age-
matched rats were used as healthy controls (n = 5).

Bromodeoxyuridine (BrdU) labelling
In an additional subset of 9 animals, the thymidine ana-
logue BrdU was injected to mark proliferating cells. ODS 
was induced as described above. Additionally, from day 
1–3 after correction of hyponatremia, isotonic NaCl 
solution containing 100 mg/kg bodyweight BrdU (Sigma 
Aldrich, USA) was injected every 12 h. Brain tissue was 
harvested for analysis 4, 7, 14 and 21 days after correction 
(4dpc n = 1, 7dpc n = 3, 14dpc n = 3, 21dpc n = 2). Four 
control animals without induction of ODS were injected 
with BrdU, and tissue from one animal was harvested at 
days 4, 7, 14 and 21, respectively.

Histology: Animals
Rats were anesthetized and transcardially perfused with 
phosphate-buffered paraformaldehyde (PFA, 4%). Brains 
were removed and further processed according to stand-
ard protocols. Formalin-fixed and paraffin-embedded 
brain tissue was sectioned into 2–3  µm thick sections. 
Histochemical, immunohistochemical and immuno-
fluorescent techniques were applied using standard 
protocols. Primary antibodies are listed in Table  2. For 
immunofluorescence multi-labeling, Tyramide Super-
Boost™ kits (Invitrogen) were used.

Fluorescent terminal deoxynucleotidyl transferase 
(TdT) dUTP Nick-End Labeling (TUNEL) assay together 
with an anti-Olig2 immunofluorescent labeling was 
performed to detect late stage apoptotic oligodendro-
cytes with degraded DNA. TUNEL assay was carried 
out using a kit (Roche #03333574001) according to the 

Table 1  Primary antibodies I (human tissue)

Antibody Species Dilution Antigen retrieval Manufacturer

Anti-AQP4 Rabbit 1:200 Citrate, MW Sigma Aldrich, A5971

Anti-BCAS1 Rabbit 1:100 Citrate, MW Abcam, ab106661

Anti-GFAP Rabbit 1:1000 – Dako, Z0334

Anti-KiM1P Mouse 1:5000 Citrate, MW Radzun et al. [76]

Anti-MAG Mouse 1:5000 Citrate, MW Abcam, ab89780

Anti-Olig2 Mouse 1:50 EDTA, MW Merck Millipore, MABN50

Anti-TPPP/p25 Rabbit 1:500 EDTA, MW Abcam, ab92305

Anti-Sox10 Mouse 1:100 Citrate, MW Novus, NBP2-59620
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manufacturer’s instructions. For fluorescent labeling 
anti-digoxygenin-rhodamine Fab fragments (Roche 
#112077339810) were used. Slides were doublestained 
with anti-Olig2 immunofluorescence labeling (see 
Table 2).

Image acquisition and analysis
Brightfield microphotographs of tissue sections were 
acquired using a light microscope (BX51, Olympus, 
Tokyo, Japan) equipped with a digital camera (DP71, 
Software CellSens Dimension v.1.7.1, Olympus, 
Tokyo, Japan). Immunofluorescence pictures were 
taken using a fluorescence microscope (BX63, Olym-
pus, Tokyo, Japan) equipped with a digital camera 
(DP80, CellSens Dimension v.2.3, Olympus, Tokyo, 
Japan). Post-acquisition processing was done using 
Adobe Photoshop CS6 software. For analysis, immu-
nofluorescent sections were scanned using a vir-
tual slide scanner (VS120, Olympus, Tokyo, Japan). 
Lesion areas were manually delineated and meas-
ured using ImageJ (FIJI) software [81]. Cell densities 
were determined by manual counting of cells using 
the ImageJ cell counter plugin and division through 
the area considered and given as cells/mm2. Graph 
PadPrism 6.0 was employed for data plotting. For 
spatial analysis, manually labeled cell coordinates 
were used. Kernel density maps were estimated with 
a kernel size estimated by the bandwidth method 
(bandwidth = 0.075) by using the open source python 
packages scipy and shapely which interface by GEOS 
the open source library Java Topology Suite (JTS). 
Distance plots were calculated for binned intervals 
of 50 µm and 95% confidence interval were estimated 
assuming a Gaussian distribution of single measured 
values.

Electron microscopy (EM)
In a subset of at least four animals per group, EM 
analysis of the striatal fibers was carried out for ultra-
structural assessment of the extent of demyelination 
and remyelination. Tissue preparation by high-pres-
sure freezing and tissue embedding was performed 
as described previously [101]. Briefly, the animal was 
euthanized, the brain was removed and parasagittal 
vibratome sections were cut. The samples were then 
frozen in liquid nitrogen using a high-pressure freezer 
(approximately 2000  bar, Leica HPM100) and fur-
ther processed by freeze substitution and embedding 
in epoxy resin for transmission electron microscopy. 
In a next step, 50  nm thick sections were cut for EM 
(EM 10, Zeiss, Germany) and a minimum of 5 images 
per animal were taken from the lesion area at a magni-
fication of 3150x, using the AnalySIS image processing 
software 3.2. g-ratios (axon diameter divided by fiber 
diameter) were calculated for at least 30 fibers per pic-
ture. In addition, the percentage of myelinated axons 
relative to total axon counts was determined. In the 
graph depicting the percentage of myelinated axons, 
each point represents one animal, whereas for g-ratios 
each point represents one axon. Graph PadPrism 6.0 
was used for data plotting.

RT‑PCR
To assess relative mRNA expression levels, qPCR of stri-
atal tissue was performed. Total RNA was isolated from 
fresh brain tissue using the RNeasy Micro Kit (Qiagen). 
RNA was isolated 3 (n = 5), 7 (n = 5), 14 (n = 3) and 21 
(n = 3) dpc from the striatal lesion, as well as from healthy 
controls (n = 3). The mRNA was transcribed into cDNA 
using the High Capacity RNA-to-cDNA™ Kit (Life Tech-
nologies) according to the manufacturer’s instructions. 

Table 2  Primary antibodies II (rat tissue)

Antibody Species Dilution Antigen retrieval Manufacturer

Anti-BCAS1 (Anti-NABC1) Rabbit 1:100 Citrate, MW Abcam, ab106661

Anti-BrdU Mouse 1:400 Citrate, MW Millipore, MAB3424

Anti-CD68 (clone ED1) Mouse 1:500 Citrate, MW Biorad, MCA341R

Anti-GFAP Rat 1:1000 Citrate, MW Thermo Fisher, Z0334

Anti-Ki67 Rabbit 1:200 Citrate, MW DCS, K1681C01

Anti-MAG Mouse 1:1000 Citrate, MW Abcam, ab89780

Anti-MBP Rabbit 1:500 – Dako, A0623

Anti-Nestin Mouse 1:50 Citrate, MW Abcam, ab6142

Anti-NG2 Rabbit 1:200 EDTA, MW Millipore, AB5320

Anti-Olig2 Mouse 1:100 EDTA, MW Millipore, MABN50

Anti-Olig2 Rabbit 1:50 EDTA, MW IBL, 18953

Anti-TPPP/p25 Rabbit 1:500 EDTA, MW Abcam, ab92305

Anti-PDGFRalpha Rabbit 1:100 Citrate, MW Abcam, ab203491
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Furthermore, cDNA was used for qPCR using the qPCR 
core kit (Eurogentec). The following TaqMan™ prim-
ers were obtained from Thermo Fisher Scientific (USA) 
and used as indicated by manufacturer’s protocol: Olig2 
(Rn01767116_m1), MAG (Rn01457782_m1), GAPDH 
(Rn01775763_g1). Relative expression of oligodendro-
cyte-specific genes Olig2 and MAG was normalized to 
mean oligodendrocyte densities at the respective time 
point.

