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Abstract

Background: A reduction in peripheral nervous system (PNS) insulin signaling is a proposed mechanism that may
contribute to sensory neuron dysfunction and diabetic neuropathy. Neuronal insulin resistance is associated with
several neurological disorders and recent evidence has indicated that dorsal root ganglion (DRG) neurons in
primary culture display altered insulin signaling, yet in vivo results are lacking. Here, experiments were performed to
test the hypothesis that the PNS of insulin-resistant mice displays altered insulin signal transduction in vivo. For
these studies, nondiabetic control and type 2 diabetic ob/ob mice were challenged with an intrathecal injection of
insulin or insulin-like growth factor 1 (IGF-1) and downstream signaling was evaluated in the DRG and sciatic nerve
using Western blot analysis.

Results: The results indicate that insulin signaling abnormalities documented in other “insulin sensitive” tissues
(i.e. muscle, fat, liver) of ob/ob mice are also present in the PNS. A robust increase in Akt activation was observed with
insulin and IGF-1 stimulation in nondiabetic mice in both the sciatic nerve and DRG; however this response was blunted
in both tissues from ob/ob mice. The results also suggest that upregulated JNK activation and reduced insulin receptor
expression could be contributory mechanisms of PNS insulin resistance within sensory neurons.

Conclusions: These findings contribute to the growing body of evidence that alterations in insulin signaling occur in
the PNS and may be a key factor in the pathogenesis of diabetic neuropathy.
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Background
Diabetes and metabolic syndrome are risk factors for
several neurological diseases, and emerging evidence has
indicated that neuronal insulin resistance may be in-
volved in disease pathogenesis [1]. While altered insulin
signaling is known to be the key factor in the develop-
ment of diabetes, the role that it plays in diabetic neur-
opathy (DN) is not well understood. However, it has
been demonstrated that neuronally-targeted insulin
treatment can improve signs of neuropathy without
altering blood glucose levels [2-4]. Recent evidence sug-
gests that cultured sensory neurons from insulin-
resistant mice display classic signs of insulin resistance
and that insulin resistance may be contributing to mito-
chondrial dysfunction and increased ROS in DN [5-7].
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Furthermore, clinical evidence has reported that insulin
resistance appears to be an independent risk factor for
both autonomic and peripheral neuropathy [8].
Although neurons do not appear to rely on insulin

for glucose uptake [9], insulin does have an import-
ant role in both the CNS and PNS. Insulin promotes
in vivo nerve regeneration [4,10,11], induces neurite
outgrowth [12,13], maintains neuronal mitochondrial
function [14,15], supports memory formation [16,17],
and regulates hypothalamic metabolic control [18,19].
While the exact mechanisms through which insulin pro-
motes these functions remain unclear, insulin is considered
a potent neurotrophic factor key to maintaining proper
neuronal function.
Insulin and insulin-like growth factor 1 (IGF-1) signal-

ing is propagated by phosphorylation events that begin
with the intrinsic tyrosine kinase activity of the insulin
or IGF receptor (reviewed in [20,21]) and continue with
subsequent activation of both the PI3K-Akt and MAPK
cascades. While these pathways are well defined in
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muscle, adipose, and liver, insulin signaling and its ac-
tions in the PNS are poorly understood.
In an insulin-resistant state, the cellular effects of insu-

lin are blunted due to improper signal propagation
resulting from several different mechanisms, including
1) degradation of the insulin receptor [22-25], 2) removal
of key tyrosine phosphorylation sites by overactivation of
protein tyrosine phosphatases [26-29], and 3) increased
phosphorylation at inhibitory IRS serine residues due to el-
evated stress kinases, such as JNK [30-35]. However, the
extent to which these mechanisms affect insulin signal
transduction in the PNS is not clear.
Growing evidence suggests that neurons may become

insulin resistant similar to other tissues. However, no
in vivo evidence of PNS insulin resistance has been
presented, and the cellular mechanisms associated with
PNS insulin resistance have not been thoroughly investi-
gated. Here, we demonstrate that the DRG and sciatic
nerve of ob/ob mice display reduced insulin signaling
in response to an intrathecal injection of insulin.
Figure 1 Ob/ob mice display classic signs of insulin resistance. A, B) A
mice throughout the test. The blood glucose of ob/ob mice increased mor
that elevated less than 6 mmol/L after glucose injection, indicating severe gluc
showed reduced insulin sensitivity in ob/ob mice. In fact, an insulin dose of 1.5
this dose lowered the blood glucose of nondiabetic controls by approximately
elevated blood glucose and serum insulin levels. Accordingly, the HOMA-IR me
** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. IPGTT n = 7 nondiabetic mice, n
Furthermore, the PNS of ob/ob mice has alterations in
cellular mechanisms of insulin resistance, including
decreased DRG insulin receptor expression and up-
regulation of JNK activity in the sciatic nerve.

