Skip to main content
Fig. 5 | Acta Neuropathologica Communications

Fig. 5

From: Resistance and resilience to Alzheimer’s disease pathology are associated with reduced cortical pTau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort

Fig. 5

Cortical microvacuolar change. The degree of neurodegenerative tissue damage was assessed in each case on H&E/LFB-stained slides. The microvacuolar changes associated with parenchymal loss and reactive gliosis were scored on a 3-point scale in each neocortical region such that 1 = limited to superficial layers (1–2), 2 = extends to deeper layers (3–4), and 3 = translaminar involvement (5–6). In all AD dementia subjects, the MTG was the most severely affected. a Overall there was significantly less parenchymal damage in the resistant group in the IPL, MTG, and OC. There was a trend for less parenchymal damage in the MTG (p = 0.0588) and the STG (p = 0.0592). b Resilient subjects compared to AD dementia matches showed less parenchymal damage in all cortical regions assessed. (MFG, middle frontal gyrus; IPL, inferior parietal lobule; MTG, middle temporal gyrus; STG, superior temporal gyrus; and OCX, occipital cortex). *p < 0.05; Wilcoxon matched-pairs signed-ranks test

Back to article page