Magnetic resonance imaging (MRI) and analysis
To follow ODS lesion progression and repair in  vivo 
high-field MRI (9.4 Tesla, Bruker BioSpin MRI GmbH, 
Ettlingen, Germany) was performed in one rat at 0 
(baseline), 1, 7, 14, and 21 dpc. The animal was initially 
anesthetized with 5% isoflurane, subsequently intubated 
and kept under anesthesia with 1.5% isoflurane in oxy-
gen and medical air (1:1). The MRI protocol included 
T2-weighted images (TURBO-RARE, TR 6275  ms, TE 
40  ms, RARE factor 8, 50 consecutive axial slices with 
500  µm thickness, in-plane resolution 117 × 117  µm2), 
myelin water imaging (3D multiple spin-echo, TR 
5040 ms, TE 6 ms, 20 echoes, echo spacing 6 ms, 40 axial 
slices with 400  µm thickness and 200  µm slice gap, in-
plane resolution 200 × 200  µm2) and diffusion-weighted 
MRI (Stejskal-Tanner pulsed gradient spin-echo, echo 
planar imaging, TR 2000 ms, TE 21.2 ms, 40 axial slices 
with 400  µm thickness and 200  µm slice gap, in-plane 
resolution 200 × 200  µm2, b-values 1000 and 2000  s/
mm2, 30 directions each, 5 b0 images). The T2 signal 
decay was fitted multi-exponentially to estimate the T2 
relaxation times for myelin water and intra/extracellular 
water (T2IEW), and to calculate the myelin water frac-
tion (MWF) [15, 54, 55]. Diffusion tensor was calculated 
as described before and parametric maps including frac-
tional anisotropy (FA) and radial diffusivity (RD) were 
derived [5, 31]. Based on the obtained T2 images, two 
regions-of-interest (ROI) were defined bilaterally, distin-
guishing the lesioned ventral striatum and the normal-
appearing dorsal striatum (compare Additional file 2: Fig. 
S1). The within-ROI means of the analyzed parameters—
T2IEW, MWF, FA and RD—were extracted across all five 
time points (Additional file 2: Fig. S1). At the end of the 
last MRI session (21 dpc), the rat was transcardially per-
fused under anesthesia and brain tissue was harvested for 
histology.

Results
Experimental ODS lesions in rats are widely remyelinated 
3 weeks after lesion induction
To study the time course and cellular mechanisms of 
myelin regeneration in osmotic demyelination, we 

induced astrocyte and subsequent oligodendrocyte loss 
and demyelination by the rapid correction of severe 
hyponatremia in rats [11, 98]. Demyelinated lesions 
were present in the corpus striatum of all animals, as 
well as the claustrum, external capsule, neocortex and 
anterior commissure in a subset of animals as summa-
rized in Table  3. In the corpus striatum, demyelinated 
lesions were clearly visible upon evaluation in LFB-PAS 
staining at 3, 7, 14 and 21  days post-correction (dpc) 
(Fig. 1a). A significant reduction in the size of the demy-
elinated lesion could be observed between days 14 and 
21 post-correction (p = 0.0182) (Fig. 1b). Ultrastructural 
examination of the striatal fiber tracts showed a signifi-
cantly reduced number of myelinated axons inside the 
lesion, compared to naïve controls (Fig.  1c). At 3 and 7 
dpc, remaining myelin sheaths appeared vacuolized 
with microglial cells carrying myelin debris, while at 14 
dpc barely any myelinated axons were present. At 21 
dpc, thinly myelinated axons could be found scattered 
throughout the lesion, whereas the perilesion area pre-
sented regularly myelinated fiber tracts comparable to 
controls (Fig. 1d). At 21 dpc, g-ratios from axons inside 
the lesion were significantly increased when compared 
to perilesional axons, confirming regenerated myelin 
sheaths (lesion: 0.80 ± 0.08, perilesion: 0.63 ± 0.08 cells/
mm2; p < 0.0001) (Fig. 1e). Increased g-ratios were inde-
pendent from axon diameters (data not shown).

Consistent with the histological findings, repeated 
magnetic resonance imaging (MRI) visualized the devel-
opment of bilateral lesions in the ventral striatum, which 
manifested as increased signal intensity on T2-weighted 
images onwards from 7 dpc. Following sodium correc-
tion, the myelin water fraction (MWF) decreased within 
the lesion area, reached a minimum at 7 dpc and stabi-
lized thereafter. Radial diffusivity (RD) followed a simi-
lar—but inverted—time course, with maximum values at 
7 dpc and subsequent stabilization. The 7 dpc time point 
was also characterized by a marked decrease in fractional 
anisotropy (FA) and a prolongation of T2 relaxation times 
for myelin water and intra-/extracellular water (T2IEW), 
altogether indicating rapid lesion evolution until day 7 
and ensuing tissue repair (Additional file 2: Fig. S1).

Table 3  Anatomic location of demyelinated lesions in ODS 
rats

Days post-
correction

Corpus 
striatum

Claustrum External 
capsule

Neocortex Anterior 
commissure

3–4 7/7 6/7 2/7 0/7 2/7

6–7 7/7 7/7 6/7 2/7 0/7

13–14 7/7 5/7 2/7 0/7 0/7

21 4/6 3/6 0/6 0/6 2/6
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Early loss of mature oligodendrocytes precedes myelin 
degeneration
To determine the time course of myelin-forming oligo-
dendrocyte death and myelin degeneration, intra- and 
perilesional numbers of mature oligodendrocytes were 
quantified. The histological markers that allow the clas-
sification of oligodendroglial cells into different matura-
tion states are listed in Table 4. We used CD68-positive 
activated microglia/macrophages to define lesion areas. 
Three out of 6 animals showed no sharply demarcated 
lesion at 21 dpc and were therefore excluded from the 
evaluation of intralesional cell densities. Inside the lesion, 
densities of TPPP/p25-positive mature oligodendro-
cytes were significantly reduced at 3, 7 and 14 dpc. At 
21 dpc, lesional densities were comparable to healthy 
controls. Between 7 and 14 dpc a significant increase in 
intralesional densities of TPPP/p25-positive oligoden-
drocytes from 29.8 ± 12.2 to 140.9 ± 81.1 cells/mm2 was 
observed (p = 0.0047). Perilesional densities were slightly 
decreased at 3 dpc but reflected control levels at all other 
investigated time points (Fig. 2a, b). The repopulation of 
the demyelinated lesion with mature oligodendrocytes 
was accompanied by a sequential return of myelin pro-
teins. After 3  weeks of recovery, lesions appeared still 
largely  negative for LFB, but already positive for MAG 
and slightly positive for PLP (Fig.  2c), thus presenting 
typical histological hallmarks of recent remyelination 
[94]. 