Results
Insulin resistance in ob/ob mice
To quantify the extent of systemic insulin resistance in
ob/ob mice, nondiabetic and diabetic ob/ob mice under-
went an IPGTT at 9 weeks of age (Figure 1A). Blood glu-
cose levels of the ob/ob mice were significantly higher
than nondiabetic mice throughout the course of the ex-
periment and the area under the curve (AUC) was also
significantly elevated for ob/ob mice (Figure 1B). Results
from the ITT indicated that nondiabetic, insulin-injected
mice exhibited an expected physiological decrease in
blood glucose in response to insulin; however, ob/ob
mice displayed a transient elevation of glucose levels
(Figure 1C). Statistical analysis of the data revealed
that ob/ob mice maintained elevated glucose levels
n IPGTT showed significantly elevated blood glucose levels in ob/ob
e than 10 mmol/L at its maximal level as opposed to nondiabetic mice
ose intolerance in ob/ob mice. C, D) Similar to the IPGTT, data from the ITT
U/Kg did not decrease the blood glucose level of ob/ob mice, whereas
3.6 mmol/L. E-G) At 10 weeks of age, ob/ob mice had significantly
asure of insulin resistance was significantly higher in ob/ob mice.
= 6 ob/ob. ITT n = 4 nondiabetic mice, n = 4 ob/ob.
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compared to nondiabetic controls throughout most of
the study, and that the AUC was significantly higher for
diabetic ob/ob mice (Figure 1D). The HOMA-IR, a meas-
ure of insulin resistance, was calculated using fasting
blood glucose and serum insulin levels from 10 week old
mice. Ob/ob mice had significantly higher blood glucose
levels (14.3 ± 2.1 mmol/L) compared to nondiabetic mice
(8.2 ±0.5 mmol/L) (Figure 1E). Fasting insulin levels were
also significantly higher in diabetic ob/ob mice (6780 ±
1610 pmol/L) compared to nondiabetic mice (198 ± 25
pmol/L, Figure 1F). As such, ob/ob mice had a signifi-
cantly elevated HOMA-IR as compared to nondiabetic
mice (557 ± 130 compared to 10.1 ± 1.4, respectively,
Figure 1G). These results demonstrate significant glu-
cose intolerance and insulin resistance in ob/ob mice at
this age.

Mechanical allodynia in ob/ob mice
To quantify a known behavioral abnormality associated
with neuropathy in mice, mechanical sensitivity was
assessed in nondiabetic and diabetic ob/ob mice at 8, 9,
10, and 11 weeks of age. There were no differences in
mechanical thresholds between nondiabetic and ob/ob
diabetic mice at 8, 9, or 10 weeks of age. However, at 11
weeks, there was a significant decrease in the mechanical
thresholds of diabetic ob/ob mice compared to nondiabetic
mice (Figure 2), consistent with sensory aberrations associ-
ated with peripheral neuropathy as previously reported
in this genetic mouse strain [36].

Blunted insulin and IGF-1 Akt activation in ob/ob DRG
and sciatic nerve
Insulin stimulation causes a robust activation of Akt in
insulin-sensitive tissues like muscle and adipose, as well
as in neurons of both the peripheral and central nervous
systems. Moreover, reduced insulin-induced activation of
Figure 2 Ob/ob mice develop mechanical allodynia. Mechanical
thresholds were tested using von Frey monofilaments at 8, 9, 10,
and 11 weeks of age. Ob/ob mice did not display significant
differences from nondiabetic controls at 8, 9, or 10 weeks. However,
at week 11, ob/ob mice had a significant decrease in their
mechanical withdrawal thresholds. * = p < 0.05. n = 6 nondiabetic
mice, n = 6 ob/ob diabetic mice.
Akt is a hallmark of insulin resistance [5,6,37,38]. Here,
nondiabetic and diabetic ob/ob mice were administered
either intrathecal PBS or insulin and the DRG and sci-
atic nerve were harvested 30 minutes later for Western
blot analysis to assess Akt activation. Both nondiabetic
control and ob/ob mice display significantly elevated
blood glucose levels following intrathecal injection of
PBS. Nondiabetic mice glucose levels increased from
6.6 ± 0.4 mmol/L to 8.6 ± 0.5 mmol/L, whereas ob/ob levels
increased from 12.1 ± 2.4 mmol/L to 22.3 ± 2.4 mmol/L.
Glucose levels in nondiabetic mice significantly decreased
from 7.0 ± 0.3 mmol/L to 3.3 ± 0.3 mmol/L after intra-
thecal insulin injection. Ob/ob mice glucose levels 30 mi-
nutes after insulin injection were not significantly different
from baseline, starting at 12.7 ± 0.9 mmol/L and ending at
12.3 ± 1.5 mmol/L after 30 minutes.
In nondiabetic mice, insulin produced a strong eleva-

