Skip to main content
Fig. 3 | Acta Neuropathologica Communications

Fig. 3

From: NMDA receptors mediate synaptic depression, but not spine loss in the dentate gyrus of adult amyloid Beta (Aβ) overexpressing mice

Fig. 3

The synaptic depression in DG granule cells of 5xFAD mice is NMDAR dependent. a Biocytin filled granule cells (red) in brain slices of WT and 5xFAD mice. Aβ plaques in 5xFAD mice were visualized using a 6E10-coupled A488 antibody. No plaques are seen in WT mice. b Example traces of mEPSC recordings from granule cells of WT and 5xFAD mice with NMDAR subunit deletions. c + d + e + f Cumulative probability of the IEIs is shifted towards larger IEIs in cells of 5xFAD mice, but not in cells of 5xFAD/GluN1−/−, 5xFAD/GluN2A−/− and 5xFAD/GluN2B−/− mice. g mEPSC frequency is reduced in granule cells of 5xFAD mice. There is no difference in mEPSC frequency in granule cells of GluN1−/− and 5xFAD/GluN1−/−, GluN2A−/− and 5xFAD/GluN2A−/− or GluN2B−/− and 5xFAD/GluN2B−/− mice. h The number of intersections is not changed in granule cells of 5xFAD mice. Number of intersections: Mean ± SEM. i Total dendritic length is not affected in granule cells of 5xFAD mice. j Examples of traced DG granule cells from one year old 5xFAD mice and WT littermates. k Spine number is decreased in granule cells of 5xFAD mice. There is a trend to a reduced spine numbers in 5xFAD/GluN1−/− cells and a significantly decreased spine number in 5xFAD/GluN2A−/− and 5xFAD/GluN2B−/− granule cells. l Example images of maximum intensity projections of z-stacks from the different conditions analyzed for the spine counting. m Quantification of spine morphology distribution indicates that the decrease in spine number in DG granule cells of 5xFAD mice is not due to a loss of a specific spine subtype except for the 5xFAD/GluN2A−/− cells, in which thin spines were reduced. Bar graphs show median ± IQR. * = p < 0.05, ** = p < 0.01, *** = p < 0.001; cum. = cumulative; morph. = morphology

Back to article page
\