Early lesions are rapidly repopulated by NG2‑positive OPCs
Next, we aimed at investigating the cellular processes 
underlying lesion repair and asked whether OPC densi-
ties were affected by osmotic tissue damage. Immuno-
histological investigation revealed that densities of cells 
positive for the pan-oligodendroglial marker Olig2 were 
significantly reduced at 3 dpc in lesion as well as perile-
sion areas. Cellular densities were slightly reduced at 7 
and 14 dpc, not reaching statistical significance, return-
ing to control level at 21 dpc (Fig. 3a). Semiquantitative 
RT-PCR on RNA isolated from the lesion center revealed 
that levels of Olig2 mRNA expression were significantly 
increased at 3, 7 and 14 dpc and returned to control lev-
els at 21 dpc (Fig.  3b). High expression levels of Olig2 

indicate an early maturation phase of lesional oligoden-
drocyte populations and have been linked to reactive 
OPCs in the demyelinated adult CNS [25]. At 3 dpc, oli-
godendroglial cells in the lesion center showed an intense 
Olig2 immunoreactivity, whereas oligodendrocytes 
located at the lesion border had a low Olig2 immunore-
activity (Fig.  3c). This indicated an early OPC reaction 
that was mainly located in the lesion center, while the 
lesion border was still mainly populated by mature oligo-
dendrocytes [47]. In the perilesion area and in controls, 
a mixture of cells with high and low Olig2 immunoreac-
tivity was detectable (Fig. 3c). We observed that densities 
of Olig2/NG2 double-positive OPCs were significantly 
increased in the lesion at 3 and 7 dpc, and markedly (but 
not significantly) increased at 14 dpc (p = 0.086) when 
compared to controls (ctrl: 41.2 ± 5.9, 3/4dpc: 80.5 ± 10.7, 
6/7dpc: 85.2 ± 11.8, 13/14dpc: 75.6 ± 8.9 cells/mm2; 
Fig.  3d). Densities decreased again to control levels at 
21dpc, when lesion repair seemed to be largely completed 
(Fig. 3d). It has been previously demonstrated that upon 
demyelination, OPCs enter an activated state, allowing 
them to proliferate, migrate and differentiate (reviewed 
in [91]). We verified the early activation of intralesional 
OPCs by immunolabelling for proliferating cell nuclear 
antigen (PCNA; Ki67). Quantification of Ki67/Olig2 dou-
ble-positive cells revealed proliferating oligodendrocytes 
inside the corpus striatum parenchyma at 3/4 dpc and in 
2 out of 7 animals at 6/7 dpc (Fig. 3e).

BrdU injection traces parenchymal OPCs that proliferated 
in early astrocyte‑depleted lesions
To follow-up on oligodendrocytes that proliferated 
in the early (astrocyte-depleted) lesion stage, we per-
formed repeated BrdU injections between 12  h and 
3 days after the osmotic insult (compare Fig. 4a). Olig2-
positive oligodendrocytes with incorporated BrdU could 
only sparsely be detected in control animals (Fig.  4b), 
whereas they were numerous within the lesion center at 
4 dpc (Fig. 4c), thereby confirming early oligodendrocyte 
proliferation upon lesion initiation. To assess the matu-
ration of these oligodendroglial cells, immunofluores-
cence multi-labeling with typical markers for different 
maturation stages was performed. At 7 dpc, BrdU/NG2 

Fig. 1  Evolution of experimental osmotic demyelinated lesions in the corpus striatum. a Representative micrographs of LFB/PAS-stained ODS 
lesions at different time points after the correction of serum sodium levels. The dashed line marks the lesion border, the dotted line indicates an 
already remyelinated area, indicated by pale LFB-staining, at 21 dpc; magnification × 20, scale bar 500 µm. b Demyelinated area as percentage 
of whole striatum (one dot represents one animal, mean ± SEM, one-way ANOVA and Tukey’s multiple comparison, *p < 0.05). c Percentage 
of myelinated axons per viewing field at different time points. Fiber tracts in the lesion center were analyzed (one dot represents one animal, 
mean ± SEM, one-way ANOVA and Tukey’s multiple comparison, p < 0.0001; **p < 0.01, ***p < 0.001). d Representative electron micrographs of 
transverse sections of striatal fiber tracts showing intralesional fibers at 3, 7, 14, 21 dpc, as well as perilesion fibers at 21 dpc and control animals. 
magnification × 3150. e g-ratios at 21dpc lesion versus perilesion (n = 5, one dot represents one axon, mean ± SD, t-test, p < 0.0001***)

(See figure on next page.)
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double-positive OPCs were present within the lesion, 
often showing a bipolar morphology (Fig.  4d), indicat-
ing recent proliferation and probably also migration [99]. 
At later time points, BrdU-negative/NG2-positive OPCs 
with the typical ramified morphology of OPCs were more 
abundant, indicating a replenishment of the parenchymal 
stem cell pool (Fig. 4e). At 7 dpc, nearly half of the intral-
esional OPCs showed BrdU incorporation. Numbers of 
BrdU-positive OPCs were gradually decreasing at later 
lesion stages, indicating further maturation of those cells 
(Fig. 4f ). Although densities of TPPP/p25 positive mature 
oligodendrocytes nearly returned to control levels after 
3  weeks, BrdU/p25 double-positive oligodendrocytes 
were infrequent (Fig.  4g, h), indicating that most early 
proliferating NG2-positive OPCs did not undergo final 
maturation.

BCAS1‑positive oligodendrocytes remyelinate 
experimental ODS lesions, but are mainly BrdU negative
The proper differentiation of OPCs into myelinat-
ing oligodendrocytes has been identified as a limit-
ing factor for efficient remyelination in MS [16, 58]. 
To further characterize the myelin protein expression 
expected to accompany remyelination, quantitative 
RT-PCR of mRNA encoding for myelin-associated 
glycoprotein (MAG), required for early myelinating 
oligodendrocyte-axon contact, was performed. At 3 
dpc, normalized MAG mRNA expression levels were 
reduced by half compared to controls, substantiat-
ing that most oligodendrocytes were in a very early 
maturation state and not yet myelinating. At 7/14 
dpc mRNA levels returned to, and slightly surpassed, 
control levels at 21 dpc (Fig.  5a), indicating ongoing 
remyelination at later lesion stages. Breast carcinoma-
amplified sequence 1 (BCAS1) has recently been char-
acterized as a marker protein for a pre-myelinating and 
myelinating oligodendrocyte subpopulation derived 
from NG2-positive OPCs [26]. Since the early loss 
and later upregulation of MAG-expression indicated 
active myelination, we performed a BCAS1/MAG 
double-labeling to detect actively myelinating oligo-
dendrocytes. Actively myelinating oligodendrocytes 

were largely absent in controls as well as during early 
destructive lesion stages (3/4 dpc). At 6/7 dpc some 
BCAS1/MAG double-positive oligodendrocytes were 
detectable. Afterwards, densities increased further, 
leading to significantly increased cell numbers at 13/14 
and 21 dpc (ctrl: 0.5 ± 0.4, 13/14dpc: 17.2 ± 5.1, 21dpc: 
24.3 ± 22.5 cells/mm2; Fig.  5b), thus demonstrating 
remyelination of ODS lesions by BCAS1-positive oli-
godendrocytes. At all time points, active (re-) myelina-
tion was mainly observable at the lesion border.

Utilizing the BrdU injections described above, we 
then determined the contribution of OPCs that prolif-
erated in early astrocyte-depleted lesion stages to remy-
elination. For this, we distinguished pre-myelinating 
BCAS1-positive/MAG-negative and actively myelinat-
ing BCAS1/MAG double-positive cells. At 7 dpc, when 
astrocytes were still nearly absent in the lesion (compare 
Additional file  3: Fig. S2a), overall densities of BCAS1-
positive cells (per definition including pre-myelinating 
and actively myelinating cells) were already significantly 
increased compared to controls (control: 3.4 ± 0.8, 7 dpc: 
53.9 ± 13.2 cells/mm2; p = 0.0007). Most of these cells 
showed the incorporation of BrdU and were distributed 
equally throughout the lesion, whereas actively myelinat-
ing oligodendrocytes were not yet detectable (Fig.  5c). 
This indicated that early proliferating, NG2-positive 
OPCs were able to differentiate into pre-myelinating oli-
godendrocytes within 1  week. It is known that BCAS1 
positive oligodendrocytes present a characteristic star-
shaped morphology with fine processes or a ‘t-shaped’ 
appearance due to the remyelination of a nearby axon 
(compare Fig. 5d, [26]). However, at 7 dpc, pre-myelinat-
ing BrdU/BCAS1 double-positive (MAG negative) cells 
in the lesion often presented a ‘dysfunctional’ morphol-
ogy with few if any short ramifications (Fig. 5e).