tion in levels of activated Akt (p(ser473)Akt/total Akt) in
both the DRG and sciatic nerve (Figure 3A,B). However
in ob/ob mice, Akt activation was significantly lower in
the DRG and sciatic nerve. In fact, insulin failed to sig-
nificantly increase Akt activation over baseline in the
DRG of ob/ob mice. For comparison, Akt activation in
the DRG was increased 3.1 fold in nondiabetic mice and
1.6 fold in ob/ob diabetic mice. In the sciatic nerve, insu-
lin produced 9.7 and 6.1 fold increase in Akt activation
in nondiabetic and ob/ob mice, respectively.
To confirm that these results were not dependent on

the intrathecal route of delivery, a small number of mice
were administered intraperitoneal insulin at a dose of
3.33 U/kg. PBS injections once again appeared to cause an
increase in blood glucose levels from baseline, nondiabetic
mice levels started at 7.0 ± 1.4 mmol/L and ended at 8.6 ±
1.4 mmol/L (p > 0.05), whereas ob/ob mice showed a
significant increase from 10.8 ± 0.8 mmol/L to 15.4 ±
1.0 mmol/L. IP insulin resulted in significantly lower blood
glucose levels in nondiabetic mice after 30 minutes, 7.8 ±
0.6 versus 4.2 ± 0.5 mmol/L, respectively. Ob/ob mice
blood glucose levels were not significantly altered by IP in-
sulin injection 15.3 ± 3.0 versus 13.6 ± 3.9 mmol/L. Similar
to the intrathecal delivery route, a significant increase in
Akt activation was observed in the DRG and sciatic nerve
of nondiabetic mice stimulated with insulin; however, no
significant change was observed in either tissue from ob/ob
mice. (Figure 4A,B). In the DRG, nondiabetic mice
displayed a 2.4 fold change in Akt activation, compared to
a 1.5 fold change in ob/ob mice. IP insulin induced a 3.8
fold change in Akt in the sciatic nerve of nondiabetic mice,
but only a 1.4 fold change in ob/ob in the sciatic nerve
from ob/ob mice.
IGF-1 and insulin activate many of the same intracellular

signaling pathways [21], and altered IGF-1 signaling has
been demonstrated in states of insulin resistance [39]. Fur-
thermore, IGF-1 resistance has recently been demonstrated



