Skip to main content
Figure 6 | Acta Neuropathologica Communications

Figure 6

From: Pro-aggregant Tau impairs mossy fiber plasticity due to structural changes and Ca++ dysregulation

Figure 6

Ultramicroscopy of mossy fiber boutons reveal severe synaptic vesicle reduction in mice expressing pro-aggregant Tau RDΔ . (a-b) Electron micrographs of mossy fiber synapses from a control littermate (a) and pro-aggregant TauRDΔ transgenic mouse (b). While the presynaptic mossy fiber bouton of the control animal is densely filled with clear synaptic vesicles (a, arrow), vesicle accumulations are rare in presynaptic mossy fiber boutons from pro-aggregant TauRDΔ mice (b, arrow). Rather, large parts of the presynaptic bouton area in the mutant are almost free of vesicles (asterisks). S = postsynaptic complex spines protruding into the presynaptic bouton. Scale bar: 300 nm. (c) Length of active zones and (d) number of synaptic vesicles/μm2 in mossy fiber synapses from control (Ctrl) and TauRDΔ transgenic animals. While there is no statistically significant difference in the length of active zones of mossy fiber synapses between control mice and mutants, the number of vesicles/μm2 bouton area is dramatically decreased in TauRDΔ transgenic mice. Data expressed as mean ± standard deviation. 4 animals per group ***p < 0.001; n.s. not significant; az = active zone.

Back to article page