At 14 as well as 21 dpc, actively myelinating BACS1/
MAG double-positive oligodendrocytes were present. 
However, BrdU incorporation was rare among these 
cells (Fig.  5c). Though BrdU/BCAS1 double-positive 
cells were still numerous, they located preferably within 
the lesion center rather than at the lesion border. Such 
an accumulation of undifferentiated OPCs has also been 
reported for MS lesions [47]. The preferred presence of 
BCAS1/MAG double-positive cells at the lesion bor-
der indicates a myelin regenerative response directed 
from the rim towards the lesion center that was largely 
independent of cells derived from early proliferation 
in the intralesional parenchymal OPC pool. Moreo-
ver, using a TUNEL assay, we detected dying oligoden-
droglial lineage cells in the striatal tissue of ODS rats. 
TUNEL/Olig2 double-positive cells were present dur-
ing early destructive lesion stages, but also throughout 
lesion repair (Fig. 5f ). Histological investigation revealed 

Table 4  Oligodendroglial differentiation and  corresponding 
markers used in this study

Cell type Markers

Neural progenitor cells (oligodendrocyte 
progenitors)

Olig2, Nestin (PDGFRα)

Oligodendrocyte precursor cells Olig2, PDGFRα, NG2

Immature/pre-myelinating oligodendrocytes Olig2, BCAS1

Actively myelinating oligodendrocytes Olig2, BCAS1, MAG

Mature oligodendrocytes Olig2, TPPP/p25
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Fig. 2  Mature oligodendrocytes reappear 2 weeks, myelin 3 weeks after lesion initiation. a Mature oligodendrocytes (TPPP/p25; white; arrowheads) 
and CD68+ activated microglia/macrophages (purple) at different time points after lesion induction. Nuclei are stained in blue (DAPI); original 
magnification × 200, scale bar 50 µm. b Quantification of TPPP/p25+ mature oligodendrocyte densities at different time points after correction of 
serum sodium levels (white bars = lesion, grey bars = perilesion, light grey bar = controls; one dot represents one animal, mean ± SEM, one-way 
ANOVA and Tukey’s multiple comparison, *p < 0.05, **p < 0.01, ***p < 0.001). c Representative ODS lesion at 21 dpc. LFB/PAS staining as well as 
anti-MAG and anti-PLP immunohistochemistry are shown. Dashed line marks the lesion border. Magnification × 40, scale bar 200 µm
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non-ramified BCAS1/BrdU double-positive cells with 
condensed and fragmented nuclei, indicating apoptosis 
of dysfunctional OPCs (Fig. 5g).

Onset of subventricular zone‑dependent regeneration 
follows the parenchymal OPC response
Our data so far indicated that oligodendrocytes that 
remyelinate the lesion are mostly derived from a cel-
lular source other than early proliferating parenchymal 
OPCs. As shown above, large demyelinated lesions with 
negligible numbers of mature oligodendrocytes were 
observed at 3 and 7 dpc. We analyzed the distribution of 
TPPP/p25-positive oligodendrocytes across the striatum, 
including lesion and perilesion areas, and performed spa-
tial statistical analysis. The resulting repopulation pat-
tern pointed at lesion repair from the subventricular zone 
(SVZ) towards the lesion center rather than a concurrent 
oligodendrocyte maturation throughout the whole lesion 
(Additional file 4: Fig. S3).

In general, 3 weeks after lesion induction, remyelinated 
axons could be found in the striatal grey and white mat-
ter. Although, it should be noted that especially the grey 
matter axons in the lesion center were not efficiently 
remyelinated at 21dpc, whereas grey as well as white mat-
ter regions near the lesion border showed quite efficient 
remyelination (Additional file 5: Fig. S4). The lesion den-
sities of mature oligodendrocytes at 21dpc were, how-
ever, close to control levels throughout the lesion. This 
further underscores that remyelination was barely per-
formed by locally proliferated, BrdU-positive oligoden-
drocytes that were already equally distributed throughout 
the lesion at very early time points, and mainly located in 
the lesion center.

Myelin regeneration by SVZ-derived myelinating oli-
godendrocytes has been demonstrated after cuprizone-
induced demyelination, and was described as even more 
efficient than regeneration by parenchymal OPCs [104]. 
Therefore, we hypothesized that lesion repair in the stri-
atal osmotic demyelinated lesions studied here could be 
carried out by SVZ-derived glial cells.

Following tissue damage, the type VI intermediate 
filament protein nestin is expressed in proliferation-
capable neural progenitor cells in the SVZ [46]. Besides 
neurons, these cells can differentiate into glial cells, 

including OPCs, that are characterized by the expres-
sion of PDGFRα and nestin [62]. Immunohistochem-
istry confirmed nestin-positive cells in the SVZ of all 
investigated animals. At 3 dpc, nestin-positive cells 
were most abundant in the SVZ, decreasing below con-
trol levels, with very few nestin-positive cells at 21 dpc 
(Fig.  6a). Ki67-positive IHC indicated proliferating cells 
inside the SVZ. A basal proliferation was detectable in 
control animals; increased levels were seen at very early 
time points, especially at 4 dpc, decreasing afterwards 
with barely any proliferating activity at 21 dpc (Fig. 6b). 
In the early demyelinated lesion, PDGFRα-positive 
OPCs throughout the lesion showed co-expression of 
nestin, whereas perilesional OPCs were widely negative 
for nestin (Fig.  6c). Quantification revealed significantly 
decreased densities of overall PDGFRα-positive OPCs 
in the lesion at 3 dpc (control: 35.6 ± 5.2, 3 dpc: 5.4 ± 2.5 
cells/mm2; p = 0.0135). At 4 dpc, OPC densities had 
greatly increased compared to the previous day (4 dpc: 
51.8 ± 19.3 cells/mm2), and still ~ 80% of immature oligo-
dendrocytes expressed nestin. Although GFAP-positive 
astrocytes were nearly absent in early lesions and did not 
reappear until 7 dpc (Additional file 3: Fig. S2a), few small 
and faintly GFAP-positive cells with mono- or bipolar 
morphology could be found at 3/4 dpc. These cells were 
often weakly Olig2-positive (Additional file  3: Fig. S2b), 
possibly indicating a very early maturation state of SVZ-
derived neural stem cells towards glial differentiation. At 
later timepoints, OPC densities returned to control levels 
with few nestin-positive cells mainly located at the lesion 
border, which were completely absent in control animals 
(Fig. 6d).