Figure 3 Intrathecal insulin-induced Akt activation is blunted in the PNS of ob/ob mice. DRG (A) and sciatic nerve (B) were harvested after
an intrathecal injection of PBS (nondiabetic n = 10, ob/ob n = 7) or insulin (nondiabetic n = 10, ob/ob n = 9) was administered to nondiabetic
control and ob/ob mice. Nondiabetic mice displayed a robust and significant increase in Akt activation with insulin stimulation; however insulin
failed to significantly activate Akt in the DRG of ob/ob mice. Furthermore, the maximal increase in Akt activation with insulin stimulation was
significantly lower in both the DRG and sciatic nerve of ob/ob mice. There were no differences in mice that received PBS in either the DRG or
sciatic nerve. * = p < 0.05, *** = p < 0.001.
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to be associated with brain insulin resistance and cognitive
decline in Alzheimer’s patients [40]. To investigate IGF-1
signal transduction in the PNS of ob/ob mice, a dose of
IGF-1 equimolar to 0.1U insulin was administered via an
intrathecal injection. Blood glucose levels in both
nondiabetic control and ob/ob mice once again appeared
to increase with intrathecal PBS injection, 7.7 ± 0.3 mmol/
L at baseline as compared to 9.7 ± 0.8 mmol/L (p = 0.056)
after 30 minutes for nondiabetic mice and 12.1 ±
1.9 mmol/L at baseline to 23.7 ± 3.1 mmol/L after 30 mi-
nutes for ob/ob mice. IT IGF-1 did not significantly alter
blood glucose levels in nondiabetic mice, 9.3 ± 0.4 mmol/L
Figure 4 The PNS of ob/ob mice showed reduced insulin-induced Akt
Nondiabetic and ob/ob diabetic mice were given intraperitoneal injections
3.33 U/kg (nondiabetic n =3 and ob/ob n = 3). In both the DRG (A) and sci
Akt activation in the insulin stimulated group as compared to mice that re
PNS from ob/ob mice. * = p < 0.05, ** = p < 0.01.
versus 8.1 ± 0.3 mmol/L. Ob/ob mice that received IT IGF-
1 had similar blood glucose profiles to ob/ob mice that re-
ceived IT PBS, with a significant increase in blood glucose
after 30 minutes, 16.3 ± 2.7 mmol/L as compared to 27.7 ±
1.2 mmol/L. Akt was significantly activated in the DRG
from both nondiabetic (13.3 fold) and ob/ob diabetic mice
(6.0 fold). However, Akt activation was significantly lower
in the DRG from ob/ob mice compared to nondiabetic
mice (Figure 5A). In the sciatic nerve of nondiabetic mice,
IGF stimulation produced a significant 2.8 fold increase in
Akt activation. In contrast, Akt was not significantly acti-
vated in the sciatic nerve of ob/ob mice (Figure 5B).
activation in response to intraperitoneally-delivered insulin.
of PBS (nondiabetic n = 3, ob/ob n = 3) or insulin at a dose of
atic nerve (B) of nondiabetic mice, there was a significant increase in
ceived PBS, yet no statistically significant changes were observed in the



Figure 5 The PNS of ob/ob mice displayed reduced Akt activation in response to intrathecal IGF-1. Similar to the results shown for
intrathecal insulin, an intrathecal injection of IGF-1 produced a strong activation of Akt in both the DRG and sciatic nerve of nondiabetic mice,
but the response was somewhat blunted in the PNS of ob/ob mice. In the DRG (A), there was a significant increase in Akt activation in both the
nondiabetic and ob/ob mice; however, the activation level was significantly lower in the DRG from ob/ob mice. In the sciatic nerve (B), IGF-1
stimulation resulted in a significant Akt activation in nondiabetic mice, but not in the ob/ob mice. * = p < 0.05, ** = p < 0.01, *** = p < 0.001. n = 8
nondiabetic PBS, n = 9 nondiabetic IGF-1, n = 7 diabetic PBS, n = 10 diabetic IGF-1.
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Insulin signaling downstream of Akt in the DRG and
sciatic nerve
To assess whether diabetes-induced blunting of Akt
activation was maintained downstream, several other
insulin-responsive proteins were investigated via
Western blot analysis, including mTor (protein syn-
thesis), p70S6K (protein synthesis), AS160 (glucose
uptake), and GSK3β (glycogen synthesis). At the in-
sulin dose (0.1U) and time point (30 minute stimula-
tion) that were investigated, no statistical differences
(p > 0.05) were observed in the activation of these
proteins even in control mice (Table 1). Additionally,
similar to Akt results, no differences were observed in
baseline levels between all proteins investigated. However,
it is interesting to note that in both the DRG and sciatic
nerve from ob/ob mice, there is a consistent pattern of a
reduced fold change in response to insulin as compared to
responses in nondiabetic mice.
Table 1 Downstream Akt pathway activation in the DRG and

Protein of
interest

DRG

Control nondiabetic ob/ob diabetic

Insulin-induced fold change Insulin-induced fold chan

mTor 1.52 1.00

AS160 1.47 1.28

p70S6K 1.00 1.04

GSK3β 1.26 1.17

Four proteins downstream of Akt that are known to be involved in the intracellular
ob/ob mice. In both the DRG and sciatic nerve, there were no significant changes in
nor was there a significant change in the inhibition of GSK3β. Data presented is the
induced by insulin as compared to that observed in mice that received PBS. n = 7-1
The PNS of ob/ob mice display reduced insulin receptor
expression and increased JNK activation
To explore possible mechanisms responsible for reduced
PNS insulin sensitivity, we investigated several pathways
known in other insulin-resistant tissues. One contributor
to reduced insulin signaling is a downregulation of insu-
lin receptor expression induced by hyperinsulinemia
[23]. As shown in Figure 6A, protein levels of the in-
sulin receptor subunit β were significantly lower in the
DRG of ob/ob mice compared to nondiabetic mice. How-
ever, there was no statistical difference in the expression
of insulin receptor between nondiabetic and ob/ob
mice in the sciatic nerve (Figure 6B). No significant
differences between groups were observed in IGF-1
receptor expression in either the DRG or sciatic nerve
(data not shown).
Our previous studies in primary DRG cultures reported

an upregulation of IRS2 serine phosphorylation [6], a
sciatic nerve after intrathecal insulin stimulation

