Skip to main content
Fig. 7 | Acta Neuropathologica Communications

Fig. 7

From: Impaired signaling for neuromuscular synaptic maintenance is a feature of Motor Neuron Disease

Fig. 7

Muscle cells from MND patients show similar proliferation and fusion capacity, but a lower plate density. (A left panels) Desmin staining (red fluorescence) identifies mono-nucleated muscle cells sourced from a non-MND donor (Con-8) and a MND donor (MND-16) at 3 days in culture (~ 80% confluency). (A right panels) Desmin-labeled multinucleated myotubes from Con-8 and MND-16 (arrows). Scale bar = 20 µm. B First two bars show the number of days required for mononucleated cells to proliferate and reach 80% confluency. Non-MND and MND sourced cells appeared to proliferate at a similar rate. The third and fourth bars compare the days required for myoblasts from non-MND and MND donors to fuse to form multinucleated myotubes. There was no difference between MND and non-MND in the time required for myotube formation (n = 8 for control and n = 10 for MND). C Shows representative visual fields of myosin heavy chain (MHC) positive myotubes from matched control (Con) donors and MND patients (Con-2/MND-1, Con-11/MND-7, Con-7/MND-8). White dashed lines delineate the upper edge of a myotube. Scale bar = 20 μm. D Percentage of MHC positive multi-nucleated myotubes (≥ 3 nuclei/visual field) that were averaged across 6 visual fields per muscle sample. All non-MND (control) muscle cultures produced more MHC positive myotubes per visual field, compared to cultures from MND patients. E Quantitation of myotube diameters. MND myotubes were slender compared to non-MND myotubes. Each symbol represents the average for a single non-MND or MND donor. All data presented as mean ± SD. B Data analyzed by two-way ANOVA followed by Bonferroni multiple comparisons test. E Data analyzed by unpaired t test, where **p ≤ 0.01

Back to article page