The proliferation in  the SVZ mainly occurred at 3/4 
dpc when BrdU injections were finished, leading to an 
oligodendroglial cell population that was mostly nega-
tive for BrdU. Accordingly, we observed that PDGFRα/
nestin double-positive OPCs were widely BrdU-negative 
(data not shown) and therefore concluded that the SVZ-
derived response was induced after the parenchymal 
response. Although additional cellular sources of actively 
myelinating oligodendrocytes (e.g. transdifferentiated 
astrocytes) cannot be excluded, a substantial contribu-
tion of SVZ-derived cells to lesion regeneration can thus 
be assumed, especially as lesion repair was shown to be 

Fig. 3  Olig2+ oligodendroglia in experimental ODS lesions. a Quantification of Olig2+ cells at different time points in lesion (white) and 
perilesion (grey) areas, as well as controls (light grey). b Relative Olig2 mRNA expression in the lesion center at 3, 7, 14 and 21 dpc compared to 
controls. Expression levels are normalized to the mean number of Olig2+ cells at each time point. c Representative pictures of Olig2+ cells (red); 
nuclei are stained in blue (DAPI). Upper row original magnification × 200, scale bar 100 µm, lower row shows magnifications of the framed areas 
above, scale bar 20 µm. d Density of NG2/Olig2 double-positive OPCs in ODS lesions. e Quantification of Olig2/Ki67 double-positive proliferating 
oligodendrocytes in the entire striatum at different time points. If not stated otherwise, one dot = one animal; one-way ANOVA and Tukey’s multiple 
comparison; mean ± SEM (*p < 0.05, **p < 0.01, ***p < 0.001)

(See figure on next page.)
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Fig. 4  BrdU-labelling identifies early proliferating oligodendrocyte lineage cells. a Experimental setup of BrdU injections from 12 h until 3 d 
post-correction. Tissue was harvested at 4, 7, 14 and 21 dpc, as indicated by red arrows. b, c Immunofluorescence double labeling of BrdU/Olig2 
double-positive cells (arrowheads) in a control animal (b) and the striatal ODS lesion area at 4 dpc (c). BrdU = green, Olig2 = red, DAPI = blue, 
magnification × 400, scale bar 50 µm. d-e NG2/BrdU immunofluorescence double labeling in the lesion 7 (d) or 14 dpc (e). BrdU = purple, 
NG2 = white, DAPI = blue, magnification × 400, scale bar 20 µm. f, g Quantification of cellular densities of NG2 + OPCs (f) and mature TPPP/
p25+ oligodendrocytes with and without BrdU immunoreactivity at different time points inside the lesion. Black bars = BrdU+ cells, white 
bars = BrdU− cells (mean ± SEM, two-way ANOVA and Tukey’s multiple comparison, ***p < 0.001). h Mature TPPP/p25+ oligodendrocytes are widely 
BrdU-negative at 21 dpc (TPPP/p25 = red, BrdU = green, magnification × 200, scale bar 50 µm)
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oriented from the SVZ towards the lesion center. In line 
with the appearance of SVZ-derived glial cells, the acti-
vated (but widely dysfunctional) parenchyma-derived 
oligodendrocyte population was most likely no longer 
needed in the lesion. Therefore, those cells could either 
undergo apoptosis or return to their  quiescent state, as 
indicated by a regular density of ramified NG2-positive 
OPCs in late-stage lesions (compare Fig. 4e).

Human central pontine myelinolysis (CPM) lesions
Based on findings from our animal model and previously 
published reports on human CPM, we staged a cohort 
of human CPM lesions, investigating astrocytes, myelin 
and macrophages. Staging criteria are outlined in Addi-
tional file 1: Table S2. Of the 18 CPM cases with clearly 
visible lesions in the pons, 5 lesions matched the criteria 
for early-, 5 for intermediate- and 8 for late-stage lesions. 
In experimental osmotic demyelination, astrocytes were 
shown to be especially vulnerable to the rapid rise of 
sodium levels after correction of hyponatremia, leading 
to their preferential loss (reviewed in: [64]). In line with 
these data, early human CPM lesions showed a promi-
nent reduction in the density of GFAP-positive astro-
cytes. Remaining GFAP-positive astrocytes within the 
lesions often had a bipolar morphology and were nega-
tive for the water channel AQP4, indicating that these 
cells had recently repopulated [72]. In intermediate-stage 
lesions, the density of GFAP-positive astrocytes returned 
to control levels or was even increased, with a propor-
tion of cells still showing a bipolar morphology. In 3/5 
intermediate-stage cases, the lesion center was AQP4 
negative. Late lesions contained mainly star-shaped, 
AQP4-positive astrocytes with typical reactive morphol-
ogy (Additional file  6: Fig. S5). In early lesions, the loss 
of astrocytes was accompanied by the influx of abundant 
foamy, KiM1P-positive macrophages/activated micro-
glia, which also phagocytosed myelin (Additional file  6: 
Fig. S5). Remnants of LFB-positive myelin sheaths were 
still found to a variable degree (Fig. 7a). In intermediate-
stage lesions the number of KiM1P-positive cells slightly 

decreased, and phagocytes had a less foamy morphol-
ogy. LFB was completely absent from late-stage lesions 
or showed signs of remyelination (Fig.  7a). In late-stage 
lesions, KiM1P-positive cells were rather small and 
round or ramified. Pale LFB staining was often detected 
throughout the lesion, indicating remyelination (Fig. 7a).

In line with the results obtained in experimental ODS 
lesions, loss of mature oligodendrocytes was an early 
feature of human CPM lesions. Indeed, immunohisto-
chemistry for TPPP/p25 showed a significant reduction 
in cell densities within lesions while densities in perile-
sion areas remained unaltered. Of note, densities gradu-
ally increased from 8.5 ± 15.9 cells/mm2 in early- to 
123.0 ± 51.8 cells/mm2 in late-stage lesions (compared 
to 269.7 ± 48.9 cells/mm2 in controls) (Fig.  7b, c). Not 
only a reduction in mature oligodendrocytes, but also 
in oligodendroglia lineage cells in general was detected 
within lesions using Sox10 and Olig2 immunohisto-
chemistry. Also here, densities within lesions did not 
reach control levels but showed an increase from early- 
to late-stage lesions (early: 115.2 ± 91.6 cells/mm2, late: 
275.6 ± 139.8 cells/mm2, control: 384.0 ± 83.8 cells/
mm2; Fig. 7d, e).

Already in early astrocyte-depleted CPM lesions, 
BCAS1-positive cells were detectable throughout the 
lesion (Fig.  7f ), mainly in a pre-myelinating stage, as 
BCAS1/MAG double-positive cells were only found in 
one single early case at the lesion border. Comparable 
to early experimental ODS lesions, BCAS1-positive oli-
godendrocytes in early lesions often presented a dys-
functional morphology with few ramifications or even 
condensed and fragmented nuclei (Fig.  7g). Densities 
of BCAS1-positive cells were significantly increased 
in intermediate-stage lesions (Fig.  7f ). In 4/5 interme-
diate-stage CPM lesions in which astrocytes widely 
repopulated the lesion, several actively myelinating 
cells double-labelled for BCAS1/MAG were observed 
(Fig.  7h). Here in general, BCAS1-positive oligodendro-
cytes presented the typical morphology of pre-myelinat-
ing or actively myelinating oligodendrocytes (Fig. 7i). No 