Sciatic nerve

Control nondiabetic ob/ob diabetic

ge Insulin-induced fold change Insulin-induced fold change

1.13 0.98

2.13 1.22

1.09 0.93

1.56 0.88

actions of insulin signaling were investigated in the PNS of nondiabetic and
the activation of mTor, p70S6K, or AS160 in either nondiabetic or ob/ob mice,
fold change of protein modification (measured with Western blot analysis)
0 for all groups.



Figure 6 (See legend on next page.)
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(See figure on previous page.)
Figure 6 Possible mechanisms that may be contributing to insulin resistance in the PNS. A) In this study the expression of the beta
subunit of the insulin receptor was significantly reduced in the DRG of ob/ob mice as compared to nondiabetic controls. B) No significant change
in insulin receptor expression was observed in the sciatic nerve. C) The stress kinase JNK was not significantly activated in the DRG of ob/ob mice;
however in the sciatic nerve (D) there was a significant upregulation of JNK in ob/ob mice. E, F) No differences in PTP1B expression profiles were
observed in either the DRG or sciatic nerve between nondiabetic and diabetic groups. * = p < 0.05. n = 9 nondiabetic PBS, n = 9 nondiabetic
insulin, n = 7 diabetic PBS, n = 9 diabetic insulin.
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recognized mechanism of insulin resistance in muscle and
adipose. In the current study, we investigated both IRS1
(muscle and adipose isoform) [41] and IRS2 (neural iso-
form) [6,42] serine phosphorylation. In contrast to neurons
in vitro, IRS serine phosphorylation does not appear to be
significantly affected in the PNS in vivo within this model,
(data not shown). Interestingly, there was significant activa-
tion of the stress kinase JNK (p(Thr183/Tyr185)JNK/total
JNK) in the sciatic nerve of ob/ob mice compared to
nondiabetic mice (Figure 6D) and a similar pattern of acti-
vated JNK was observed in the DRG of ob/ob mice, how-
ever significance was not reached (nondiabetic vs. diabetic
p = 0.122) (Figure 6C).
In addition to stress kinase activation and reduced in-

sulin receptor expression, insulin resistance can also be
induced by over activation of tyrosine phosphatases [29].
However, PTP1B expression was not elevated in the
DRG or sciatic nerve of ob/ob mice, nor did insulin stimu-
lation appear to alter its expression levels (Figure 6E,F,
respectively).

Discussion
Diabetic neuropathy is associated with profound loss of
distal limb sensation and/or pain, causing significant
decline in the quality of life and potential morbidity
and mortality for patients. Currently, there are no clin-
ical treatments that successfully improve neuropathic
damage to peripheral sensory nerve fibers, likely due to
the multifactorial etiology of neuropathy development
and progression. Here, we have demonstrated in vivo
PNS insulin resistance in ob/ob mice. These results are
consistent with recent in vitro studies and support the
view that altered insulin signaling may contribute to
DN [43]. A robust activation of insulin-sensitive path-
ways was observed in the DRG and sciatic nerve of
nondiabetic mice, with a blunted response in both tis-
sues from insulin-resistant ob/ob mice. While no one
mechanism of insulin resistance was clearly prevalent,
significant changes were seen in two known pathways
of insulin resistance, including increased JNK activity
and reduced insulin receptor expression. Although
more research is needed to fully elucidate the path-
ways leading to PNS insulin resistance, these results
suggest that cellular mechanisms of insulin resistance
that have been defined in muscle may also play an im-
portant role in the PNS.
These experiments used an in vivo approach to sup-
port the mounting in vitro evidence pointing to PNS in-
sulin resistance in diabetes. Interestingly, Akt activation
was very prominent in the DRG and sciatic nerve of
nondiabetic mice, yet very few significant changes were
seen in downstream signaling molecules. This may be
due to a temporal effect, as downstream mediators of
the Akt pathway may have not yet been activated during
the 30-minute stimulation period used for this study.
However, it is also plausible that the downstream Akt
signaling proteins explored in this study do not play a
prominent role in insulin pathways within the DRG. In-
stead of driving protein synthesis through mTor and
p70S6K or regulation of GSK3β actions, insulin may be
playing a more important role in lipid and glucose me-
tabolism, gene regulation, or mitochondrial maintenance
in peripheral neurons. Further studies are underway to
explore these other downstream components of insulin
signaling and to define the temporal components of this
signaling pathway.
An additional caveat to this study is the use of leptin-

deficient ob/ob mice. Leptin’s role in the nervous system
is receiving increasing attention, and it may have a
neuroprotective role [44]. It is not known how reduced
neuronal leptin may have contributed to our results.
Thus, confirming these results in a high-fat diet model
of obesity will be an important step to further investigat-
ing PNS insulin resistance.
In experiments presented here, it appeared that in-

sulin produced a stronger Akt activation in the sciatic
nerve compared to the DRG (Figure 3), whereas IGF-
1 produced a stronger Akt activation in the DRG
compared to the sciatic nerve (Figure 5). These results
point to an apparent separation in insulin/IGF-1 sig-
naling support within the PNS. One plausible explan-
ation may be that insulin and IGF-1 have different
actions on the DRG soma and satellite cells compared
to sensory axons, motor axons, and Schwann cells in
the peripheral nerve, leading to alternative signaling
profiles. How this potential divergence in signaling
may affect sensory neuron function is yet to be deter-
mined and ongoing research is further delineating the
differential roles that insulin and IGF-1 may play in
sensory nerve biology.
In ob/ob mice, both the DRG and sciatic nerve displayed

reduced insulin-induced Akt activation, a classic indication
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of insulin resistance. Several mechanisms of insulin resist-
ance outlined in muscle also appear to be altered in the
PNS, and may be contributing to the observed reduction
in insulin signal transduction. However, these results must
be interpreted with caution as significant changes were not
seen consistently across PNS tissues, and further research
will need to be completed to fully establish a clear mechan-
ism. Interestingly, no change in baseline Akt activation
levels was observed between nondiabetic and ob/ob mice
as may be expected in states of insulin resistance. These re-
sults are intriguing and suggest that future research focus-
ing on pathways driving Akt signaling is warranted.
Hyperinsulinemia can promote insulin resistance

through downregulation of the insulin receptor [22]. This
effect was demonstrated in our data. The ob/ob mice in
this cohort had serum insulin levels 34.3 fold higher than
nondiabetic mice and the DRG of ob/ob mice displayed
significantly lower insulin receptor expression. Thus, the
extreme hyperinsulinemia in the ob/ob mice may be
promoting insulin receptor downregulation and contrib-
uting to PNS insulin resistance. This idea is supported
by a recent study that reported a significant decrease in
insulin receptor mRNA in cultured DRG neurons that
displayed insulin resistance when treated with high levels
of insulin [7].
An alternative mediator of insulin resistance is the

stress kinase JNK, which is activated in response to vari-
ous cellular stressors, including low grade chronic in-
flammation induced by obesity [33,45]. In fact, ob/ob
mice with a JNK null mutation have improved whole
body glucose tolerance and insulin sensitivity [31]. Add-
itionally, JNK activation has been implicated in altered
neurofilament phosphorylation in the PNS of diabetic
rats [46]. JNK activation is proposed to promote insulin
resistance through upregulation of IRS serine phosphor-
ylation, and IRS is a key common signaling component
of both the insulin and IGF-1 pathways. In the current
study we observed increased JNK activation without a
significant elevation in either IRS1 or IRS2 serine phos-
phorylation. Some controversy does exist as to which
serine sites are most important in insulin resistance, thus
the serine sites that we probed (p(ser731)IRS2 and
(p(ser307)IRS1) may not be heavily involved in inhibiting
insulin signaling in the PNS. More powerful approaches,
such as mass spectrometry, may be needed to establish a
global change in the IRS phosphorylation profile within
the PNS [47].
Another possible component of the insulin receptor

signaling pathway that could be affected in insulin
resistance is PTP1B. PTP1B is the canonical member
of protein tyrosine phosphatases and serves an import-
ant role in insulin signaling regulation [29]. Over-
expression of PTP1B has been linked to insulin
resistance in peripheral tissues of ob/ob mice [26] and
PTP1B knockout mice display increased insulin sensitiv-
ity [48]. In the current study, we did not detect signifi-
cant upregulation of PTP1B in the DRG or sciatic nerve
of insulin resistant mice. While there was no change in
PTP1B expression, there still could be alterations in
phosphatase activity and further studies are underway
to explore this possibility.
It will be important to put the current results in