Fig. 5  BCAS1-positive oligodendrocytes contribute to remyelination of ODS lesions. a Relative MAG mRNA expression in the lesion center 
at different time points compared to controls. Expression levels are normalized to the mean number of Olig2+ cells at this time point. b 
Quantification of BCAS1 +/MAG+ actively myelinating oligodendrocytes at different time points after lesion initiation. White bars = lesion, grey 
bars = perilesion, light grey bar = controls. c Quantification of BCAS1+ (left bar) and BCAS1+/MAG+ (right bar) oligodendrocytes with and 
without BrdU immunoreactivity at different time points inside the lesion. Black bars = BrdU+ cells, white bars = BrdU− cells. d, e BCAS1/MAG/BrdU 
immunofluorescence triple labeling in an ODS lesion at 14 dpc. Depicted are an actively myelinating BCAS1+/MAG+ oligodendrocyte without 
BrdU labeling (d) and a BCAS1 +/MAG− oligodendrocyte with nuclear BrdU labeling and dysfunctional morphology (e) (BrdU = white, BCAS1 = red, 
MAG = green, DAPI = blue, magnification × 400, scale bar 10 µm). f Olig2/TUNEL double-positive cells, indicating apoptotic oligodendrocytes. 
g Light microscopic BCAS1/BrdU double labeling depicting a double positive cell with typical apoptotic nuclear morphology. BCAS1 = blue, 
BrdU = brown, magnification × 400, scale bar 10 µm. If not stated otherwise, one dot = one animal; one-way ANOVA and Tukey’s multiple 
comparison; mean ± SEM (*p < 0.05, **p < 0.01, ***p < 0.001)

(See figure on next page.)
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actively myelinating BCAS1-positive cells were observed 
in late-stage CPM, and densities of BCAS1-positive oli-
godendrocytes returned to control levels (Fig.  7f ), indi-
cating no further attempts at remyelination.

In human CPM cases, nestin-positive cells were nei-
ther detected in the pontine lesions nor in the wall of 
the fourth ventricle, whereas they were frequent in the 
wall of the fetal fourth ventricle (Additional file 7: Fig. 

Fig. 6  SVZ-derived lesion repair of striatal ODS lesions. a Representative microphotographs of the SVZ stained with anti-nestin antibodies 
at different time points (nestin = brown; nuclei = blue); Original magnification × 400, scale bar represents 50 µm. b Quantification of Ki67+ 
proliferating cells in the SVZ at different time points after ODS lesion induction. Immunopositive cells per mm SVZ length are plotted (one dot 
represents one animal, mean ± SEM, one-way ANOVA and Tukey’s multiple comparison, *p < 0.05). c Immunofluorescence double labeling 
with anti-PDGFRα and anti-nestin antibodies of perilesional and lesional OPCs at 7 dpc (PDGFRα = white, nestin = purple, DAPI = blue, 
magnification × 400, scale bar represents 10 µm). d Quantification of PDGFRα+ cells with and without nestin immunoreactivity at different time 
points inside the lesion. Black bars = nestin+ cells, white bars = nestin− cells (mean ± SEM, two-way ANOVA and Tukey’s multiple comparison, 
*p < 0.05)
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S6), suggesting that nestin-positive cells may not sub-
stantially contribute to myelin regeneration in human 
pontine CPM lesions.

Discussion
It was recently shown that the impaired differentiation of 
oligodendrocytes in MS lesions is likely due to extrinsic 
rather than cell-intrinsic factors [92]. Moreover, several 
studies demonstrated that the crosstalk between astro-
cytes and oligodendrocytes is indispensable for migration 
and maturation of OPCs during development. Conse-
quently, the proper interplay with astrocytes is essential 
during replenishment with mature oligodendrocytes and 
remyelination in demyelinated lesions. In the lesion, the 
composition of signal molecules, secreted by other glial 
cells, determines whether OPCs undergo maturation to 
myelin-forming cells or remain as precursors (reviewed 
in: [23, 67]). Astrocytic secretion of the leukemia inhibi-
tory factor (LIF) was determined as potent activator of 
myelination [39, 42]. Other astrocytic factors, e.g. PDGF, 
were also proven instrumental for OPC activation and 
maturation [7, 75], thus suggesting a tight regulation of 
oligodendroglial populations by astrocytes. Furthermore, 
connexins form gap junctions that enable direct astro-
cyte-oligodendrocyte communication by the free flow 
of small molecules, but they were found to be disrupted 
during lesion formation in CPM, but also in other neu-
rodegenerative diseases, e.g. in NMO and MS lesions or 
Baló’s concentric sclerosis [30, 57]. As expected, upregu-
lation of connexin 43 is observable in remyelinating MS 
lesions [57], further substantiating the role of gap junc-
tion-mediated astrocytic support for oligodendrocyte 
maturation. Although there is ample evidence of a crucial 
role of astrocytes during remyelination, there are only 
few studies on the cellular mechanisms of remyelination 
in demyelinated lesions with primary astrocyte damage 
or loss.

It is known that the remyelination capacity of NMO 
lesions that—like CPM—are characterized by a primary 
astrocytic insult, is limited [38, 100, 105]. One reason 
for this might be impaired oligodendroglial differentia-
tion in the absence of functional astrocytes (see review 
[100]). This hypothesis has been substantiated by experi-
ments on ex vivo brain cultures treated with recombinant 
antibodies from MS or NMO patient CSF in combina-
tion with human complement. It could be demonstrated 
that axons in demyelinated brain culture lesions treated 
with MS rAb were rapidly remyelinated, whereas lesions 
in NMO rAb-treated tissue were repopulated with astro-
cytes and pre-myelinating oligodendrocytes, but did not 
show substantial remyelination of preserved axons [52].

In our study, we investigated pontine lesions of 18 CPM 
patients which we stratified into early, intermediate and 
late disease stages by histopathological criteria. Studies in 
rodent models demonstrated the widespread absence of 
oligodendrocytes 24–48 h post-correction [11]. However, 
early human lesions contained Olig2-positive cells—
albeit in significantly reduced densities—which suggests 
that lesion repair had already been initiated and oligo-
dendrocytes had started to repopulate at this early lesion 
stage. Mature oligodendrocytes were nearly absent, indi-
cating that Olig2-positive oligodendrocyte lineage cells 
must be OPCs or early differentiated oligodendrocytes. 
Compared to controls, pre-myelinating BCAS1-positive 
oligodendrocytes were increased. Although one early 
case showed few BCAS1/MAG double-positive cells, 
indicating active remyelination, most BCAS1-positive 
cells showed a dysfunctional morphology with few short 
ramifications or even condensed or fragmented nuclei. 
In intermediate-stage lesions where astrocyte repopu-
lation was more advanced, BCAS1-positive cells were 
even more frequent and showed more ramifications, in 
part co-expressing MAG. Therefore, it can be concluded 
that lesion regeneration and in particular myelin repair 
is mainly carried out in this stage of lesion evolution. In 

Fig. 7  De- and remyelination in human CPM lesions. a Representative micrographs of human pontine CPM lesions stained with LFB/PAS. 
Typical early-, intermediate- and late-stage lesions are shown. The far right picture shows the perilesion area of the late-stage lesion depicted. 
Magnification × 100, scale bar represents 200 µm. b LFB staining in combination with immunohistochemistry for mature oligodendrocytes (TPPP/
p25). Lesion and perilesion from the same early CPM case are shown. Magnification × 200, scale bar represents 100 µm. c, d Quantification of 
TPPP/p25+ (c) and Olig2+ (d) oligodendrocytes in different areas of early, intermediate and late stage CPM lesions compared to controls. White 
bars = lesion, grey bars = perilesion, striped bars = lesion border. e LFB staining combined with Olig2 immunohistochemistry of an early stage 
CPM lesion and the adjacent perilesion area. Arrowheads indicate Olig2+ nuclei. Magnification × 400, scale bar represents 50 µm. f Quantification 
of BCAS1+ oligodendrocytes in different areas of early-, intermediate- and late-stage CPM lesions in comparison to controls. g, i Typical cellular 
morphology of BCAS1-immunostained oligodendrocytes in early- (g) and intermediate-stage lesions (i). A BCAS1+ cell with fragmented nuclei 
is depicted (g, right picture). Original magnification × 400. h BCAS1/MAG immunofluorescence double labeling in an intermediate stage human 
CPM lesion. BCAS1 = green, MAG = red, DAPI = blue; magnification × 400, scale bar represents 50 µm. c,d,f dots correspond to individual patients. 
Bars = mean ± SEM and statistical analysis with one-way ANOVA followed by Tukey’s post hoc test for multiple comparison; *p < 0.05, **p < 0.01, 
***p < 0.001

(See figure on next page.)
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contrast, late-stage lesions presented low densities of 
BCAS1-positive cells, increased numbers of mature oli-
godendrocytes and thin myelin, indicating that repair 
processes were largely completed.