context with other contributory mechanisms of DN,
including glucose and/or lipid mediated toxicity as
well as oxidative stress [49]. We postulate that the
metabolic dysfunction associated with hyperglycemia
and dyslipidemia in concert with reduced neuro-
trophic support promotes deterioration and reduced
regeneration of the distal axon. Furthermore, the loss
of appropriate insulin signaling could make neurons
even more susceptible to these pathogenic cascades. It
should be noted that both intrathecal and intraperito-
neal insulin injections altered blood glucose levels.
Thus, these results should be viewed in the context
that glucose levels were also transiently altered by in-
sulin administration. Further research into disrupted
PNS insulin signaling relative to other pathogenic
mechanisms is needed, as this will be a key step in
translating these basic science results into clinical
applications.
Conclusions
Insulin resistance is emerging as a potential mediator of
several neurological syndromes (reviewed in [1]). This
study, along with recent data of in vitro DRG insulin re-
sistance, strongly supports altered insulin signaling as a
pathogenic mechanism in DN. While deficient insulin
signaling has been a proposed contributor to DN in type
1 models for some time [3,4,14,43,50], little has been
known about insulin signaling effectiveness in type 2
(hyperinsulinemic) models of DN. We observed re-
duced insulin signaling in vivo in the PNS of type 2
diabetic ob/ob mice and suggest possible mechanisms
that may be contributing to these changes. It is now
becoming evident that decreased insulin neurotrophic
support in the PNS is an integral part of DN and
may be a congruent mechanism between type 1 and
type 2 diabetic models of DN, as both have reduced
insulin signaling either due to insulinopenia or neur-
onal insulin resistance.
Future studies will focus on mechanisms through

which insulin supports proper PNS function, as reveal-
ing these pathways may provide insight into how de-
creased insulin support contributes to the pathogenesis
of DN. Furthermore, delineating the details of PNS insu-
lin signaling may open new avenues for therapeutic
intervention in patients with DN.
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Methods
Animals
All experiments were approved by the University of
Kansas Medical Center Institutional Animal Care and
Use Committee. Male ob/ob leptin null mutant and age-
matched control mice (ob/+) were purchased from Jackson
Laboratories (Bar Harbor, Maine) at 8 weeks of age. Mice
were given access to food and water ad libitum and
housed on a 12-hour light/dark cycle. Weekly blood glu-
cose (Glucose Diagnostic Assay Sigma-Aldrich, St. Louis,
MO), serum insulin (Insulin ELISA Alpco, Salem, NH)
and weights were monitored and mice were sacrificed at
11 weeks of age.

Glucose tolerance test
At 9 weeks of age, an intraperitoneal glucose tolerance
test (IPGTT) was used to assess the response of mice to
a glucose challenge. After a 6-hour fast, mice were given
an intraperitoneal injection of glucose at 1g of glucose
per kg body weight. Blood glucose levels were measured
via tail clip immediately prior to the glucose bolus and
then at 15, 30, 60, and 120 minutes after injection.

Insulin tolerance test
At 10 weeks of age, mice underwent an insulin toler-
ance test (ITT). Mice were fasted for 6 hours and then
administered IP insulin (Humulin R, Lilly, Indianapolis,
Indiana) at a dosage of 1.5 U per kg body weight. Blood
glucose levels were monitored immediately prior to in-
sulin injection and then at 15, 30, 60, and 120 minutes
thereafter.

HOMA-IR
Fasting insulin and fasting glucose levels were used to
calculate the homeostatic model assessment of insulin
resistance (HOMA-IR). Scores were calculated with the
following equation: (blood glucose (mg/dl) X (serum insulin
(uU/mL))/405) [51].

Mechanical sensitivity
Mechanical behavioral responses to Semmes Weinstein-von
Frey monofilaments (0.07 to 5.0 g) were assessed at 8,
9, 10, and 11 weeks of age. Mice underwent acclima-
tion 2 days prior to the first day of behavioral testing.
Mice were placed in individual clear plastic cages
(11×5×3.5 cm) on a wire mesh grid 55 cm above the
table and were acclimated for 30 minutes prior to be-
havioral analysis. The filaments were applied perpen-
dicularly to the plantar surface of the hindpaw until
the filament bent. Testing began with the 0.7 g fila-
ment, and in the presence of a response, the next
smaller filament was applied. If no response was ob-
served, the next larger filament was used. Filaments
were applied until there was a change in response,
followed by an additional 4 more applications. The
withdrawal threshold was calculated using the formula
from the up-down method previously described [52].