Strikingly, we found that early CPM lesions harbored 
mainly dysfunctional pre-myelinating oligodendrocytes. 
Talbott and colleagues showed that OPCs failed to remy-
elinate astrocyte-free lesions in the rat spinal cord [95], 
underpinning the assumption that the lack of astrocytes 
in early CPM lesions might be the cause of the incom-
plete differentiation of pre-myelinating oligodendrocytes. 
A number of studies failed to demonstrate significant 
astrocytic loss in MS lesions [17, 71, 79]. Nevertheless, a 
recent study revealed astrocytic loss in a subset of early 
MS lesions as well as the repopulation of active lesions 
with AQP4-negative/GFAP-positive astrocytic precur-
sors, similar to those detectable in our CPM lesions and 
in non-necrotic NMO lesions [74]. In addition, not only a 
lack of astrocytes but also functional impairment should 
be considered as contributing to inefficient remyelination 
of MS lesions.

To gain further understanding of lesion repair pro-
cesses, we used an ODS rat model. In contrast to 
human CPM, demyelinated lesions in rats are mainly 
localized in the corpus striatum. This is thought to be 
due to differences in the anatomic architecture of the 
human versus rat brain [44]. Histopathologic examina-
tion points out a rapid repopulation of the astrocyte-
free demyelinated lesion with OPCs, which reflects 
previous findings in experimental NMO [103]. Experi-
ments revealed that most of the OPCs that repopulated 
the lesion were newly formed. Although proliferating 
oligodendrocytes are rare in the healthy adult rodent 
brain, a parenchyma-resident oligodendrocyte popula-
tion marked by the expression of NG2 undergoes slow 
but constant proliferation [37, 50]. These cells, also 
referred to as adult or parenchymal OPCs, retain their 
ability to undergo maturation and were found to pro-
liferate in demyelinating lesions that are successfully 
remyelinated afterwards [6, 41, 49, 60, 84]. It has been 
demonstrated that LPS-induced demyelinated lesions 
in the rat spinal cord are repaired by parenchymal, 
NG2-positive OPCs that undergo proliferation outside 

the lesion up to 48  h after lesion induction, and then 
migrate into the lesioned area where they continue to 
proliferate [99]. In line with these data, we detected 
proliferating oligodendrocyte lineage cells throughout 
lesion repair, but especially in the early lesion stages. 
Olig2-positive cells in the early lesion were often NG2/
BrdU double-positive and showed a bipolar morphol-
ogy, as expected for cells that had recently migrated 
into the lesion. However, although newly formed oli-
godendrocytes rapidly gained BCAS1 expression, they 
only partially entered into an actively myelinating state, 
or showed TPPP/p25 expression, which would indi-
cate final maturation. Moreover, BCAS1/BrdU double-
positive cells seemed to have halted their maturation, 
showing a dysfunctional morphology as also observed 
in early human CPM lesions. Apoptotic oligodendro-
cytes were present throughout lesion repair, suggesting 
a sorting out of immature oligodendrocytes in experi-
mental ODS lesions, including dysfunctional BCAS1/
BrdU double-positive cells.

Similar to human lesions, experimental ODS lesions 
also showed active remyelination, characterized by an 
increased density of BCAS1/MAG double-positive oligo-
dendrocytes between 2 and 3  weeks after lesion induc-
tion (when astrocytes had already widely repopulated 
the lesion). By 3  weeks, lesion size had significantly 
decreased when compared to the maximal lesion expan-
sion 1 week after lesion induction. Furthermore, densities 
of mature oligodendrocytes closely resembled control 
levels, and thin myelin was found histologically and ultra-
structurally, implying that myelin regeneration was 
nearly completed. We further aimed at depicting lesion 
evolution and repair in the living animal and performed a 
follow-up MRI study over 21 days. Here we were able to 
observe tissue edema as a prolongation of the T2 relaxa-
tion time of about 15%, which was already visible on the 
T2-weighted images on 7 dpc, and was clearly apparent 
on the T2IEW map. The histologically confirmed demy-
elination was reflected by a reduction in the MWF. As 
shown before, MWF strongly correlates with histologi-
cal myelin stains and is regarded as an in  vivo myelin 
marker [55]. Similarly, the observed FA reduction and the 
RD increase pointed towards demyelination, as found in 

(See figure on next page.)
Fig. 8  Graphical summary. The proposed dual mode of repair of astrocyte-depleted experimental ODS lesions in the striatum is shown. The initial 
parenchymal response is depicted on the right and marked by pink numbers. NG2-positive oligodendrocyte precursor cells (OPCs) are activated 
(1) and migrate into the lesion center (2), where they proliferate and repopulate the lesion. In the absence of functional astrocytes, OPCs further 
differentiate to BCAS1-positive pre-myelinating oligodendrocytes with a dysfunctional morphology (3). Most of those cells fail to undergo further 
maturation and enter apoptosis (4). After the initial repopulation of the lesion with OPCs, the SVZ-derived response (shown on the left in blue) 
takes place. SVZ-derived oligodendroglial progenitor cells are formed by neural stem cells located close to the third ventricle and migrate towards 
the lesion (1). At the lesion border, they differentiate into fully mature myelinating oligodendrocytes in the presence of pro-myelinating astrocytic 
factors (2-4)
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other studies in comparable animal models [10, 89]. All 
parameters showed a regression of the lesion already 
at 14 dpc, although to a different extent for the specific 

methods applied here. While FA and T2IEW almost 
returned to baseline, the parameters expected to be 
most specific for myelin, namely RD and MWF, showed 
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only mild recovery, if at all. The histologically and ultra-
structurally detectable thin myelin was interestingly not 
sufficient to be detectable by the myelin-related MR-
parameters. Noteworthy, even the normal-appearing stri-
atum showed consistently reduced values of MWF, which 
could be explained by a general increase in the intra- and 
extracellular water fractions. Further experiments would 
be needed to confirm whether this is a systematic effect 
of the intervention. In order to disentangle the contribu-
tion of the different pathologies including cell density, 
myelin content and extracellular water follow up studies 
may exploit multiparameter approaches [10, 63]. As the 
quite efficient lesion repair observed both histologically 
and by MRI contrasted with the inefficient maturation of 
parenchymal OPCs, we had to consider another cellular 
source of myelinating oligodendrocytes.