Insulin and IGF-1 injections
Sterile PBS (vehicle), 0.1U (~0.7 nmol) Humulin R insu-
lin, or recombinant IGF-1 equimolar to 0.1U insulin was
directly administered to both nondiabetic and ob/ob type
2 diabetic mice via a one-time intrathecal injection. Pre-
viously, intrathecal 0.1U insulin and equimolar IGF-1
have been shown to have beneficial effects on the symp-
toms of DN [10]. All injections were 50 μL and adminis-
tered with a 1cc 28½ gauge insulin syringe between the
L6 and S1 vertebrae. In an additional preliminary study,
sterile PBS or insulin was delivered through an intra-
peritoneal injection at a dose of 3.33 U/kg, such that
the total insulin administered was approximately 0.1 U
for nondiabetic mice and 0.17U (~1.2 nmol) for ob/ob
mice. The doses administered and stimulation time frames
used were confirmed to be sufficient for Akt activation in
the PNS with dose curve and time course studies (Grote,
unpublished observation).

Western blots
After a 30 minute insulin stimulation period, the right
and left lumbar DRG and sciatic nerves were harvested
for each sample from 11 week old mice and frozen
at −80°C. Tissues were sonicated in Cell Extraction Buffer
(Invitrogen, Carlsbad, CA) containing 55.55 μl/ml protease
inhibitor cocktail, 200 mM Na3VO4, and 200 mM NaF.
Following sonication, protein was extracted on ice for 60
minutes and vortexed every 10 minutes. After centrifuga-
tion, protein concentration of the supernatant was mea-
sured with a Bradford assay (Bio-Rad, Hercules, CA).
Samples were then boiled with Lane Marker Reducing
Sample Buffer (Thermo Scientific, Waltham, MA) for 3
minutes. Equal amounts of protein (30 μg) were loaded
per lane and samples were separated on a 4-15% gradient
tris-glycine gel (Bio-Rad), and then transferred to a nitro-
cellulose membrane. Membranes were probed with the
following primary antibodies and all antibodies were
purchased from Cell Signaling (Danvers, MA) unless
otherwise noted: total Akt (1:2000), p-(Ser473)Akt
(1:500), total p70S6K (1:500), p-(Thr389)p70S6K (1:500),
total GSK3β (1:1500), p-(Ser9)GSK3β (1:1000), total JNK
(1:1000), p-(Thr183/Tyr185)JNK (1:500), total mTor
(1:500), p-(Ser2448)mTor (1:500), Insulin-like growth fac-
tor 1 receptor β subunit (1:500), PTP1B (1:500) (Abcam,
Cambridge, MA), total AS160 (1:1000) (Millipore, Biller-
ica, MA), p-(Thr642)AS160 (1:500) (Millipore), Insulin
Receptor β subunit (1:500) (Santa Cruz, Santa Cruz, CA),
and α-tubulin (1:5000) (Abcam). Bands were visualized
with either anti-mouse or anti-rabbit HRP-conjugated sec-
ondary antibodies (Santa Cruz) and ECL with X-ray film.
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Densitometry with ImageJ (NIH) was then used to analyze
each lane. All samples from each tissue were run simul-
taneously across multiple gels and each group was equally
represented on each gel (approximately 3 nondiabetic
PBS, 3 nondiabetic insulin, 3 ob/ob PBS, and 3 ob/ob insu-
lin per gel). Data is presented as the ratio of integrated
density of the phosopho-protein normalized to the inte-
grated density of the total protein. The normalized ratio
was averaged for each group and the mean ± SEM is rep-
resented in the corresponding figures. Representative im-
munoblots are shown.

Statistical analysis
All data is expressed as means ± standard error of the
mean. IPGTT, ITT, and behavior data were analyzed with a
repeated measures analysis of variance (RM-ANOVA). In
addition, the area under the curve (AUC) for IPGTT and
ITT was analyzed using a Student’s t-test. Blood glucose
changes at 30 minutes in response to insulin or IGF-1 were
analyzed with a paired Student’s t-test. Western blot results
were analyzed with 2-way ANOVA and Bonferroni’s post
hoc analysis when appropriate. Outliers greater than or less
than 2 standard deviations from the mean were not in-
cluded in the analysis. All statistical tests were performed
using SigmaPlot software and a P value <0.05 was consid-
ered significant.
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