Previous data indicated that myelinating oligodendro-
cytes cannot only be derived from parenchymal OPCs, 
but may also come from subependymal neural stem 
cells located adjacent to the ventricular wall [21, 61, 78]. 
These ependymal cells present astrocytic features [22] 
and form a quiescent stem cell reservoir that can give 
rise to astrocytes and oligodendrocytes after spinal cord 
injury in mice [4]. We observed an upregulation of  the 
NSC marker nestin as well as an increase in cell prolifera-
tion in the SVZ 3/4 days after the osmotic insult. OPCs 
stemming from SVZ-derived NSCs were further charac-
terized by the co-expression of nestin and PDGFRα. Nes-
tin-positive/PDGFRα-positive cells were not detected in 
control animals, but only in lesioned tissue. Their density 
was substantially increased between days 3 and 4 after 
osmotic stress, decreasing again afterwards. Due to their 
main proliferation time span beginning after the applica-
tion period, they  were widely negative for BrdU. Lineage 
tracing experiments in LPS-induced lesions in rodents 
revealed that the majority of myelinating oligodendro-
cytes was derived from parenchymal OPCs rather than 
subependymal cells [4]. It has been proposed that local 
NG2-positive OPCs provide a rapid response to acute 
demyelination, whereas the delayed response of the SVZ 
mainly serves to fill up the parenchymal OPC pool [82]. 
Since in our experiments, NG2-positive OPCs in late 
lesion stages were mostly negative for BrdU, this might 
also be true for our model. Nevertheless, in our experi-
mental paradigm, actively myelinating as well as mature 
oligodendrocytes repopulating the lesion were mostly not 
derived from parenchymal NG2 glia. Therefore, we pro-
pose that SVZ-derived oligodendrocytes in striatal ODS 
lesions not only give rise to OPCs that replace the tissue 
residents, but also form actively myelinating and consec-
utively, mature oligodendrocytes. It should be noted that 
the subventricular zone of the fourth ventricle, which is 
located close to the dorsal pons and thus may play a role 

in the repair of demyelinated lesions, did not show an 
upregulation of nestin in the human CPM patients stud-
ied here. In humans, nestin expression in the SVZ seems 
to be restricted to fetal stages and childhood [20]. Sub-
ependymal cells in the SVZ possess stem cell character-
istics, giving rise to “fresh” OPCs, whereas parenchymal 
OPCs of the perilesion tissue are also able to refill the 
intralesional OPC population but must undergo multiple 
rounds of self-renewal and accumulate age-related defi-
ciencies. This may presuppose the limited capacity of the 
adult human brain to regenerate, as compared to rodents, 
as well as the decline with age (reviewed in: [97]). The 
proposed dual mechanism leading to the remyelination 
of astrocyte-depleted experimental ODS lesions is sum-
marized in Fig. 8.

Cortical astrocytes have demonstrated the ability to 
produce neurospheres in response to injury [14]. In early 
stages of experimental ODS lesions, few Olig2-positive 
cells with few short GFAP positive processes could be 
detected in the mostly astrocyte-free lesion. These cells 
might represent an intermediate between NSCs (which 
have astrocytic features) and OPCs. A contribution for 
trans-differentiated astrocytes to the remyelination of 
ODS lesions can thus not be excluded.

Conclusions
In the present study we demonstrate efficient remyeli-
nation of experimental ODS lesions and attempts at 
remyelination of human CPM lesions with primary astro-
cytopathy [59, 72, 79, 83]. Early astrocyte-depleted lesions 
were rapidly repopulated with OPCs that differentiated to 
express BCAS1, but presented a non-myelinating mor-
phology. Upon reappearance of astrocytes, BCAS1-pos-
itive cells started to remyelinate the lesion, implying that 
functional astrocytes are a requisite for remyelination. Our 
data further indicate that parenchymal as well as stem cell-
derived OPCs are participating in the formation of myeli-
nating oligodendrocytes. In experimental striatal, but not 
in human pontine lesions, neural stem cells (NSCs) located 
in the SVZ contributed to lesion repair.

The paradigm of osmotic demyelination clearly reveals 
the contribution of different OPC populations to efficient 
myelin regeneration. It also points to the significant con-
tribution of fully functional astrocytes to remyelination. 
Future research will be needed to fully understand the 
complex interplay between different glial cells. Under-
standing the cellular and molecular mechanisms of remy-
elination, including the signals attracting OPCs, the cues 
leading to efficient internode formation, and the time 
frame in which astrocyte-derived signals are indispensa-
ble, will help tackle the unresolved scientific problem of 
inefficient myelin repair in major human demyelinating 
diseases such as MS.
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Additional file 1: Tables S1, S2. Table S1: Patient data. Table S2: Criteria 
for staging of human CPM lesions.

Additional file 2: Fig. S1. Longitudinal MRI of ODS lesion progression 
and repair. T2-weighted images (top row) from the same rat are presented 
at five time points: 0 (baseline), 1, 7, 14, and 21 days post-correction 
(dpc). The depicted slice is located approximately 2 mm rostrally to the 
crossing of the anterior commissure. From 7 dpc onwards, bilateral lesions 
appeared in the ventral striatum (arrows). The lesion location was con‑
firmed by LFB/PAS histochemistry. Regions-of-interest (ROIs) were defined 
within the lesion area as well as in a normal-appearing area of the dorsal 
striatum. The lesions can also be seen on parameter maps derived from 
myelin water imaging and diffusion tensor imaging (bottom image). The 
within-ROI means of the shown parameters are plotted across time.

Additional file 3: Fig. S2. Astrocytic ODS lesion repair. a Quantification of 
GFAP + astrocytes during ODS lesion evolution (one dot represents one 
animal, mean ± SEM, one-way ANOVA and Tukey’s multiple comparison, 
*p < 0.05,***p < 0.001). b Immunofluorescence double labeling with anti-
GFAP and anti-Olig2 antibodies. GFAP = red, Olig2 = green, DAPI = blue, 
magnification x400, scale bar represents 20 µm.

Additional file 4: Fig. S3. Frequency of mature oligodendrocytes over 
time indicates a directed lesion repair. Heat maps demonstrate the 
frequency of TPPP/p25+ mature oligodendrocytes in the striatum for 
representative animals of each time point. Dashed red lines indicate the 
lesion border. The SVZ (indicated by a dashed purple line) is used to cre‑
ate distance polygons, as exemplarily shown for 3/4dpc (middle graph). 
For each animal, the frequency of TPPP/p25+ cells is plotted across the 
distance to the SVZ (right graph). Distances of the inner lesion borders to 
the SVZ are indicated by a stroke. A bold line indicates the mean for all 
animals and the shaded area indicates 95% confidence intervals. Lower 
scheme indicates the typical location of the SVZ and the lesion border in 
one hemisphere.

Additional file 5: Fig. S4. Remyelination in the grey and white matter. 
Immunofluorescence triple labeling with antibodies against TPPP/
p25, CD68 and MBP. Arrowheads mark CD68+ activated microglia/
macrophages. TPPP/p25 = red, CD68 = green, MBP = white, DAPI = blue, 
magnification × 200, scale bar indicates 25 µm.

Additional file 6: Fig. S5. Histopathological characteristics of human CPM 
lesions. Representative microphotographs of typical early, intermediate 
and late stage CPM lesions. Top row: anti-AQP4 IHC, magnification × 100, 
scale bar represents 200 µm; middle row: anti-GFAP IHC double labeled 
with LFB/PAS, magnification × 100, scale bar represents 200 µm; bottom 
row: anti-KiM1P IHC double labeled with LFB, magnification x200, scale 
bar represents 100 µm.

Additional file 7: Fig. S6. Neural progenitor cells in humans are present 
in the fetal subventricular zone of the fourth ventricle. Nestin+ cells are 
abundant in the cell layers adjacent to the fourth ventricle of a fetus (left), 
but absent in an adult CPM patient (right). Magnification × 400, scale bar 
represents 50 µm.
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